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Abstract

Abstract

By using Software Defined Networking (SDN) instead of classical Internet

routing protocols routing granularity can be increased. Moreover, routes can

be manipulated even per flow. This research introduces a solution for network

optimization by using OpenFlow[1] in on-demand application-specific overlay

networks. The proposed algorithm manipulates the network metrics based on

the network statistics gathered from the OpenFlow controller. Moreover, a

proof of concept is built by extending the second implementation of Internet

factories, which is called Compute factory. The extension has two parts.

The first part is about enabling in the created networks to make use of

OpenFlow instead of Open Shortest Path First (OSPF). The second part

is about creating a second control loop in the Compute factory in order to

monitor and control the routing flows. Consequently, the extended version

of Compute factory enhances the performance of application-specific overlay

networks.
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1 Introduction

1 Introduction

Nowadays, the use of the cloud is becoming a commodity. The end-users

spending for public cloud services was 112 billion dollars in 2012 and it is

estimated that it will be 293 billion dollars in 2018[2]. It is widely used

by both commercial and scientific applications. Researchers make use of

several test beds, such as GENI[3] and PlanetLab[4], in order to deploy and

test new functionalities immediately. Both mentioned platforms make use of

overlay networks. Overlay network is a virtual network that is built on top

of one or more physical networks. From the user perspective each network is

independent. Overlay networks are used in order to add extra functionality

without modifying the underlying infrastructure. Moreover, this type of

network can provide the needed infrastructure for Internet applications.

An approach, to create globally overlay networks on cloud platforms, is the

Internet factories[5]. Internet factories can create, on-demand, IP-based over-

lay networks by using Infrastructure-as-a-Service (IaaS) clouds. The created

networks consist of Virtual Machines (VMs) running in the cloud, which are

connected via IP tunnels. Internet factories facilitates the task of creation,

configuration and modification of the infrastructure. The modification is

done with a control loop that monitors and adjusts the infrastructure.

SDN is an approach to network abstraction. It decouples the control plane

from the data plane, by moving the control plane from the switches to the

controller. A standard communication interface between the switches and the

controller is OpenFlow. OpenFlow can provide us programmability over the

network. Moreover, we can modify network metrics through the OpenFlow

controller in order to achieve better routing granularity.

Elephant flows are long-lived flows which require a lot of bandwidth. On the

other hand, mice flows are flows with small bandwidth demands. Studies in

a variety of different network types[6–9] have been shown that only a small

portion of flows is elephant flows, while the biggest part is mice flows.

The scope of this research is to evaluate the benefits that on-demand
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application-specific overlay networks can gain by using OpenFlow. For this

purpose a proof of concept is created by extending the second implementa-

tion of Internet factories, called Compute factory. The extension consists

of two parts. The first part is about using OpenFlow instead of OSPF in

the created networks. The second part is about creating a second control

loop that observes the network statistics and modifies the network metrics.

For both the observance and the modification we are using the OpenFlow

controller. Amazon IaaS cloud was used as a test bed in order to evaluate

the created proof of concept.

The report has the following structure. The related work and a sufficient the-

oretical background to fully understand the proposed solution are presented

in Sections 3 and 4. In section 5, the extension of the Compute factory is ex-

plained. Section 6 contains the experiments that we run in order to evaluate

the created proof of concept. The conclusions of this research are discussed

in section 7. The report ends in section 8 with the future work.
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2 Problem statement

2 Problem statement

Compute factory creates on-demand application-specific overlay networks

that use OSPF as a routing protocol. Based on of Dijkstra’s algorithm OSPF

computes the shortest path between all hosts in the OSPF network. OSPF

is a mature protocol but it lacks in programmability and routing granularity

that OpenFlow can provide us. Moreover, OSPF uses the same path for all

the traffic between two specific end-hosts. Equal-Cost Multi-Path (ECMP)

can be used in order to split the traffic into two (or more) paths with equal

cost. ECMP does not consider what type of traffic it is load balancing be-

tween the different paths. Moreover, it is only works for paths with equal

cost. Elephant flows are high bandwidth-consuming long-lived flows while

mice flows are short-lived flows. Routing both elephant and mice flows from

the same path can cause problems in the mice flows. Elephant flows con-

sume almost all the resources of the network. They tend to fill the network

buffers. As a result mice flows have increase packet drop and non-trivial

queuing delay.

OpenFlow can provide routing granularity, even per flow level. Moreover,

the network switches maintain statistics that can be collected through the

OpenFlow controller. Based on the version 1.3.0 of OpenFlow Switch spec-

ification a wide variety of statistics can be maintained. The statistics can

provide useful network statistics, for example the number of flows or the du-

ration of each flow. Moreover, more complicated network statistics can be

calculated, for example discover congested links based on the link utilization

or characterize a flow as an elephant or mice. Based on the statistics and the

programmability that OpenFlow provides, the flow entries can be modified

to optimize the network, for example to decrease the total transfer time and

the delay of the flows.

Therefore, the main research question is the following:

• To what degree can on-demand application-specific overlay networks

benefit by making usage of OpenFlow?
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2 Problem statement

and the following sub-question:

• How can we manipulate the flow entries in order to enhance the per-

formance of both elephant and mice flows?
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3 Related work

3 Related work

The programmability and the routing granularity are two main characteris-

tics of OpenFlow. Based on these characteristics, researchers implemented

automated procedures that enhance the network performance.

In [10], Sushant Jain et al., a SDN solution is proposed for deploying Open-

Flow in Wide Area Network (WAN.) The paper proposes an algorithm to

allocate bandwidth in the network. The algorithm takes care of sharing the

available bandwidth between competitive applications. Moreover, it uses

multiply paths between two end-hosts. This system increases the link uti-

lization from 30-40% to almost 100%.

In [11] is proposed a solution of load balancing mice flows in data center

networks. Mice flows are more than 90% of all flows in a data center[12].

The paper proposes an algorithm in order to calculate the links utilization.

Based on the outcome, the flow rules are manipulated in order to load balance

the mice flows. Because of the big number of mice flows, flow aggregation is

used to manipulate the mice flows.

Another solution for load balancing in data center network is described in

[13]. Elephant flows in the data center are less than 10 % of the flows but

they consume more than 80% of the bandwidth[12]. A mechanism of load

balancing elephant flows between different paths is proposed. The mechanism

calculates the link utilization. Based on links utilization, the mechanism

allocates the elephant flows through multiple paths. With this mechanism

the network utilization is increased from 70% for single path routing and

from 84% for ECMP to 92%.
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4 Theoretical background

In this section a sufficient theoretical background is presented in order to

fully understand the proposed solution. Furthermore, more details will be

explained about how Compute factory works.

4.1 Differences from previous studies

The three previous studies, that are mentioned in section 3, have been done

either in WAN or in data center networks. Both WAN and data center are

physical environments. The links between the nodes have a standard (fixed)

bandwidth. This means that the throughput and the delay between two

nodes can be changed based on 2 factors, the changes of the infrastructure

and the usage of the network.

On the contrary, Compute factory uses IaaS cloud to create application-

specific overlay networks on-demand. As we mentioned in the previous para-

graph, the throughput and the delay can be changed based on 2 factors. In

case of an application-specific overlay network, these 2 factors are both for

the underlying and the virtual infrastructure. This means that instead of

2 factors, 4 factors need to be taken into account. From those 4 factors,

the 2 factors of the underlying infrastructure are unknowns. The underlying

cloud infrastructure might change, for example the network topology changes

or VM migration might occur. These changes cannot be seen by the end-

users, but they might affect the delay and throughput of the network links.

Furthermore, the created network does not reserve paths in the underlying in-

frastructure. As a result, the links bandwidth, of the created network, might

vary based on the other end-user usage of the cloud infrastructure.

4.2 Elephant and mice flows

Elephant detection is a well-researched field[14–16]. Many studies have been

done and many solutions have been proposed. In these studies the detec-
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4 Theoretical background

tion of elephant flows is done either at the end-host, Mahout[14], or at the

edge switch, DevoFlow[15] and Hedera[16]. Based on [14], the most efficient

way of detecting an elephant flow is at the end-host by observing the socket

buffers of the end-host. For this study the assumption that there is no ac-

cess to network driver statistics at the end host is made. For this reason,

Compute factory uses the statistics gathered from the switches to detect the

elephant flows. The statistics can be accessed through the OpenFlow con-

troller. Therefore, Compute factory collects the network statistics through

the OpenFlow controller and based on these statistics it categorizes the flows

to either elephant or mice.

4.3 Compute factory

Compute factory is the second implementation of Internet factories. It is

written in Java. It can use three different cloud providers, Amazon[17],

GoGrid[18] and Rackspace[19], to create application-specific networks on-

demand. By specifying the number of the VMs with their characteristics,

Compute factory creates the network topology. A VM is specified by 6 char-

acteristics, the zone that the VM will be created, the VM Operating System

(OS), the minimum number of virtual Central Processing Units (CPUs), the

minimum Random-Access Memory (RAM) size, the minimum disk size and

the VM hostname. After the creation of the VMs, Compute factory installs

and starts the required software. Compute factory executor is also required in

the VMs. Compute factory executor is used to configure, observe and adjust

the VMs. The communication between the Compute factory and the Com-

pute factory executors is done by using an Apache ActiveMQ[20] message

broker.

Compute factory sends the required information to a Compute factory ex-

ecutor to create the Internet Protocol (IP) tunnels between the VMs. The

IP tunnels are created based on the network topology that is specified on the

Compute factory. Compute factory creates application-specific networks,

therefore the network topology will vary based on its usage. The IP tunnels
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are created with VTun[21]. Compute factory executor creates a new network

interface for each created tunnel. Compute factory takes care of assigning a

unique IP address in every network interface. The IP addresses belongs to

the 10.0.0.0/8 subnet. For each IP tunnel a /30 subnet is assigned in order to

have 1 IP address for each one of the 2 network interface of the tunnel. Com-

pute factory installs to the created VMs Quagga[22]. Quagga is a routing

software suite, which provides routing protocols, such as OSPF and Routing

Information Protocol (RIP). Compute factory starts the Quagga daemon in

every VM to provide to the switches OSPF as routing protocol. The creation

of the tunnels is part of the VM configuration.

When the configuration of the network is finished, the network topology is

ready for use. Compute factory uses a control loop in order to observe and ad-

just the network. Through the network modification, Compute factory tries

to adjust the network to match application needs. An example of network

modification is the creation or deletion of a VM.
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5 Extending Compute factory

In this section we analyze the parts of Compute factory that are changed or

created during this research. The extension can be divided in two parts. The

first part is about modifying Compute factory to create VMs that use Open-

Flow. The second part is about adding a second control loop in Compute

factory that observes the network statistics and controls the flows.

5.1 OpenFlow support

SDN decouples the control plane from the data plane. While the data plane

is still in the switches, the control plane is moved to the controller. For this

reason, a VM is created manually to be used as the OpenFlow controller.

Floodlight[23] version 1.1 is used as OpenFlow controller. The IP address

of the OpenFlow controller is given as a parameter in Compute factory to

configure the created VMs. The VM that contains the OpenFlow controller

can be placed anywhere. Placing the controller far from the network creates

a high latency between the controller and the switches[24]. The high latency

will introduce slow response from the controller. Therefore, controller loca-

tion should be close to the network topology. Far and close are based on

Round-Trip Time (RTT) between the controller and the switches.

As we mentioned in 4.3, Compute factory installs Quagga to the created VMs

to use OSPF as routing protocol. In the switches, OSPF need to be replaced

with OpenFlow. For that reason, Compute factory installs OpenvSwitch[25],

instead of Quagga, in the created VMs. The latest stable version of Open-

vSwitch is used, version 2.3.1. OpenvSwitch is installed during the installa-

tion of required software that we mentioned in Section 4.3. Compute factory

starts and configures OpenvSwitch with the following 5 commands:

s e r v i c e openvswitch s t a r t

ovs−v s c t l set−s s l / root / openvswitch / sc−pr ivkey . pem / root /

openvswitch / sc−c e r t . pem / root / openvswitch / ca c e r t . pem

ovs−v s c t l add−br br0

ovs−v s c t l −− s e t br idge br0 p r o t o c o l s=OpenFlow13
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5 Extending Compute factory

ovs−v s c t l set−c o n t r o l l e r br0 s s l : 1 . 2 . 3 . 4 : 6 6 5 3

The first command is to start the OpenvSwitch. The second command, which

is not mandatory, is to set a private key and certificates that OpenvSwitch

uses in order to communicate with OpenFlow controller by using SSL. The

usage of SSL ensures integrity and confidentiality of the connections. The

third command is used to create a bridge with name “br0” in the switch.

The network interface, that VMs use for create the tunnels, will be added to

this created bridge. The name of the bridge is added as a parameter to the

Compute factory. The forth command is used to set the OpenFlow version

to the created bridge. OpenFlow version 1.3 is used for this research. The

default version of OpenFlow that OpenvSwitch uses is version 1.0. The last

command sets the controller for bridge “br0”. In the command the “ssl”

specifies that it is going to be used an SSL connection between the switches

and the controller.

As we mentioned in Section 4.3, Compute factory uses VTun to create the IP

tunnels between the VMs based on the topology that is given as an input to

Compute factory. Each tunnel has two end-points. For each end-point a new

network interface is created and added in the “br0” bridge. OSPF need to

know the IP addresses of the network interfaces in order to create the routing

table. Therefore, Compute factory needs to configure an IP address in every

network interface. To use OpenFlow, this step is no longer required. For

this reason, Compute factory is modified to create Ethernet tunnels instead

of IP tunnels and it does not assign an IP address to the created network

interfaces. As a result of this modification, each created VM has only 1 IP

address, the IP address that is assigned to the VM by the cloud provider.

Something that is worth mentioning is that the network interfaces should

be added in the bridge after the tunnel has been established. Otherwise, in

some cases, OpenvSwitch cannot recognize the network interfaces.
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5 Extending Compute factory

5.2 Second control loop

As we mentioned in Section 4.3 Compute factory already contains a control

loop to monitor and adjust the infrastructure. During this research a second

control loop was created. The second control loop is used to monitor the

network statistics and based on them automatically control the flows of the

network. The intention of this automated process is to enhance the network

performance by redirecting the elephant flows to an alternative (longer) path

in order to separate elephant and mice flows. The communication between

the Compute factory and the OpenFlow controller is done by the REST API

that the OpenFlow controller has. In Figure 1 we can see the algorithm of

the flows control loop.

Figure 1: Compute factory flows control loop algorithm
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5 Extending Compute factory

The control loop consists of 5 basic steps, get the network topology, get the

network statistics, check for congested links, check for solutions and apply

solutions. The first three steps are always executed, while the last two steps

are executed only in specific cases. For this research project the execution

frequency of the above loop is configured to be 1 second. By increasing the

execution frequency, the reaction will be faster, but the load of the controller

and the switches will be increased. On the other hand, opposite results will

be achieved by decreasing the execution frequency. While there is no limit in

lowering the frequency of the control loop, there is a limit in increasing the

frequency. This limit is equal to the time that the control loop needs to be

executed. The time that the control loop needs to be executed can vary based

on the RTT between the Compute factory and the OpenFlow controller, the

size of the network, the number of flows that exist on the network, etc.

5.2.1 Learning the topology

At the first step of the algorithm Compute factory learns the topology from

the OpenFlow controller. Compute factory uses three different REST API

calls of the Floodlight controller. With these REST API calls Compute fac-

tory collects the switches information, the links information and the switches

ports. With the information gathered from the first two REST API calls,

Compute factory creates a graph of the network topology. The last REST

API call is used to learn which switches ports are used to connect with end-

hosts. Except from the default (shortest) path that is used between two

end-hosts, alternative paths should be used. For this reason, Compute fac-

tory calculates the K shortest paths between all hosts of the network. The K

shortest paths are calculated based on the Bellman-Ford algorithm[26]. All

the calculated paths stored for later usage. K needs to be equal with 2 or

higher. After the first time that the loop is executed, in case that there is no

change in the network topology, Compute factory does not recalculate the K

shortest paths.
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5 Extending Compute factory

5.2.2 Getting the statistics

Compute factory needs to have the ability to check the link utilization and

the type of flows. For these reasons Compute factory collects the network

statistics through the OpenFlow controller. The statistics are gathered both

per port and per flow.

The statistics per port are used in the third step. As each link is connected

with two ports, Compute factories collects statistics for both ports. The

created network is an overlay network in IaaS cloud. Therefore, a link in our

network can consist of many physical links in the underneath infrastructure.

For example, a virtual link uses a high-loaded switch which has a high packet

drop rate. This means that the statistics gathered for the same link from

the two switches might differ. For this reason Compute factory collects and

stores statistics for both ports. The port statistic have different counters for

transmitted and received data. Because the links of the network do not have

separate channels for uplink and downlink, link statistics are stored as a sum

of transmitted and received data.

The statistics per flow are used in forth step to categorize flows either as

elephant or mice flow. Statistics for one flow are gathered from all the switch

that this flow uses. For the same reason that we analyzed in the previous

paragraph, Compute factory stores all the collected statistics. A flow is spec-

ified by 5 characteristics, the source IP address, the destination IP address,

the source port, the destination port and the flow type. The flow type can

be either elephant or mice.

5.2.3 Finding congested links

Based on the per port statistics that Compute factory collects, during the

second step, at this step Compute factory checks the network for congested

links. If the throughput of a link is bigger than a specified threshold, this link

is characterized as congested. The threshold is specified as a parameter in

Compute factory. For better accuracy the algorithm checks the throughput
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of a link as an average throughput of the last 5 seconds. A 5 second timeslot

is used in order to not get affected by either positive or negative spikes. The

disadvantage of using a bigger timeslot is that it increases the time that

Compute factory needs to determine that a link is congested.

As we mentioned in Section 5.2.2, the link statistics is a sum of transmitted

and received data. The reason for doing this is that the uplink and the

downlink share the same tunnel. As a result, the throughput of the link is

shared between the upload and the download. For example, a link with 100

Mbps throughput can have 100 Mbps upload and 0 Mbps download or 30

Mbps upload and 70 Mbps download. In addition, Compute factory stores

two statistics, one for each port of the link. The algorithm calculates the

average of the two ports statistics. The calculated average is the number

that will be compared with the threshold in order to characterize a link as

congested.

5.2.4 Finding solutions

In case that during the previous step Compute factory discovered at least one

congested link, it will continue by executing this step. Otherwise, it will go

to the first step. During this step Compute factory will try to find solutions

for the congested links of the network. First, based on the flows statistics

that Compute factory gathered during the second step it will categorize the

flows as either elephant or mice flows. By default all flows are mice flows.

In order to characterize a flow as an elephant flow, the flow should live for

more than 10 seconds and consumes more than the link’s bandwidth divided

by the number of link’s flows. For example, link’s bandwidth is 10 Mbit/sec

and 5 flows use this link, in order to characterize a flow as an elephant flow

it should consume more than 2 Mbit/sec.

After finishing categorizing the flows, Compute factory checks for solutions

for all the links of the network that have been marked as congested during

the second step. In case that a link is used by more than one flow and

these flows are both elephant and mice then Compute factory will search
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5 Extending Compute factory

alternative paths to redirect the elephant flows. Compute factory checks

the alternative paths if they have congested links or if they have mice flows.

Compute factory searches for an alternative path that has no congested links

and no mice flows. In case that Compute factory finds an alternative path

with these characteristics, it continues to the next step in order to apply the

solution. In case that there are more than one alternative paths Compute

factory checks them all. In case there are more than one elephant flows

and more than one alternative paths then Compute factory will load balance

the elephant flows to all the paths. After applying this solution mice flows

continue to use the shortest (default) path while the elephant flows use a

longer (alternative) path.

Another solution would be to redirect the mice flows to a longer (alternative)

and keep the elephant flows to the shortest (default) path. Due to the big

number of mice flows in a network it might be expensive or even impossible to

redirect them one by one. For this reason, general rules need to be applied for

aggregating the mice flows. For the existing elephant flows the flow priority

need to be increased to not follow the general rule that it is applied. Because

the way that the proposed algorithm checks for elephant flows, through the

controller by checking the network statistics, this solution is not possible.

There are two reasons for that. The first reason is that after grouping a lot

of mice flows together Compute factory will get the aggregate statistics as

one flow. Therefore, there is a possibility that the group of mice flows will

be recognized as an elephant flow. The second reason is that except from

the already existing flows, new flows will also covered by the general rule.

These new flows can be either elephant or mice flows. The problem is that

the collected statistics will be for one flow which contains both elephant and

mice flows. In order to apply this solution the check of the flows need to be

done at the end-host, however for this research is considered that there is no

access to the end-hosts.
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5.2.5 Applying solutions

This step is executed in case that Compute factory found a solution during

the previous step. Based on the output of the previous step, Compute factory

generates and pushes the new flow entries, through the controller, in the

switches of the new path. All the pushed flow entries have a higher priority

than the default flow entries that Floodlight creates. The higher priority is

needed to make the flows to use the pushed flow entries and not the default

one. Moreover, all the flow entries that are pushed have an idle timeout of 5

seconds. By using an idle timeout the flow entries will be removed 5 seconds

after the switches do not receive any packet that matches the flow entry.

Therefore, Compute factory does not need to track the pushed flow entries

to remove them. The new flow entries are created based on the information

that the current flow provide us. Each flow entry is specified by the ID of

the switch that is pushed and by the 5 flow characteristics that we already

mentioned in Section 5.2.2. The flow entries are pushed sequential from the

one edge of the path to the other. Moreover, flow entries are pushed for both

directions of the flow.
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6 Experimental results

In this section we are going to discuss the experiment that is used to evaluate

the created proof of concept. This section is divided in two subsection. In

the first subsection, the used test bed is explained. The second subsection

presents the scenarios that are used in order to evaluate the performance

of the created proof of concept. Moreover, the collected results are pre-

sented.

6.1 Testing environment

To deploy a topology Amazon cloud was used. Figure 2 shows the network

topology that was used in order to run the testing scenarios. Two VMs

of the network were created manually. In the first VM, the software of

Compute factory was installed. The second VM was used as the OpenFlow

controller. For this reason, the Floodlight software was installed and started

in the second VM. The IP address of the OpenFlow controller was given

as a parameter to the Compute factory. The switches were created by the

Compute factory. The communication between the Compute factory with

the OpenFlow controller and the OpenFlow controller with the switches was

done by the public IP addresses that Amazon assigns to the created VMs.

The first control loop of Compute factory, which monitors and adjusts the

infrastructure, was not used during this experiment.

All the VMs use the t1.micro instance type, which is the smallest instance

type in Amazon. All the VMs uses a CentOS 6.5 image from the commu-

nity AMIs with number “ami-4d23507d”. For simulating end-host internal

network interfaces were created at the switches. The assigned IP address

of the internal network interfaces belong to the 172.16.0.0/24 subnet. The

IP address is assigned from the Compute factory based on the hostname of

each switch. Switch1 will get the 172.16.0.1 IP address, Switch2 will get the

172.16.0.2 IP address, and so for. All the tests have been done by using

these assigned IP addresses. From the OpenFlow controller perspective the
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internal network interfaces seems as another node in the network.

Figure 2: Testing environment topology

6.2 Testing scenarios and results

Three scenarios were created and used to evaluate the performance of the

created proof of concept. In each scenarios both mice and elephant flows are

used. The data are transferred from Switch1 to Switch3. SCP[27] is used to

transfer data. The elephant flow is a transfer of a 500 MB file. In order to

generate the mice flows, a bash script is created and used. The script can be

found in Appendix. In every test, the total data that are transferred for mice

flows is 100 MB which is consisted by 20 individual file transfers. Each file

could have size from 1 till 10 MB, with a scale of 1 MB. A random interval

is used between two sequential mice flows. The interval could be from 1 till

5 seconds. The interval is used between the start times of two sequential

mice flows. Only the actual transfer time is measured and presented in the
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results. The total transfer time of mice flows is the sum of the transfer times

of each mice flow. Therefore, the interval between the mice flows does not

affect the total transfer time of mice flows. The 11 files that were used, one

for the elephant flow and 10 for the mice flows, were created with the dd[28]

utility. A script to generate these files can be found in the Appendix. In

Figure 3 and Figure 4 we can see the results that we gathered by running

the following three scenarios. All the measurements are taken 10 times for

better accuracy.

6.2.1 Empty path scenario

The first scenario is a best case scenario. During this test, data for elephant

and mice flows are transferred sequential. The flows use the path Switch1

– Switch2 – Switch3 (Path1), because this is the shortest path between the

end-hosts. This test is used to discover the best results that one can achieve.

In Figure 3 and 4 the results of the first scenario are presented in the left

column. In both figures the standard deviation is quite high, even that the

transfers have been done in an empty path. A reason for that is that the links

of the network do not use reserved paths on the cloud infrastructure. This

means that based on the usage of the other users of the cloud the bandwidth

between the switches can vary.

6.2.2 Control loop disabled

During this test, data for elephant and mice flows are transferred simultane-

ously. As in the first scenario, all the data transferred through Path1. As

a result, that mice and elephant flows shared the same path, there is an in-

crease in total transfer times of both elephant and mice flows. Both standard

deviations of this scenario are in the same level as in the first scenario. In

Figure 3 and 4 the results of the second scenario are presented in the middle

column.
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Figure 3: Total transfer time of mice flows

6.2.3 Control loop enabled

In this scenario, data for elephant and mice flows are transferred simultane-

ously, as in the second scenario. The difference is that for this scenario the

second control loop of the Compute factory is enabled. At the beginning,

Elephant and mice flows use Path1. When Compute factory discovers that

one of the two links of the path is congested it will check the flows statistics

in order to categorize the flows. After Compute factory discovers that one of

the flows is an elephant flow, it will redirect the elephant flow to the longer

path, Switch1 – Switch5 – Switch4 – Switch3 (Path2). To be able to char-

acterize the flow as elephant flow, the flow needs to live for more than 10

seconds. This means that in best case scenario Compute factory can redirect

an elephant flow after 10 seconds. We can see that in both mice and ele-

phant flows we have a decrease in total transfer time in compare with second

scenario. For mice flows the decrease is 22.3% and for elephant flows the

decrease is 12.7%.
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Figure 4: Total transfer time of elephant flow

Something else that can be noticed is that the standard deviation of mice

flows is almost the same as with the other two scenarios, while there is a

decrease for the standard deviation of elephant flows. In Figure 5 we can

see the CPU utilization for the intermediate switches for both Path1 and

Path2, Switch2, Switch4 and Switch5. This graph is automatically created

by the Amazon website. The left part of the graph shows the average CPU

utilization during the third scenario while the right part during the second

scenario. During the third scenario the control loop of Compute factory

was creating extra load for the switches by collecting the network statistics.

Even with the extra load that Compute factory adds to the switches during

the third scenario, by collecting the switch statistics, the CPU load of all

switches during the third scenario are lower than the CPU load of Switch2

during the second scenario. A reason for that is that the traffic is balanced

between the 2 paths. During all the tests, only the necessary software for

these experiment was running on the VMs.

The high, close to 100%, CPU load of the Switch2 during the second scenario

is undesirable. The high CPU load for long period creates 2 problems. First

of all, it delays other task that need to be processed by the CPU, for example

replay to the OpenFlow controller with the switch statistics. Second, it
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increases the processing delay, which can increase the queue delay. Increasing

the queue delay can cause packet loss due to full buffers in the switch.

Figure 5: CPU utilization of intermediate switches

Another concern that might arise is the packet lose that might be created

because of the flow redirection. Figure 6 shows the total transfer data, for

both elephant and mice flows, for all three scenarios. The result is a sum of

doth transmitted and received data based on the SCP output. In the case

of the third scenario, there is an increase of 1 KB, which is less than 0.001%

of the total transferred data. This means that the packet loss, due to the

redirection of a flow, is negligible for an elephant flow, but it could be quite

big for a mice flow.
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Figure 6: Total data transfer
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7 Conclusions

This research proves that the performance of on-demand application-specific

networks can be enhanced with the usage of OpenFlow. With the created

proof of concept the transfer time is decreased by 22.3% for mice flows and

12.7% for elephant flows. This is done by load balancing the flows based on

the flow type. Through an automate procedure Compute factory can redirect

the elephant flows to an alternative (longer) path and leave the mice flows

to the default (shortest) path. By load balancing the flows we can decrease

the CPU utilization on high load switches. By decreasing the CPU load a

more deterministic environment is created.
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8 Future work

For this research project an OpenFlow solution is developed to load balance

elephant and mice flows. This solution might create concerns about scalabil-

ity issues. Moreover, CPU utilization for all the components of the network

should be investigating by increasing both the network size and the number

of flows.

Compute factory can create on-demand application-specific network in global

scale. During this research only one region of Amazon cloud is used in or-

der to place the created network topology. By creating globally networks

the big RTT between the OpenFlow controller and the switches or between

the Compute factory and the OpenFlow controller can cause a big delay in

the reaction of Compute factory. Therefore, solutions about how Compute

factory can overcome these delay problems should be investigated.
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Appendix

A Compute factory

The Compute factory is an intellectual property of TNO[29]. Therefore, the

source code of Compute factory cannot be published. The code of the second

control loop that is created during this research can be found on Bitbucket

at https://bitbucket.org/igrafis/rp2.

B Create files scipt

#!/bin/bash

‘mkdir files‘

for i in {1..10}

do

‘dd if=/dev/urandom of=files/$i bs=1024 count=0 seek=\$[1024*$i]‘

done

‘dd if=/dev/urandom of=files/500 bs=1024 count=0 seek=\$[1024*500]‘

C Mice flows generator script

#!/bin/bash

files=()

total=0

size=100

for i in {0..19}

do
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let "file=($RANDOM%10)+1"

files[$i]=$file

total=$((total+file))

done

if [ $total -gt $size ]

then

change=-1

elif [ $total -lt $size ]

then

change=1

fi

if [ $total -ne $size ]

then

while [ $total -ne $size ]

do

let "pos=($RANDOM%19)"

if [[ $change -eq -1 && ${files[$pos]} -gt 1 ]]

|| [[ $change -eq 1 && ${files[$pos]} -lt

10 ]]

↪→

↪→

then

files[$pos]=$((files[$pos]+change))

total=$((total+change))

fi

done

fi

for i in {0..19}

do

‘scp -v files/${files[$i]} root@172.16.0.3:~/test/ &‘

let "sleep=($RANDOM%5)+1"

sleep $sleep
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done

D First scenario script

#!/bin/bash

for i in {1..10}

do

‘scp -v files/500 root@172.16.0.3:~/test/ >>

results/results1_big 2>&1‘↪→

sleep 5

‘./test_small.sh > results/results1_small_${i} 2>&1‘

sleep 60

done

E Second and third scenario script

#!/bin/bash

for i in {1..10}

do

‘scp -v files/500 root@172.16.0.3:~/test/ >>

results2/results_big 2>&1 &‘↪→

‘./test_small.sh > results2/results_small_${i} 2>&1 &‘

wait

sleep 60

done
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