X
%

X
UNIVERSITY OF AMSTERDAM

Research Project 1
Fine-grained control of LAMP component
versions for Hosting Companies

Xander Lammertink

University of Amsterdam
MSc System and Network Engineering

2014-2015

Abstract

Hosting providers offer cheap hosting for websites. Most of these hosting
providers provide a LAMP-stack (using Linux, Apache (httpd), MySQL
and PHP) updated to the latest stable release. If one or more customer uses
out-of-date software that only runs on previous releases of specific compo-
nents, the hosting company will refrain from upgrading. All users and all
applications continue using this previous release which causes security risks.
Alternatively the user could switch to another type of hosting which still
causes all other applications to run in a previous release.

This research investigates the possibilities to run multiple releases of all
or specific components on one server and how to migrate to this situation.
Using this situation, every application should be able to use the latest possi-
ble release of every component, without the need to switch to other hosting
solutions or the need of using multiple servers.

Acknowledgements

I would like to thanks Michiel Leenaars from NLnet for providing the re-
search, the help during the research and getting in touch with a hosting
provider. I also would like to thanks Martin Heideman from DigiState for
participating in the interview about the current situation in their company.

Furthermore I would like to thanks the University of Amsterdam (especially
the master System and Network Engineering) for providing the workspace,
facilities and opportunity to do this research.

Xander Lammertink

Contents

1

Introduction 6
1.1 Research Question 6
1.2 Related Work 7
1.3 Methods 7
Old Situation 8
2.1 Shared Hosting L. 8
2.2 Managed Hosting 8
2.3 Unmanaged Hosting 9
2.4 Resources e e e 9
2.5 Updates and Downtime 9
2.6 Operating System Lo 9
New Situation 10
3.1 Linux 10
3.2 Virtualization o 14
3.3 Containers. e 15
3.4 Multiple instances L. 15
3.5 Details 16
3.5.1 Apache 16
3.5.2 MySQL 17
353 PHP 17
Migration 19
4.1 Shared Hosting 19
4.1.1 Linux 19
4.1.2 Apache 20
4.1.3 MySQL 21
414 PHP 21
4.2 Managed Hosting 22
4.3 Unmanaged Hosting 23
Conclusions 24
5.1 OIld Situation 24
5.2 New Situation 24
5.2.1 Linux e 24
5.2.2 Apache 25
523 MySQL 25
524 PHP 25
5.3 Migration L Lo 26
5.3.1 Linux e 26
5.3.2 Apache 26

533 MySQL
534 PHP
5.3.5 Hosting Environments

6 Suggestions for Future Work

1 Introduction

NLnet has proposed a project to research the possible migration models for
hosting providers. In this project they would like to know what migration
models hosting provider can use to upgrade their LAMP-stack [1] to a new
architecture in which customers can use one authentication structure and
can upgrade their (sub-)components independently.

In this project will be researched what software is used by a hosting provider
to utilize LAMP-stack hosting, what architecture (new) hosting providers
should use to upgrade the different (sub-)components and what migration
models can be used to (temporarily) migrate customers to other hosting
providers.

1.1 Research Question

For this research project a research question with multiple sub-questions
have been created. By answering the sub-questions, the research question
can be answered. By answering the research question the project will be
accomplished.

The research question is: What migration models can be used to (tem-
porarily) migrate customers of LAMP hosting providers to another (new)
LAMP hosting provider?

This research question has been split into the following sub-questions:

e What software is used by a LAMP hosting provider to utilize LAMP
hosting?

e What architecture should a (new) LAMP hosting provider use to up-
grade different (sub-)components of customers?

e What migrations models are available to make hosting providers mi-
grate to the new hosting architecture?

e How can different (sub-) components be up- or downgraded after mi-
grating?

1.2 Related Work

Before research began, there was no related academical work found. But
during research there appeared to be documentation available that shows
how to run multiple instances of Apache (httpd), PHP or MySQL on one
machine. This is no academical work.

There has been found official documentation of Apache and MySQL that
show running multiple instances are possible.

1.3 Methods

This research will be done in three parts. In the first part there will be
investigated how the current situation looks like. This will be done by in-
terviewing a hosting company provided by NLnet.

In the second part there will be a look into the “future”. How should a
new situation look like? And what are the possibilities to set up the new
situation?

The last part is the migration. This covers the transition from the old
to the new situation. This will cover how to set up your servers to support
the new situation.

2 0Old Situation

To determine what an old situation would look like, Michiel Leenaars ar-
ranged a conversation with a hosting provider that is representable for this
research. The chosen hosting provider was Digistate. Mr. Heideman founder
of DigiState has been interviewed. Mr Heideman founded DigiState in 2008
and is now director in a team with three other colleagues.

Mr. Heideman states that there are 3 types of hosting in the current situ-
ation. The first one is shared hosting. Shared hosting means that multiple
customers share one server which is kept up to date by the hosting provider.
The second type is managed hosting. In managed hosting the customer gets
its own dedicated server, but it is being configured and kept up to date by
the hoster. The last type of hosting is unmanaged hosting. Here the hosting
provider only provides a server (if required even with an operating system).
It is up to the customer to install and update the software they would like
to use.

2.1 Shared Hosting

In most situations a customer will use shared hosting. This is mostly used
by customers that do not require a lot of resources. The customers are
separated from each other, but use the same server (shared among 300 other
customers). The hosting provider makes sure that the operating systems
(CentOS), Apache (httpd), PHP and MySQL are up to date, according to
the latest stable release (as provided by the repositories). All components
are installed on the same server.

2.2 Managed Hosting

When a customer requires more resources, but does not want to manage
updates and the stable working of the server, it uses managed hosting. In
most cases the different components are installed on one server, but based
on the needs of the customers it might happen that the MySQL server is
installed on another server. In this situation the hosting provider also makes
sure that the servers are kept up to date, according to latest stable releases.

In some cases an application cannot use the latest release because the
application would stop working correctly. In this case the hosting provider
will not update this component and also states this in the Service Level
Agreement (SLA).

2.3 Unmanaged Hosting

If a customer wants to control their own server, they can use unmanaged
hosting. In this case the hosting provider only has provide the hardware
and makes sure the server stays available. The software is controlled by the
customer.

Customers basically use or share only one server, the authentication is done
at the server itself. There is no centralised authentication service that han-
dles the authentication.

2.4 Resources

Looking at the used resources, there is just one case in which a cluster has
been build to host a customer, normally customers do not use more resources
then can handled by one server . In the shared hosting these is just a little
overhead in resources per server to make less costs and suppress the prices.
Although the capacity is limited, the hosting provider know their capacity
and know when to add capacity before it runs out.

2.5 Updates and Downtime

In the shared and managed hosting environments the hosting provider ap-
plies the updates for customers. Before the updates are done, they first test
the updates on a test machine to see if everything works fine. If no problems
occur, the updates will be executed on the servers. The updates are exe-
cuted using the standard repositories during the maintenance windows that
are described in the SLA. This way the downtime is reduced to its minimum
and most convenient.

2.6 Operating System

In managed and unmanaged hosting situations the customer can also choose
which operating system they will use. Most customers choose the a Linux
operating system (CentOS, Ubuntu, etc.) because of the expertise that is
available at the hosting provider. Sometimes customers choose Windows as
operating system.

3 New Situation

The new situation is a situation in which customers can run their applica-
tions on the various infrastructure releases of their choice. Using automated
testing, automatic updates should be available. If one application cannot
run on the latest release, that application will use a previous release while
all other applications on the same server are able to use the latest release.

In addition the authentication to access a server, components or specific
applications is centralized. This way authentication is not bounded to the
current server and credentials will be consistent everywhere.

3.1 Linux

Linux itself will not be covered in the new situation. There are no changes in
functionality of the LAMP stack when Linux is being replaced or upgraded
since the functionality of the LAMP stack depends on Apache, MySQL and
PHP.

Only the authentication will be covered. Since the current situation uses
local authentication instead of centralized authentication. Authentication
will be covered as part of Linux, but can also be applied in Apache, MySQL
and PHP.

The most important requirement about authentication is to use central-
ized authentication. This means that all authentication is using credentials
saved in a centralized system. The second requirement is that all compo-
nents can use this centralized system and it must be easy to add or remove
components that will use the same centralized authentication system.

All four components of the LAMP-stack can use authentication. Linux can
use this to allow logging in into the system, Apache can use it to authorize
users before they can access certain folders/directories. MySQL uses au-
thentication to set permissions on databases, tables or entries and PHP can
use authentication in the application that are build using PHP (for granting
access to certain functions)

10

Looking at authentication one could split up authentication into the au-
thentication itself and the storage of the credentials. Some solutions do both
parts themselves and some solutions just do one part and require another
solutions to cover the other part.

During research there has been searched for different solutions. These so-
lutions are PAM, Kerberos, LDAP and NIS+. Each of these solutions will
be explained and afterwards one solution will be chosen to be used in the
migrations models.

Pluggable Authentication Module

The first solutions to be discussed is PAM. PAM, which is an abbreviation for
Pluggable Authentication Module, is a suite of shared libraries which allows
applications to authenticate against a chosen authentication mechanism. If
another authentication mechanism is chosen, this can be implemented with-
out recompiling the application. [9]

PAM separates the authentication into four parts. The first is “account”
which provides account verification (such as password expiration and access
permission). The second part is “authentication” which handles the authen-
tication of the user and sets up the user credentials. This can be done by
providing a password, but also using other modules which enables the use
of smart-cards or biometrics. The next part is password. The “password”
part is responsible for updating the authentication mechanisms. As can be
imagined, this part is strongly related to authentication. The last part is
called “session” and handles everything that should be done before a service
is started and after it is being closed. [10]

A big benefit of PAM is that it allows modules to be plugged in. This
gives the possibility to create youown modules or plugging in existing mod-
ules without the need to change the applications that are using PAM. Ex-
amples of these modules are pam_chroot.so which puts a wrapper around
the user by putting them into a “virtual file-system” (e.g. / is actually in
/some/directory), pam_cracklib.so which checks if passwords are strong
enough (e.g. by checking for characters in different character classes and
not being a palindrome of the old one) or pam_ldap.so to authenticate users
against an LDAP directory service. [11]

11

Kerberos
The second option for authentication is Kerberos. This is an authentication
protocol which is based on the idea that the internet is an insecure place
and therefore no passwords should be sent over the network.

Kerberos is based on three parties, the KDC (Key Distribution Center),
the service and the client. The KDC acts as a trusted third party that
contains a database with UserID’s (e.g. user-name) and the associated sym-
metric key (e.g. hashed password) and issues tickets to access services.

To log in, the user requests a TGT (Ticket Granting Ticket) that can be
used to request tickets. The KDC sends the encrypted TGT using the users
hashed password. To access a service, the user sends a request with the TGT
as proof. The KDC responds with a ticket to the service which is encrypted
using the session key of the user (which was send during the login).

To access the service the user can now send the ticket to the service (en-
crypted with the key of the service). As an acknowledgement a message is
sent back (again encrypted). [12]

Lightweight Directory Access Protocol

The next option is LDAP. LDAP, Lightweight Directory Access Protocol, is
a directory service which can be compared to a database that is optimized
for reading operations. LDAP can be used as a back-end to store the au-
thentication information like user-names and passwords.

LDAP contains a DIT (Directory Information Tree) in which Directory En-
tries (nodes) can be saved. The Directory Entries contain attributes of
different types based on their objectclass. Directory Schemas are used to
specify which attributes the different objectclasses should contain.

LDAP can be accessed using the LDIF (LDAP Data Interchange Format)
protocol or using a URL. The LDIF protocol is created to search, add, re-
move or modify data on an LDAP server using plain text instead of binary.
A URL (such as 1dap://1dap.example.com/cn=John%20Doe,dc=example,
dc=com) can only be used to search for data in LDAP. More info about LDIF
be found in [13]

12

Network Information Service Plus
The last option is NIS+ (Network Information Service). NIS+ provides a
lookup service. It distributes information like login names, passwords home
directories, groups, hostnames and IP addresses. NIS+ has been introduced
by Sun and as a consequence only able to run on Solaris, clients running
Linux however can access NIS—+

NIS+ also has a less secure variant called NIS. NIS is easier in use, but
is also less secure. A downside of NIS and NIS+ is that users need to up-
date passwords on every single system instead of one password update that
is being distributed to other systems. [11]

There is a NIS+ version available that runs on Linux. Although all func-
tionality is implemented, the development of NIS+ for linux has stopped
”some time ago” because of the lack of time and resources. [14]

Choosing Authentication Options
After researching the possibilities for authentication and looking at the re-
quirements one can conclude the following:

e PAM is suitable solution when it is combined with a centralized au-
thentication information system. It is very flexible because of the
possibility to add or remove modules without recompiling any appli-
cations.

e Kerberos is a good solution. It does not need to be combined with
other solutions because this authenication solution also stores the as-
sociated information. The strength of Kerberos is its secure basis by
not sending any passwords over the network.

e LDAP is also a good solution, but it only handles the storage of au-
thentication information. This means it needs to be combined with an
authentication system. The benefits of LDAP are centralization and
accessibility from external networks (only if it is configured that way).

e NIS+ is not a suitable solution because it is not centralized. Every
system stores their own credentials and changing them will only lead to
changes on that specific system. NIS+ for Linux is also not supported
anymore.

13

Now solutions have been graded, lets take a look at the options we now
have and evaluate these:

e PAM + LDAP: PAM can be used in combination with LDAP using
a module that uses LDAP to get the credentials of the users. This
has the benefit of the flexibility of PAM, but lacks the security that
Kerberos offers.

e PAM + Kerberos: Using a module for PAM it is possible to make PAM
handle the Kerberos authentication. This combines the flexibility of
PAM and its modules and the safety of Kerberos.

e Kerberos: Kerberos can also be used on its own. This way you can
benefit the security it offers, but without the benefits of PAM.

Now these options have been evaluated one can conclude that the best option
would be a combination of PAM and Kerberos to benefit of both the security
and the flexibility it offers. In addition to this combination it is also possible
to add LDAP for other purposes like storing email addresses associated with
users, although this reaches out of the scope of this project.

3.2 Virtualization

One way for a customer to use other releases is to set up multiple virtual
machines, each using a Linux distribution and another set of instances. This
would result in a x p x m servers (where a stands for the number of Apache
instances, p or PHP instances and m for the number of MySQL instances).

Assuming 5 different releases of every component will be used, this will
result in 125 virtual servers. This does not include that most users are
probably able to use the most recent releases of all component, which again
will result in one (virtual) server handling all the requests, or the need to
use multiple servers.

Another problem arises in how to make sure every request is redirected
to the right server. Since this must be done at subdirectory level, this could
be achieved using layer 7 switching. A layer 7 switching is able to switch
packets based on their content. It could take look into the packets and de-
termine what URL is used in the HI'TP-requests. Based on the URL it will
then switch the packet to the right server. [15]

14

Although virtualization is a possible solution, it is not a suitable solution.
A lot of virtual machines are needed which all have to be maintained. The
virtual machines will also create overhead, since all machines have to run
the same Linux distribution next to the unique combination of the LAMP-
stack. This means extra server capacity is needed to host the same amount
of customers.

3.3 Containers

Another way that might be possible is using containers. Containers can be
used to package applications. Once a containers is packaged, it can be used,
transferred or copied to different servers.

Using containers there are two ways to run multiple versions. One possi-
bility is to create one container that contains the whole LAMP-stack. This
would lead to a situation in which every container consists out of a unique
LAMP-stack.

Another way is to create a container for every component. By creating
a container or every release of a component, one would be able to stack a
container of every component to create a unique LAMP-stack.

The advantages of this solution is that it is very easy to set up a unique
LAMP-stack. The downside however is every machine would be able to
run only one LAMP stack. This would again require virtualization to run
multiple virtual machines on one physical server, which will again create
overhead.

3.4 Multiple instances

The last possibility that has been found is installing multiple instances on
one server. This means one server will contain all used releases of every
component. Based on the request that comes in at the server it is possible
to redirect the request to another instance on directory or file level.

The advantage is that every server can run all instances instead of just

one and requests can be redirected on directory or file level. The downside
is that all servers need to be configured for all instance.

15

3.5 Detalils

Looking at the advantages and disadvantages that virtualization, containers
and multiple instances offer. 1 would recommend multiple instances as the
best option, based on the facts that it will create less overhead then using
virtual machines and gives the possibility to redirect requests on directory
or file level.

So lets take a closer look...

3.5.1 Apache

The need to run multiple version of Apache on a single machine is a re-
quirement that is getting more common. Apache has now provided some
documentation on how to make multiple instances of Apache working on
one machine to use multiple instances. [2]

The basic idea is to copy /etc/apache2 to /etc/apache2-xxx so new in-
stances can run independently from each other. Apache provided a script
to ease this process.

To send traffic to the right instance a proxy is required. The proxy matches
sites or folders and sends the requests to the right instance. The /etc/apache2
installation will become a reverse proxy server that listens to port 80 (and
443). The other instances use a normal setup, but listen to different ports
to avoid communication issues.

The proxy server uses the modules mod_proxy and mod_proxy_http to redi-
rect all incoming traffic on port 80 (and 443) to the new address as spec-
ified in the configuration. The configuration will show VirtualHosts using
a ServerName to distinguish the different domain names. This VirtualHost
contains the ProxyPass and ProxyPassReverse lines to redirect requests to
other instances running on different ports.

The other servers use normal configurations. They also contain Virtual-
Hosts using a ServerName to distinguish the different domain names, but
instead of the ProxyPass lines they contain a DocumentRoot line to locate
files. [3]

Instead of using a proxy on every machine, there is also the possibility
to use a proxy that is placed in front of the hosting machines. This server
could execute the same functionality but for all servers together.

16

3.5.2 MySQL

To run multiple instances of MySQL, MySQL already proposed a way to
run multiple instances on one machine. MySQL can run multiple instances
using different settings for every instance.

MySQL proposes to install the different instances in separated folders. Ev-
ery instance can be connected using a different port number. By knowing
which MySQL instance is listening to which port (for example 3306, 3307
and 3308) the customer can connect the right MySQL instance. [4]

Next to the port number, the socket path, pid file and, if used, the paths
to the different log files have to be different on each of the instances. These
configuration changes can be made by configuring the installation of MySQL
(when MySQL is installed from source). More information about running
multiple MySQL instances can be found in [5]).

3.5.3 PHP

Since there are already products available to install multiple PHP instances,
one of these products (ntPHPselector [6]) has been analysed. ntPHPselector
is a free script that makes it possible to use a different PHP interpreter per
directory.

ntPHPselector works with a single script and is based on the use of SuPHP
and cPanel. The concept of the system lies in two things. The first part is
the installation of multiple instances of PHP in different folders. The scripts
handles all installations and copies the PHP configuration of the main PHP
instance.

The second part ntPHPselector is based on is the “.htaccess” file. This
file can be placed in every directory and is configured to tell Apache how to
handle the files that are in that specific directory. [7]

Seeing how ntPHPselector installs multiple instances of SuPHP, a way to
install multiple instances of a normal PHP can be derived from it. PHP is
a module that runs on top of Apache or it can be accessed through CGI. [8]
Since there are already multiple instances of Apache it will be difficult to
use multiple instances of PHP via modules. Therefore CGI will be used to
access PHP.

17

As seen in ntPHPselector it was possible to run multiple versions of PHP
when it is installed in separated directories and accessed through CGI. Now
only Apache has to know which instance it should pick. In normal situations
this can be done by creating MIME-types in the configuration file that are
associated to file extension. Based on a MIME-type Apache can decide to
use PHP through CGI.

If multiple MIME-types are created, associated with different file exten-
sions, every MIME-type can be configured to use a different PHP instance.
This requires file extensions for scripts to be changed if it has to run on a
previous PHP release, so in extension to the main configuration .htaccess
files can be used.

In every folder it is possible to create a .htaccess file that will overrule the

association between file extensions and MIME-types. This way it is possible
to let every folder (or even file) use a different instance of PHP.

18

4 Migration

The migration will be covered in three parts, one part per hosting type.
The first part is about shared hosting and the second one about a managed
hosting environment. The third part, about unmanaged hosting, will be
covered shortly.

As described in section 2 the unmanaged hosting will not be managed by the
hosting provider, therefore the hosting provider is not responsible for migrat-
ing these environments. The migration of the shared hosting environment is
split into multiple parts. These parts are Linux, Apache, MySQL and PHP.

Since the shared hosting environment is updated to the latest release of all
components, one can assume that websites hosted on current versions are
running without problems. Therefore there is no need to set up instances
running on previous releases.

This section will only cover the migration from the old to the new situa-
tion. Every time updates are available it is up to the hosting provider to
add and update instances. There are also a few additional recommendations
that would simplify management in the future, but these are not mandatory.

4.1 Shared Hosting
4.1.1 Linux

The only functionality of the LAMP-stack that is offered by Linux is the
authentication. In the old situation the authentication is done locally by
storing the credentials in a local file. The new situation offers central au-
thentication by the use of PAM and Kerberos. The credentials that are now
stored in Linux have to be transferred to Kerberos.

Currently the credentials of local users are stored in the /etc/passwd and
/etc/shadow files. The /etc/shadow file however, makes sure that pass-
words are practically impossible to retrieve by storing only the hashed (and
salted) passwords using the SHA512 algorithm. [16]

19

Since the passwords are practically impossible to retrieve, there are only
a few options left. The fist is reading the /etc/shadow file and use a script to
detect and add every user (filtered by checking for a password) to Kerberos.
This options requires a password reset since the passwords are practically
impossible to retrieve.

The second option is using the pam_krb5_migrate module. This module is
able to automatically migrate users to Kerberos using the values PAM_USER
and PAM_AUTHOK. This options requires a user to log in before the credentials
can be transferred. [17]

The first option is a simple solution that can be executed very quickly using
a simple script, the downside is that passwords of users need to be reset.
The second option is a solution where users have to interact before they are
being migrated. It is a bit more difficult to insert a module, but after a
simple user login the user is migrated without experiencing any changes. It
is up to the hosting company to choose which options suites the best.

4.1.2 Apache

The migration of Apache is split up in two things. The first is setting up
multiple versions of Apache using the ”setup-instance” script provided by
Apache. This script can be found in /usr/share/doc/apache2/examples/
setup-instance.

Secondly the proxy needs to be set up to redirect traffic to another port on
which the right Apache instance is listening. The main instance of Apache
can be used to proxy traffic (using the mod_proxy module) while the other
instances can be used to actually serve websites. The Apache configuration
file should be configured to listen to port 80 (and 443) and contains Virtu-
alHosts for every site (and possibly subdirectories). Every incoming request
will then be redirected to the right Apache instance by proxying it to the
corresponding port.

20

The second instance of Apache also needs the configuration file to contain
VirtualHosts for every site, but this time to let Apache know the Server-
Name, DocumentRoot, etc. To make management easier it is recommend-
able to include a shared configuration file (include filename.conf) into
the global configuration of all instances (except for the proxy). The shared
configuration file should contain all virtual hosts. This way only the proxy
configuration has to be changed to make the site run on another instance.
18]

To complete the changes that are made, a restart of the services is enough.
This will only take a few seconds. All changes can be executed on the same
server without migrating any domains.

4.1.3 MySQL

For MySQL there are no configuration changes that have to be made. The
system administrator can simply install extra instances of MySQL by down-
loading the source code and configuring it to use another base directory
(--prefix=[directoryl), unix socket (--with-unix-socket-path=[file
name]) and port (--with-tcp-port=[port]) to install the instance.

It is recommended to let the updated instance listen to the default port
(3306) and let other instances listen to other ports (e.g. 3307, 3308, etc.).
The customers that want to use the latest version can simply use one port,
instead of changing it every time an update is applied.

The database in the current MySQL instance is not automatically migrated
or duplicated to other MySQL instances. If the choice is made to use another
MySQL instance, the customer also has to migrate the database. There are
two ways of doing this, the simplest way is using the MySQL Schema Trans-
fer Wizzard which is included in the MySQL Workbench software. Another
option is to do this manually by creating a MySQL dump and import the
database. For more information about this topic, see: [19] [20]

4.1.4 PHP

Installing different versions of PHP is possible by downloading the source of
PHP and configure it to use another install directory (e.g. --prefix=/usr/
local/php5.6. Every instance of PHP must be installed in a different di-
rectory.

21

Now Apache needs configuration to know which version of PHP it should
use. To do this the Apache configuration file (apache2.conf) needs to
be changed by creating a MIME-type associated to a file extension. This
MIME-type can be configured to start a PHP instance through CGI.

Example: (by default files with extension .php and .php56 are interpreted
by PHP 5.6, extension .php55 by PHP 5.5, etc.)

<Directory "/srv/www/">
Create MIME-types
AddType application/x-httpd-php56 .php56 .php
AddType application/x-httpd-php55 .php55
AddType application/x-httpd-php54 .php54
Associate MIME-types with associated CGI scripts
Action application/x-httpd-php56 /cgi-bin/php56.cgi
Action application/x-httpd-php55 /cgi-bin/phpb5.cgi
Action application/x-httpd-php54 /cgi-bin/php54.cgi
</Directory>

In this example a customer can set up PHP applications to work with a
specific version of PHP on two different ways. They can choose to change
the extension to .php** where ** is the version number (e.g. a .php55 file
is executed by a PHP 5.5 instance). Another way is to make a directory
wide change to make .php files work on a specific PHP instance. This can
be done by creating a file named .htaccess that contains the line AddType
application/x-httpd-php** .php where ** is the version number again.

Since PHP needs to be configured in Apache, each instance of Apache needs
this configuration to make PHP run. To make the system management eas-
ier it is recommended put the MIME-type configuration into a separated file
and include this file into the Apache configuration.

4.2 Managed Hosting

Managed hosting and shared hosting are practically the same. The biggest
difference is that a customer has a system for its own and therefore does not
always need multiple instances for every component.

It would be a waste of resources to set up a lot of instances for every com-

ponent while only two component need multiple instances. Therefore only
the components that are necessary for the customer, need to be set up.

22

Customers running old versions of some components for specific applica-
tions can now upgrade to recent versions. The applications that still need the
old version can run on one instance, while other applications can simply use
another instance that is up to date. This can be different for every customer.

The only part that always needs migration is authentication. The migra-
tion of authentication will allow customers to use centralized instead of local
authentication.

4.3 Unmanaged Hosting

Unmanaged hosting environments are not managed by the hosting provider.
Therefore all changes need to be done by the customer. It is up to the cus-
tomer to decide if they would like to make use of this migration.

Looking at authentication, it is up to the customer to choose if they would
like to use the centralized authentication offered by the hosting provider.
This could be a benefit if the hosting provider is asked to make changes on
the server (for whatever reason).

A benefit for customers to migrate the other components is that every ap-
plication can use the latest version of all components. As in a managed
hosting environment it might not be necessary to use different instances of
every component, but the customer should only install multiple instances of
a components if it is really needed.

23

5 Conclusions

5.1 Old Situation

Hosting providers provide three types of hosting: shared hosting, managed
hosting and unmanaged hosting. In a shared and managed hosting envi-
ronment the hosting provider provides the complete LAMP-stack (Linux,
Apache, MySQL and PHP) using the latest stable software available.

In a shared hosting environment multiple customers share one server. Man-
aged hosting customers get their own server managed by the hosting provider.
Unmanaged hosting is a type of hosting where the hosting provider provides
the server and only manages the hardware.

In a managed hosting environment the customer can choose to use an old
version of (multiple) components. The hosting provider will then not up-
date these components. This also means that other applications on the same
server have to use the same old components.

5.2 New Situation

In a desirable situation applications use the latest stable release of a com-
ponent. Only when an application needs to use a previous release of a
component, that specific application will use the old component. Other ap-
plications will still be running on the latest stable release. To accomplish
this situation measurements have to be taken by installing and configuring
multiple instances of all component. In addition the authentication has to
be centralized.

5.2.1 Linux

Lets start with Linux, in the current (old) situation Linux uses local authen-
tication. In the new situation it should use centralized authentication. This
can be accomplished in various ways using PAM, LDAP and/or Kerberos.

The first options is using PAM combined with LDAP. PAM will handle the

authentication and LDAP will store the credentials. This gives the flexibility
of using PAM modules, but lacks the security that Kerberos offers.

24

Then there is the second option: PAM and Kerberos. Using a module
PAM can be used to authenticate against Kerberos. This options gives the
flexibility of PAM and also the safety that Kerberos offers.

The last option is Kerberos on its own. This of course does not give you the
benefits of PAM, but it does offer the safety of Kerberos.

It is recommended to make use of PAM combined with Kerberos. This
gives the benefits of both PAM and Kerberos.

5.2.2 Apache

Running different versions of Apache on one server requires multiple in-
stances of Apache to be installed into separated directories. These instances
also need different ports to listen to.

To redirect every site or folder to the right instance, Apache needs one
instance that is configured as a proxy. An incoming request at the proxy
(on port 80 or 443) can be redirected to another port (matching the right
instance) based on the configuration.

5.2.3 MySQL

To run different versions of MySQL on one server it has to run multiple
instances installed in separated directories, listening to different ports.

Because every instance of MySQL is running on a separate port, the hosting
provider can provide a list with the port and version numbers associated
to the different instances. The customer can simply choose the version by
connecting to a specified port.

5.2.4 PHP

PHP is a bit more difficult since it normally runs as a module on top of
Apache. However, it is also possible to send requests to PHP through CGI
(Common Gateway Interface).

To let Apache run PHP scripts via CGI, MIME-types can be created. MIME-
types can be created in the configuration file and are associated by a file

extension. Apache can be configured to execute files via CGI based on the
MIME-type.

25

Next to the global configuration there is also a possibility to change this
configuration on specific files or folders. This can be done using a .htaccess
file with another configuration. Configuration changes made in the .htaccess
files overrule the global configuration

Example: the extension .php is globally configured to run on PHP 5.6.
Now a .htaccess file is created which associates the .php extension to an-
other MIME-type that is configured to run PHP 5.5. This configration will
overrule the global configuration and will now make the .php file run on
PHP 5.5.

5.3 Migration
5.3.1 Linux

The only Linux part that needs to be migrated is the authentication. Un-
fortunately migrating the authentication is not as simple as just copying
the credentials from the /etc/passwd and /etc/shadow file to Kerberos.
This is practically impossible because the passwords in the /etc/shadow
are hashed (using SHA512) before they are stored.

There are two options in migrating credentials to the Kerberos server. The
fist option is adding the pam_krb5_migrate module to PAM. When a user logs
in, the username and passwords can be migrated to Kerberos. The second
option is to copy all usernames that have a password from the /etc/shadow
file. This however requires a password reset, which is inconvenient for cus-
tomers.

The first option is a very gentle solution where the customer does not expe-
rience any changes. The downside is that is requires action from an end user
which might take a while. Therefore the second option might be a better
solution, it does not require any action from the user, but the password reset
can be inconvenient.

5.3.2 Apache

To run multiple instances of Apache, the “setup-instance” script provided
by Apache can be used to create an instance for every release. The main
instance needs to be configured as a proxy server. It should listen to port
80 (and 443) and redirects requests to the other instances based on the con-
figuration.

Every other instance is listening to other ports (e.g. 81, 82, etc.) and

serves the actual files. These ports only need to be opened to the local host,
the port that is used by the proxy needs to be opened to the internet.

26

To make management easier it is recommended to split the configuration
in multiple files. This way the virtual hosts for serving files can be stored in
a separate configuration file and can be included into the configuration files
of the specific instances. When a site needs to run on a different release,
only the proxy configuration needs to be changed.

5.3.3 MySQL

MySQL proposed to install multiple instances by installing MySQL from
source. This way the installation can be configured to install into a sepa-
rated directory listening to a different port (e.g. 3307, 3308, etc.). Every
version needs installed in a separate directory.

To distinguish instances, every instance should listen to another port. The
customer can choose which version to use by choosing which port to con-
nect to. It is recommended to let the updated instance run on the default
MySQL port (port 3306).

Unlike Apache and PHP, MySQL needs databases to be transferred if an-
other instance is chosen. This can be done using tools like the MySQL
Schema Wizzard provided by MySQL or by manually creating a dump of
the database and import it into the new MySQL instance.

5.3.4 PHP

PHP also requires multiple instances to be installed in separated directories.
This can also be done by installing it from source. Next, Apache needs to
be notified to use PHP for file with the .php (or .php**) extension. This
can be done by configuring Apache to assign MIME-types to file extensions.
This MIME-type can be configured to activate PHP via CGI.

For every version of PHP a new MIME-type needs to be created. Every
MIME-type can be bound to a .php** extension, where ** is the PHP re-
lease number (e.g. .php55 for PHP version 5.5).

If a customer wants to use another PHP release then the latest one it can do
a few things. The first option is to change the extension to .php**, where
** represents the release it would like to use.

The other option is creating a .htaccess file in the folder where the files
are located. This .htaccess file should contain a configuration that binds
the .php extension to the MIME-type of a specific release and overrules the
global configuration.

27

It is recommended to bind the .php extension to the latest release of PHP
(on global level) and to store the MIME-type configuration in a separated
file that is included into the other configuration files.

5.3.5 Hosting Environments

Since every hosting environment is different, not every component is relevant
to migrate. Looking from a management perspective, a shared hosting en-
vironment is completely different from an unmanaged hosting environment.

Therefore it is important for hosting providers and customers to look at
the actual needs and requirements. For a shared hosting environment it
is recommended to migrate all components to the new situation. A man-
aged hosting environment should at least migrate the authentication, but
depending on the needs of the customer and their applications, they might
not migrate all components.

An unmanaged hosting customer might not want to implement anything
of the new situation. The customer has to decide if they want to apply
(parts of) the migration based on their needs. Since an unmanaged hosting
environment is not managed by the hosting provider it is up to the customer
to apply the migration.

28

6 Suggestions for Future Work

Now research concluded that it is possible to run multiple releases of com-
ponents by running multiple instances, this also opens new opportunities to
research.

The most important topic is how the new situation will affect the perfor-
mance. For Apache all traffic will first pass through a proxy server and PHP
is now loaded via CGI. These configuration changes can affect response time
and server load, but will they?

The next topic is about changing modules. LAMP has now been defined
as a combination of Linux, Apache, MySQL and PHP. Although this com-
bination is used the most, the MySQL database could also be replaced by
MariaDB or PHP by Perl or Python. To take this even further, Linux could
be replaced by Windows (Server) which creates a WAMP-stack. Can these
and other components also use the same principle as used in this research?

In section 3.3 there has been thought about using containers to separate
installations. This was considered to be a bad solutions when it is used
as a complete solution. It could however help to package the different re-
leases into containers. This could help system administrators to safe a lot of
time for the installation of large environments. In extension these containers
might also be able to run isolated to offer more security.

The last topic is management panels. Hosting provides often provide a
management panel (like cPanel and DirectAdmin) so customers can easily
change some configuration settings. Adding a simple user interface would
make it easier for customers to change the releases of components for specific
applications. Can this functionality be added to the management panels?

29

References

1]

8]

[9]

Wikipedia, (2015). LAMP (software bundle). [online] Available at:
http://en.wikipedia.org/wiki/LAMP _(software_bundle) [Accessed 7 Jan.
2015).

Anonscm.debian.org, (2015). [pkg-apache] Contents of
/trunk/apache2/README.multiple-instances. [online]
Available at: http://anonscm.debian.org/viewve/pke-
apache/trunk/apache2/ README.multiple-instances?view=markup
[Accessed 14 Jan. 2015].

Internet, C. (2015). New Apache instance with Reverse Proxy — The
Art of Web. [online] The-art-of-web.com. Available at: http://www.the-
art-of-web.com/system/apache-reverse-proxy/ [Accessed 14 Jan. 2015].

Dev.mysql.com, (2015). MySQL :: MySQL 5.1 Reference Manual

2.11.4 MySQL Source-Configuration Options. [online] Available
at: http://dev.mysql.com/doc/refman/5.1/en/source-configuration-
options.html [Accessed 13 Jan. 2015].

Dev.mysql.com, (2015). MySQL :: MySQL 5.7 Reference Manual

5.3 Running Multiple MySQL Instances on One Machine. [on-
line] Available at: http://dev.mysql.com/doc/refman/5.7/en/multiple-
servers.html [Accessed 13 Jan. 2015].

Nixtree.com, (2015). Nixtree ntPHPselector. [online] Available at:
https://www.nixtree.com/ntphp.php [Accessed 13 Jan. 2015].

Simpson, S. (2014). How To Build Multiple Ver-
sions of PHP with cPanel - The Wonderful World Of
Linux. [online] Thewonderfulworldoflinux.com. Available at:
http://thewonderfulworldoflinux.com/blog/2014/03 /21 /how-to-build-
multiple-versions-of-php-with-cpanel/ [Accessed 13 Jan. 2015].

Wikipedia, (2015). Common Gateway Interface. [online] Available at:
http://en.wikipedia.org/wiki/Common_Gateway_Interface [Accessed 15
Jan. 2015).

Linux-pam.org, (2015). Chapter 1. Introduction. [online] Available
at: http://www.linux-pam.org/Linux-PAM-html/sag-introduction.html
[Accessed 22 Jan. 2015].

[10] Linux.die.net, (2015). pam.d(8): Pluggable Authentica-

tion Modules for - Linux man page. [online] Available at:
http://linux.die.net/man/8/pam.d [Accessed 22 Jan. 2015].

30

[11] Linuxgeek.net, (2015). Linux Authentication Sys-

tems - Linux Geek Net. [online] Available at:
http://www.linuxgeek.net /documentation/authentication [Accessed
21 Jan. 2015).

[12] Security of Systems and Networks: Lecture 13 Ker-
beros SSL TLS. (2014). 1st ed. [ebook] Amsterdam:
0S3, p.35. Available at: https://www.os3.nl/_media/2014-

2015/courses/ssn/ssn_lecture_13_2012_kerberos_ssl_tls.pdf [Accessed
92 Jan. 2015].

[13] Tools.ietf.org, (2015). RFC 2849 - The LDAP Data Interchange For-
mat (LDIF). [online] Available at: http://tools.ietf.org/html/rfc2849
[Accessed 23 Jan. 2015].

[14] Linux-nis.org, (2015). www.linux-nis.org (Linux NIS+ Support). [on-
line] Available at: http://www.linux-nis.org/nisplus/ [Accessed 23 Jan.
2015].

[15] Foundrynet.com,. 'Layer 7 Switching Overview’. N.p., 2015. Web. 6
Feb. 2015.

[16] ManT7.org, (2015). shadow(5) - Linux manual page. [online| Available
at: http://man7.org/linux/man-pages/man5/shadow.5.html [Accessed
26 Jan. 2015].

[17] Docs.oracle.com, (2015). Synopsis - man pages section b:
Standards, Environments, and Macros. [online] Available at:
https://docs.oracle.com/cd/E26502_01 /html/E29043 /pam-krb5-
migrate-5.html [Accessed 26 Jan. 2015].

[18] Httpd.apache.org, (2015). core - Apache HTTP Server Version 2.2.
[online] Available at: http://httpd.apache.org/docs/2.2/mod/core.html
[Accessed 26 Jan. 2015].

[19] Dev.mysqgl.com, (2015). MySQL : MySQL Work-
bench 9.7 MySQL migration. [online] Available at:
http://dev.mysql.com/doc/workbench/en/wb-migration-database-
mysql.html [Accessed 26 Jan. 2015].

[20] Digitalocean.com, (2015). How To Migrate a MySQL Database
Between Two Servers — DigitalOcean. [online] Available at:
https://www.digitalocean.com/community /tutorials/how-to-migrate-a-
mysql-database-between-two-servers [Accessed 26 Jan. 2015].

[21] Wiki.debian.org, (2015). LDAP/PAM - Debian Wiki. [online] Available
at: https://wiki.debian.org/LDAP/PAM [Accessed 21 Jan. 2015].

31

[22] Wiki.samba.org, (2015). Samba AD DC
HOWTO - SambaWiki. [online] Available at:
https://wiki.samba.org/index.php/Samba_ AD_DC_HOWTO [Accessed
21 Jan. 2015).

[23] Server, H. (2015). How to Get a Windows Client to Au-
thenticate against a Linux LDAP Server. [online] Askubuntu.com.
Available at: http://askubuntu.com/questions/12464/how-to-get-a-
windows-client-to-authenticate-against-a-linux-ldap-server [Accessed 21
Jan. 2015].

32

