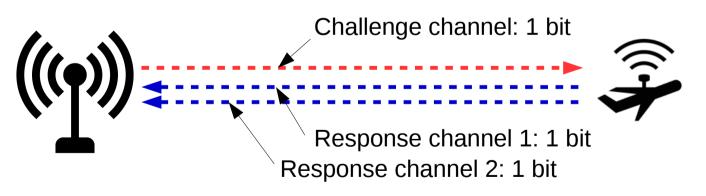
SYSTEM AND NETWORK ENGINEERING MSc Research Project I

PROTECTING AGAINST RELAY ATTACKS FORGING INCREASED DISTANCE REPORTS

Xavier Torrent Gorjón xavier.torrentgorjon@os3.nl

Supervisors:


Paul van Iterson vanIterson.Paul@kpmg.nl Jordi van den Breekel vandenBreekel.Jordi@kpmg.nl

- Distance-bounding protocols
- Feasibility of the attack: study cases
 - Autonomous Cars
 - Drone MANETs (Mobile Ad-Hoc NETworks)
- Limitations of other systems
- Preventing increased distance reports
 - Behavior verification
 - Multiple distance-bounding signals
 - Distributed knowledge
- Conclusions

- Distance-bounding protocols
- Feasibility of the attack: study cases
 - Autonomous Cars
 - Drone MANETs (Mobile Ad-Hoc NETworks)
- Limitations of other systems
- Preventing increased distance reports
 - Behavior verification
 - Multiple distance-bounding signals
 - Distributed knowledge
- Conclusions

Distance-bounding protocols

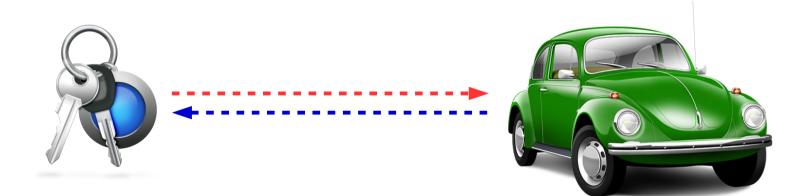

- With the current implementations, closer distances cannot be faked.
 - Proof through *physical limitations*: cannot go faster than the speed of light.
 - Need for a *shared nonce* and a *fast processing* time.

Figure 1: Distance-bounding protocol. Each challenge bit is answered with two bits: one in the communication and another one in the form of channel selection.

Distance-bounding protocols

 Current implementations can be used to prevent a wide range of attacks that attempt to fake *decreased distance* reports, generally on Access Control Systems.

Figure 2: Distance-bounding protocols can be used to protect Passive Key Entry Systems (PKES).

Distance-bounding protocols

- However, current distance-bounding protocols do not prevent increased distance reports.
 - Physical limitations cannot be used.
 - This leads to our research questions:
 - Study the feasibility of relay attacks forging increased distance reports.
 - How can these relay attacks be prevented.

- Distance-bounding protocols
- Feasibility of the attack: study cases
 - Autonomous Cars
 - Drone MANETs (Mobile Ad-Hoc NETworks)
- Limitations of other systems
- Preventing increased distance reports
 - Behavior verification
 - Multiple distance-bounding signals
 - Distributed knowledge
- Conclusions

Feasibility of the attack: study cases

- Autonomous Cars
 - If two cars believe they are further away than they really are, they might crash.
 - Other systems might prevent this, but distancebounding protocols could be an additional safety measure.

Figure 3: An early design of a fully autonomous car by Google.

Feasibility of the attack: study cases

- Drone MANETs I: Autonomous delivery service
 - To save costs, multiple drones could be used to carry large packages.
 - Tempering the distance awareness of these drones might cause them to lose equilibrium and fall.

Figure 4: A delivery drone by Amazon.

Feasibility of the attack: study cases

- Drone MANETs II: Area surveillance
 - Drones can be used to check areas for multiple purposes: military operations, updating maps, searching for lost people...
 - Erroneous distance reports can lead to leave areas unexplored.

- Distance-bounding protocols
- Feasibility of the attack: study cases
 - Autonomous Cars
 - Drone MANETs (Mobile Ad-Hoc NETworks)
- Limitations of other systems
- Preventing increased distance reports
 - Behavior verification
 - Multiple distance-bounding signals
 - Distributed knowledge
- Conclusions

- It could be argued that distance-bounding protocols were not made for this purpose.
- However, other location systems present difficulties as well.

- GPS location
- Radar detection
- Inertial Navigation System

- GPS location
 - Can be disrupted
 - Sometimes *not reliable* even in non-dangerous environments.

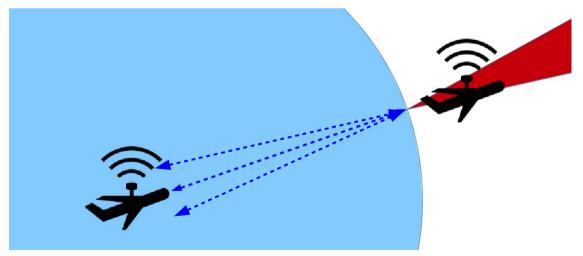
Figure 5: GPS requires unobstructed line of sight with satellites to work. This limits its usability inside buildings or underground.

- Radar detection
 - Systems could attempt to *physically detect* attackers
 - Problem: stealth technology surpasses anti-stealth technology in the current state of the art

Figure 5: The US F117 is a 13m wide airplane, but under the radar it appears to have the same size as a bird.

- Inertial navigation system
 - Fits perfectly our purpose, but it cannot be reliably used as a stand-alone positioning system due its accuracy. This may change in the future.

Figure 6: An Inertial Navigation System used by the French army.


- Distance-bounding protocols
- Feasibility of the attack: study cases
 - Autonomous Cars
 - Drone MANETs (Mobile Ad-Hoc NETworks)
- Limitations of other systems
- Preventing increased distance reports
 - Behavior verification
 - Multiple distance-bounding signals
 - Distributed knowledge
- Conclusions

Preventing increased distance reports

- Behavior verification
 - Similar idea to Intruder Detection System on networking environments.
 - Attempt to detect sudden changes in the received data, such as *signal strength* or *large variations* on the reported locations.

Preventing increased distance reports

- Multiple distance-bounding signals
 - Original distance-bounding only attempts to check if a reporter is inside or outside a certain range.
 - Use multiple distance-bounding signals to obtain approximate location, not only distance.

Figure 7: Multiple signals difficult attacks on the system, as attackers need to coherently fake multiple distances. However, distance in a straight line is still easy to fake.

Preventing increased distance reports

- Distributed knowledge
 - Instead of relying only on its own measurement, a node could also ask for the measurements of other nodes.
 - It would be extremely difficult for an attacker to fake multiple different distances at the same time.

- Distance-bounding protocols
- Feasibility of the attack: study cases
 - Autonomous Cars
 - Drone MANETs (Mobile Ad-Hoc NETworks)
- Limitations of other systems
- Preventing increased distance reports
 - Behavior verification
 - Multiple distance-bounding signals
 - Distributed knowledge
- Conclusions

Conclusions

- Most of the systems discussed are not employed nowadays but they are a *latent problem*.
- Lower-distance bound cannot rely on physical limitations for its security: *difficult to achieve perfect security*.
- Proposed solutions -specially a combination of them- reduce the changes of performing an attack without the system noticing it.

Questions?

