
MSc System and Network Engineering

Research Project 2

Zero-effort Service Monitoring

Author:
Julien Nyczak

Supervisor:
Rick van Rein

ARPA2.net

August 17, 2015

Abstract

Linux distributions are shipped with tools to monitor services/pro-
cesses. However, the facility to relay this information to a monitoring
station does not exist by default. This research paper proves that
zero-effort service monitoring is possible through systemd and SNMP.
systemd has an overview of installed services on a machine that boots
it. This data can be sent over SNMP with the help of an AgentX
subagent. The subagent developed during this project communicates
names and statuses of all installed systemd services to a local snmpd
master agent, which in turn relays it to a monitoring station. The pa-
per analyzes a possibility of subagent integration into systemd. This
feature would require only a configured snmpd master agent running
locally to enable the zero-effort service monitoring.

1

Contents

1 Introduction 4
1.1 Research questions . 5
1.2 Related work . 6

2 Tools and protocols 8
2.1 Tools . 8

2.1.1 Kernel tools . 8
2.1.2 systemd . 9

2.2 Protocols . 10
2.2.1 Proprietary protocols 10
2.2.2 SSH . 10
2.2.3 SNMP . 11
2.2.4 The AgentX protocol 11

2.3 Choices for the implementation 12

3 Approach and methods 14
3.1 Querying systemd services . 14

3.1.1 Retrieving the list of installed services 14
3.1.2 Retrieving the status of services 15

3.2 Writing the AgentX subagent 15
3.2.1 The subagent . 15
3.2.2 The MIB . 16

4 Results 17
4.1 The Python subagent . 17

4.1.1 Fine-tuned monitoring 17
4.1.2 The algorithm . 18

4.2 Monitoring with Nagios . 20

5 Operating system integration 22

6 Conclusion 23

7 Future Work 24

8 References 25

2

Acknowledgments

I would like to thank my supervisor Rick van Rein from ARPA2.net for his
invaluable help during this research project. His guidance was an incredible
asset.

3

1 Introduction

Linux distributions are delivered with a large amount of packages allowing a
machine to work properly. These packages include scripts with a standard-
ized start/stop interface and PID files to check where a daemon should be
running. The operating system also provides plenty of information about
processes based on their PID such as CPU and memory usage or whether
they are running. This can be monitored so that the administrator can be
alerted when a package stops working and may lead to a service downtime.
Unfortunately, the possibility to pass the information to a monitoring sta-
tion is not a facility that exists by default. In addition, setting up monitoring
usually requires a certain amount of manual work. This research paper fo-
cuses on implementing zero-effort service monitoring to monitor services in
an automated way, as soon as packages are installed.

Various monitoring protocols exist, from proprietary solutions developed
specifically for given monitoring systems, to standardized ones such as the
Simple Network Management Protocol (SNMP). The goal of the zero-effort
service monitoring is to reduce the configuration phase on the monitored host
to sane defaults, with no regards to the distribution flavor (Debian-like or
Red-Hat-like). Thus, the technology to send monitored service data must be
chosen according to this philosophy and the method to fetch it must use a
tool present on every recent Linux distributions.

4

1.1 Research questions

• How feasible is it to integrate service monitoring in a generic manner for
different Linux operating systems (i.e. Red Hat-like and Debian-like)?

• How to relay service status automatically to a monitoring station and
be aware of changes?

5

1.2 Related work

There already exist Linux process monitoring solutions. For instance, the
monitoring system Nagios1 has a plugin that can monitor Linux processes
via SNMP [2]. It verifies whether a monitored process is running and also
checks its CPU and memory consumption. It uses the Host Resources MIB
(Management Information Base) from the RFC 2790 [3] classified as a draft
standard. The plugin looks for a process name given as an argument and
an snmpwalk command is triggered to look for this process on the moni-
tored host. The OID (Object Identifier) 1.3.6.1.2.1.25.4.2.1.2 lists the name
of all running processes. If the sought process is not in the retrieved list,
Nagios will display a “CRITICAL” status. No subagent is required to query
this management information base as it is implemented by default in the
Net-SNMP package. The data it covers can be fetched as long as snmpd is
running on the monitored host and snmpd.conf configured to accept queries
for this OID. However, the hrSWRunTable of this MIB only contains infor-
mation for running pieces of software installed locally and not all services
are taken into account2. Moreover, an application specific plugin such as
the check snmp process.pl script is needed in order to know the status of a
process if it is not running.

Similarly, snmpd can be configured to monitor specific processes thanks to
the UCD-SNMP-MIB management information base [4] as it is implemented
by default in the Net-SNMP package. The prTable of the MIB gives informa-
tion such as process names, the number of running instances and error flags.
The PROC directive to be manually inserted3 in the snmpd.conf allows to
define which process should be monitored and how many instances should be
running. The list of possibly monitored processes can be retrieved from the
ps -ef Linux command. Once the snmpd.conf file is configured as desired,
it is possible to verify whether a monitored process is properly running with
the help of the prErrorFlag column. The error flag is set to 1 if there is an
issue, e.g. the number of running instances is too high or too low compared
to what is defined in the snmpd.conf file for that specific process, or set to 0
otherwise.

These solutions try to fulfill the same goal, i.e. monitor Linux processes.

1https://www.nagios.org/
2But only processes that can be fetched with the ps -ef command, kernel threads

excluded. Several systemd services are thus missing
3One per monitored process

6

https://www.nagios.org/

However, they either do not take into account all services installed on a host,
or are too fine-grained and necessitate to be meticulously configured or do
not advertise the exact status of services. Hence, a new solution must be
designed.

7

2 Tools and protocols

Section 2.1 focuses on the possible tools to collect monitored data. In Section
2.2 are described the possible monitoring protocols for the design of our
monitoring solution. Section 2.3 explains the choices that have been made
to best attend the purpose of this paper.

2.1 Tools

Here are discussed the tools that can help in fetching process/service infor-
mation to be sent to a monitoring station.

2.1.1 Kernel tools

Linux comes with lots of command line tools. Some of them help to manage
systems and are very handy in scripts because they can be easily parsed.
Moreover, they are present in all distributions and thus they are fully valid
as options for the design of our monitoring solution.

When it comes to processes/services in the Unix world, two commands
come to mind, namely ps and top. ps gives information about running pro-
cesses. It is often used with options in order to get a broader view of what is
running on a system. For instance, the -ef option lists every running process
along with inter alia their start time and PID. The -aux option does the same
but with even more details such as CPU and memory usage. top displays
an interactive real-time view of processes running on a system. It is a very
useful command for a system administrator as it can easily highlight what
are the most resource consuming processes. It is not the best choice for our
needs though, because it is dynamic and not very convenient for scripting.
Furthermore, similar information can be found with the ps command.

As said earlier, Linux packages often contain a script with a start/stop
interface for services. These scripts are located in the /etc/init.d/ directory
and are known as init script files, mainly used in operating systems booting
the System V init system. The service command relies on those scripts and
permits among others to know the status of a service, to start or stop it.
Even though the service command seems to be interesting for the design of
our monitoring solution, it is a part of System V, now being replaced by the
new init system, systemd. Therefore, it will probably become deprecated in
the future.

8

2.1.2 systemd

systemd has been developed in 2010 by Lennart Poettering [5], a Red Hat
engineer. It is a system and service manager for Linux and is inter alia
responsible of starting the necessary components at boot time. Its long
term goal is to replace other init systems such as System V or Upstart.
Packages make an individual choice between the booting system, and most
are migrating to systemd with the support of distributions because most of
distributions today are shipped with systemd. Ubuntu boots systemd by
default only since its last version, i.e. version 15.04 from April 2015 [6].

systemd rethought the way of starting processes. The serialization of the
boot-up is dropped and replaced with socket and D-Bus parallelizing [7]. In
other words, a process is not obliged to wait for another to be started. It
allows a Linux system to boot in a more efficient way which inevitably causes
the system to boot faster. In addition, it makes use of Linux control groups
(called cgroups) that permits to hierarchically organize processes to fine-tune
resource allocation.

Services, sockets, devices, etc. under systemd are described in a declara-
tive language in so-called unit files. They are more structured than the code
pieces in init scripts; the extra structure enables to automatically derive from
them an extra functionality such as monitoring requirements. Moreover, unit
files are compatible with all distributions booting systemd whereas init scripts
must be adapted to them[8]. Init scripts are still supported by systemd since
some packages lack unit files. The suffix of a unit file defines its type, i.e.
a service unit is named “service name.service”. Units are linked to a target
which are meant to group units. Units belonging to the same target start at
the same time.

systemd is provided with tools to facilitate its management. The sys-
temctl command allows to deal with units. Units can be stopped, reloaded,
restarted, enabled, etc. Their status can be checked in a general manner
with options such as is-active (is it running?) or in a more specific way with
is-enabled (does it start at boot time?). The list of all units can be displayed
with no regards to their state. Detailed properties of a unit can also be
known with the show option.

Although systemd seems to be the next init system, it raised a lot of
controversy [9]. Detractors say it is more than a new init system and most
importantly, it does not follow the Unix philosophy. Lennart Poettering
replied to those attacks in a blog post [10].

9

2.2 Protocols

Monitored data has to be made available to a monitoring station. The pro-
tocol needed for that must involve a minimal configuration process on the
monitored host.

2.2.1 Proprietary protocols

Well known monitoring systems tend to develop their own protocol to re-
trieve monitored data even though they are often able to use standardized
technologies such as SNMP, SSH or ICMP. Their proprietary protocols are
usually based on the client-server model and necessitate an agent listening on
a specific port to be installed and configured on a remote host. One example
would be the NRPE (Nagios Remote Plugin Executor) protocol [11] where
a host listens for a request coming from a Nagios server, replies to it by ex-
ecuting a plugin and sending back the result the plugin produced. Plugins
must be present locally on the remote host. In spite of their practicality,
those protocols cannot be chosen for the implementation of our monitoring
solution, mainly for three reasons:

• They work only with their monitoring system

• They are not standardized

• They necessitate too much configuration on a remote host (agent and
plugin installation, specific user creation)

2.2.2 SSH

SSH (Secure Shell) is a standardized protocol [12] that has been designed
to remotely login in a secure way over an insecure network. SSH can also
serve for monitoring purposes as commands discussed in Section 2.1 can be
remotely executed by scripts and thus data be retrieved. In addition, moni-
toring systems usually implement SSH monitoring [13] [14]. But monitoring
over SSH has several requirements:

• The openssh-server package must be installed on the remote host

• A specific user must be created on the remote host with a limited set
of commands it can execute, to avoid security issues

10

• There must be a public key exchange to allow password-less login

The efforts required to setup monitoring over SSH clearly show that this
protocol cannot be chosen to send monitored data for our monitoring solution
because requirements necessitate too much configuration.

2.2.3 SNMP

SNMP stands for Simple Network Management Protocol [15]. It is a stan-
dardized management protocol also meant for monitoring, initially designed
for devices running on IP networks, but can be extended to applications.

SNMP is made of three main components, the monitored device or ap-
plication, an agent that collects the monitored data, and a manager that
requests the data (called nework management station or NMS). The agent
and the manager communicate via PDUs (Protocol Data Units) transported
with UDP.

The information accessible by the agent is defined in MIB (Management
Information Base) modules. MIBs also describe the structure of the informa-
tion by using syntax rules defined in the Structure of Management Informa-
tion Version 2 (SMIv2), a subset of ASN.1 [16]. It makes SNMP extensible
because many OIDs can be uniquely identified.

Tables can be created in MIBs, where rows represent instances and columns
attributes (e.g. processes and their status). Smart monitoring systems should
be able to iterate over these tables and automatically discover what should
be monitored when provided with the MIB to monitor.

Overall, SNMP seems to be the best choice for our monitoring solution,
but it is has some shortcomings; the Net-SNMP package is not installed by
default on Linux distributions, and the master agent has to be configured in
order to be queried from the outside. However, those issues can be quickly
solved.

2.2.4 The AgentX protocol

With the Internet growth, new MIB modules have been created either to
extend the Internet-standard MIB or to answer to needs of private companies.
Unfortunately, the SNMP framework is not flexible enough to deal with all
these very specific modules. This led to the development of many SNMP
subagents with no defined standard and difficult for vendors to cope with.

11

This is why the Agent Extensibility or AgentX Protocol has been de-
fined in the RFC2741 [17]. Its framework consists of one master agent that
communicates SNMP messages but does not have access to management
information4, and of zero or more subagents that do have access to man-
agement information but are not aware of SNMP traffic. The purpose is to
separate SNMP protocol knowledge from the management information and
couple them through a standard interface, the AgentX protocol. It is also
worth noting that a subagent reflects the same modular extensibility that
the MIB specification mechanisms allow. A subagent is specifically written
for a given MIB.

A master agent and a subagent communicate via the AgentX protocol.
In this regard, a subagent always starts AgentX sessions. Its role is also to
register MIB OIDs with the master agent and to bind them to actual variables
after having instantiated managed objects. On the other hand, the master
agent accepts AgentX session requests and deals with SNMP messages.

The Net-SNMP package for Linux fully supports the AgentX protocol
[18] and provides a library to write subagents in C [19].

2.3 Choices for the implementation

According to Section 2.1, the ps command and systemctl from systemd seem
to be good candidates for collecting data for our monitoring solution. The
service command is discarded because systemctl provides the same function-
ality, and even more. Besides, it has been designed for init scripts that are
likely meant to disappear with time.

ps is present in all distributions, and systemctl in most of them for now,
and probably in all in a near future. Nonetheless, ps only gives information
about running processes. If a service is not running, it will not be listed in the
command output. In addition, it covers more than services; some processes
may not be worth monitoring, such as commands that can be launched locally
by a system administrator. Finally, ps is also not aware whether a service is
started at boot time where systemctl is. The systemctl command will thus
be the selected tool to poll service information for this project.

The zero-effort service monitoring is meant to work on all Linux distri-
butions. For its implementation, the monitoring protocol must be thus a

4Unlike within the SNMP framework where the master agent does have access to
management information

12

standard requiring a minimal amount of configuration on a monitored host
and it has to be dynamic enough to cope with changes. From what is de-
scribed in Section 2.2, SNMP coupled with the AgentX protocol appears to
be the most suitable. Regardless of the monitored host, a MIB designed for
monitoring services will be fed with the exact number of installed services,
in a fully dynamic way: if a new service is installed, it will be taken into
account, and if it is removed, it will stop being monitored.

Now that we know how to implement the zero-effort service monitoring,
a MIB has to be selected and subagent to be developed in order to create a
proof of concept showing the feasibility of this project.

13

3 Approach and methods

The purpose of this section is to present the approach followed that led to the
design of the subagent. The subagent runs on two machines with different
Linux operating systems: a Debian-like (Ubuntu Desktop 15.04) and a Red-
Hat-like (Fedora Server 22). The goal is to demonstrate the universality of
the zero-effort service monitoring idea on OSs booting systemd.

3.1 Querying systemd services

systemd offers to query services through the systemctl command. It accepts
various options but only a few do output what we want to achieve, i.e. re-
trieving all installed services on a system along with their intended and actual
status. The subagent thus polls information using external commands to get
service data in order to show the feasibility of the zero-effort service monitor-
ing. However, integrating this concept into systemd as proposed in Section
7, would probably allow the subagent to directly process instant awareness
of the changes in a system.

3.1.1 Retrieving the list of installed services

• systemctl -t service displays all running services. The “running” word
is important here, as services that are in an “inactive” status are not
listed. Hence, this command cannot be used by the subagent to poll
information from systemd as it lacks data.

• systemctl -a -t service retrieves all services handled by systemd regard-
less of the status (“active” or “inactive”) even though they are started
with an init script file. However, such services are not taken into ac-
count by the command as soon as they are stopped. For instance, on
Ubuntu 15.04, the Apache2 package does not have a unit file but is
rather still started with an old init shell script. This is the reason why
it disappears from the command output as soon as it stops running.

• systemctl list-unit-files -t service shows all service units installed on a
system that are fully handled by systemd. A service must have a unit
file to be in the output of this command which will probably be the
case for all packages in a near future.

14

The systemctl list-unit-files -t service command seems to be the most
suitable way to retrieve the list of systemd services to be monitored because
it displays all service units regardless their status. The fact that non-native
systemd packages are not taken into account is a minor issue today that will
disappear tomorrow.

3.1.2 Retrieving the status of services

The selected command above does not show much information regarding
installed units. It merely displays two columns, their name along with their
state. The state does not specify whether the unit is running but rather if it
is enabled.

Nonetheless, the systemctl show unit name -p ActiveState command can
supply this information and that is why the subagent queries each unit with
it. The systemctl is-active command is buggy and often cannot retrieve the
actual status which is translated with an “unknown” output.

In addition, the subagent runs the systemctl is-enabled command to know
whether a unit is started at boot time as it outputs only one word and thus,
is easier to parse.

3.2 Writing the AgentX subagent

3.2.1 The subagent

Although the Net-SNMP package is provided with a library to write AgentX
subagents in C, the subagent has been developed in Python due to the limited
expertise in C programming. The Python module called netsnmpagent [20]
written by Pieter Hollants and licensed under GNU General Public License
version 3 offers such a functionality. Three files are needed to run a subagent:

• a management information base used by the subagent

• the Python subagent itself

• a shell script to start the subagent

The shell script is also in charge of verifying whether the Net-SNMP
package is installed and of starting an snmpd master agent with which the
Python subagent communicates through the AgentX protocol.

15

3.2.2 The MIB

A subagent has to be written for a specific MIB as described in Section
2.2.4. I have chosen the Network Services Monitoring MIB [21] since it is
adapted to the needs of systemd unit monitoring and most importantly, it is
standardized. The table it contains that we are interested in is the applTable
under the OID 1.3.6.1.2.1.27.1. Three of its columns are adequate: applIndex,
applName and applOperStatus. The index uniquely identifies the service unit
and the name is the name of the service unit. Even though indexes do not
add any particular value, they are required by the netsnmpagent Python
module. Nevertheless, I believe that names would suffice.

The operational status column proposes six different statuses: up (1),
down (2), halted (3), congested (4), restarting (5) and quiescing (6). How-
ever, according to their description in the MIB and from what can be in-
terpreted by their names from an administrator point of view, only the first
three and the sixth one can be adopted by the subagent. Indeed, a ser-
vice is restarted too quickly for the monitoring to detect a restarting status.
Moreover, systemd does not have a way of finding out whether a service is
congested. Section 4.1.2 explains how these four operational statuses are
interpreted by the subagent.

16

4 Results

This section explains how the proof of concept that illustrates the zero-effort
service monitoring idea is constructed. Several items are involved on the
monitored host. The monitoring station runs Nagios and asks for service
unit’s data via SNMP. Figure 1 shows the global workflow.

The source code of the proof of concept can be found on the Github
repository of ARPA25.

4.1 The Python subagent

Here is described how the Python subagent has been built. I mention first
the fine-tune feature which is an override of the default behavior, so that the
reader can have a better understanding of the algorithm part. Furthermore,
the reader should bear in mind that the “state” of a unit means whether
it is “enabled” (started at boot time) and “status” whether it is “active”
(running). The operational status is the status of a unit retrieved via SNMP.

4.1.1 Fine-tuned monitoring

The zero-effort service monitoring idea suggests to monitor every service by
default in order to have an overall overview of all installed services regardless
of their state. The subagent must transpose this behavior.

However, this means a lot of information as the number of installed service
unit files is about two hundred by default. This can be difficult to cope
with from an administrator point of view, especially because a unit that is
“down” or “halted” does not necessarily mean that something is wrong with
it. Similarly, a unit that is “up” may cause problems to an administrator.
Hence, one should have the possibility to fine-tune how the status for each
unit is translated by the subagent.

To that end, the agent takes into account several files that can contain
the names of installed service units. It is up to the administrator to fill them
in, they are empty by default. Like systemctl commands, files are called each
time the subagent wants to update the data (thirty seconds by default). It
means that the data retrieved over SNMP may not be accurate if something
changed between two updates. However, the data update frequency can be
set as desired.

5https://github.com/arpa2/sytemd-snmp-zeroconf

17

https://github.com/arpa2/sytemd-snmp-zeroconf

The file called not monitored units is meant for units that need to be
discarded from the monitoring, to shorten the number of monitored items for
instance6. The enabled units file allows the subagent to know which service
must be enabled so that it can translate the status of the unit according
to what systemd reports, i.e. if a unit should be enabled but it is not, the
subagent changes its status. One may also like to monitor service units that
must be down. The units to be down file permits the subagent to verify this.

All this configuration process may seem to interfere with the zero-effort
service monitoring philosophy, but it is not. The full unit service monitor-
ing is set by default. The fine-tune feature has been implemented only for
administrators who wish to use it.

4.1.2 The algorithm

First of all, an instance of the netsnmpagent class is created where the path
to the NETWORK-SERVICES-MIB is defined.

Subsequently, the table is created with a class that takes at least three
arguments which are the OID string of the applTable in the MIB, the indexes
and the columns7 all identified by their OID.

The algorithm can now start the data update. The first task is to store
into a list all service units made available by the systemctl command8 and to
discard units present in the not monitored units file and those starting with
a “-” or containing a “@”. Units such as -.slice or systemd-rfkill@.service
cannot be queried with other systemctl commands. This is a bug that needs
to be reported to systemd people. Next, the status of monitored units is
inserted into another list9. Both lists are merged into a dictionary with unit
names as keys and statuses as values. A third list is created that contains
units from the units to be down file so that the algorithm can invert the
status of those units10. The subagent will report an “up” operational status
for a unit that is “inactive”11 and part of the units to be down file. As seen in
Section 3.2.2, the MIB offers only six operational statuses and none would fit
a “Down but OK”. Such a unit being declared as “up” by the subagent seems

6This can be compared to blacklisting
7applName and applOperStatus columns
8systemctl list-unit-files -t service
9The status is retrieved with the systemctl show unit name -p ActiveState command

10“active” to “inactive” and “inactive” to “active”
11And vice versa

18

systemd_subagent.py
+

NETWORK-SERVICE-MIB
Snmpd Master Agent

Nagios Monitoring Station

Iniates AgentX Session + Registers MIB OIDs

Accepts AgentX sessions + Accepts OID Registrations

Queries systemd +
Binds MIB OIDs with

Variables

Nagios run with start_nagios.sh

not_monitored
_units

enabled_units
units_to_be_

down

Figure 1: The workflow of the proof of concept

to be the closest operational status that reflects the reality, i.e. everything is
running correctly. Then, a fourth list is created, this time to host units added
to the enabled units file. The first list and the fourth one are put together
to form a second dictionary. Thanks to this, the algorithm can now iterate
over the fourth list to change the status of a unit from the first dictionary to
“disabled” (if a unit should be enabled and it is actually not).

Finally, indexes, rows and cells are created with the index, addRow and
setRowCell functions, respectively. Table 1 shows how the subagent trans-
lates statuses retrieved with the systemctl commands to the operational sta-

12The unit is present in the enabled units file and its status has been swapped from
“active” to “disabled” by the algorithm

19

systemd unit status SNMP operational status Interpretation
active up (1) The unit is “active”, or “inactive” and supposed to be

disabled12 halted (3) The unit should be enabled and is not
inactive and enabled quiescing (6) The unit will be “active” after the next reboot

inactive or failed down (2) The unit is “inactive”, or “active” and not supposed to be

Table 1: Translation of systemd unit status to SNMP operational status

tuses made available through SNMP.

4.2 Monitoring with Nagios

SNMP is used for monitoring purposes but it is not very handy for observing
quickly what is happening with the monitored items. Hence, the data that
can be fetched with SNMP may be relayed to a monitoring station hosting
a graphical web application, easy to read. Writing an application specific-
plugin was not the focus of this paper, therefore the Nagios implementation
is more a workaround than a long term solution and may seem rudimentary.

Nagios is the chosen monitoring system that is running on the monitoring
machine for this proof of concept. I was looking for a Nagios plugin satis-
fying my requirements, i.e. one that can via SNMP iterate over tables and
retrieve all names and operational statuses of units. In principle, it should be
possible for an SNMPc plugin to automatically scan an attached network to
automatically discover the zero-effort service monitoring on each host, and
to automatically add them to the monitored information base.

Unfortunately, I could not find anything fully achieving this goal. The
check snmp table.pl [22] plugin can join two columns of a same table together,
e.g. a service unit name with its operational status, with the help of an
snmpwalk command. It is published under the GNU General Public License
v2.

However, statuses in this plugin are thresholds, i.e. a “CRITICAL” value
cannot be between an “OK” and a “WARNING” one. This does not fit what
the NETWORK-SERVICES-MIB offers where the “up” status is 1, “down”
is 2, and “halted” is 3. Thus, the perl script has been modified to allow the
wanted behavior.

Furthermore, the plugin does not offer an automatic iteration over tables.
It is called in a Nagios configuration file for a specific host for a specific OID.
A lot of configuration is required as the subagent retrieves hundreds of OIDs

20

SNMP operational status Nagios interpretation
up (1) OK

halted (3) WARNING
quiesing (6) WARNING

down (2) CRITICAL

Table 2: Nagios interpretation of SNMP operational status

by default. To solve this problem, I have written a bash script that first
performs an snmpwalk to retrieve the names of all monitored service units
on a remote host, and creates a Nagios configuration file accordingly for that
host. Table 2 shows how Nagios interprets the operational statuses retrieved
via SNMP.

The reader should keep in mind that the script has been developed only
for illustration purposes. It has to be run each time the number of monitored
units changes on the remote host, when units are added or removed from the
not monitored units file for example. In addition, an snmpwalk is triggered
whenever Nagios performs a check because the configuration file created with
the bash script will call check snmp table.pl for each monitored service units.
This can be very CPU consuming for the monitored host. A solution would
be to run an snmpwalk command every time Nagios performs a check, to
cache the output and use the cache to join unit names with operational
statuses.

Figure 2: Zero-effort service monitoring with Nagios

This is an example of how the zero-effort service monitoring can be im-
plemented in a monitoring system such as Nagios which is illustrated by
Figure 2. It is essential to the reported work that nothing Nagios-related has
been installed on the remote host. This demonstrates exactly the strength
of SNMP, to be a monitoring standard.

21

5 Operating system integration

So far, a subagent built upon the Net-SNMP package has been developed
to monitor systemd service units. The universality of systemd allows the
subagent to be run on any operating system that boots systemd. However,
there is only one requirement for packages to be handled by the subagent.
They must be delivered with a systemd service unit file.

The challenge now is to integrate the subagent within an operating system
so that the zero-effort service monitoring idea can be fully achieved. This
can be approached in several ways.

Assuming that the subagent is written in C, one solution would be to
package the subagent into an rpm or deb file with the Net-SNMP package as
its dependency. Once the package installed, systemd could start the snmpd
service at boot time. The subagent would have thus a master agent running
to connect to and make service monitoring available.

A second possibility would be to dynamically extend systemd by integrat-
ing the C subagent as a shared library (i.e. a .so file). Thus, the functions of
the subagent would not have to poll service information with systemctl, but
they could rather deal directly with systemd. .so files are convenient in the
sense that they can be installed from a separate package and still can modify
the core package, i.e. systemd in this case. If the Net-SNMP package would
be installed on the remote host, the intended functionality of the shared li-
brary (i.e. service monitoring) would be loaded, or skipped in the opposite
case.

Another approach would be to integrate directly the subagent within
the Net-SNMP package. Similarly to the Host Resources MIB discussed in
Section 1.2, systemd service monitoring would be enabled by just having the
Net-SNMP package installed. But it implies that the Net-SNMP team agrees
on that. In addition, the work that has been done during this project would
be then labeled under Net-SNMP and not ARPA2.net.

The first two approaches are the most suitable with a preference for the
second one as it would be directly linked to systemd. Only the Net-SNMP
package would have to be additionally installed, and snmpd.conf to be quickly
configured to allow SNMP queries coming from a monitoring station. En-
abling snmpd.service with systemd will make it start at boot time which
would result in activating service monitoring via SNMP.

22

6 Conclusion

systemd makes the zero-effort service monitoring idea possible. Regardless
of whether it is running on a Debian-like or Red-Hat-like operating system,
polling services and their status is achievable with the same commands as
long as they do have a systemd service unit file. Hence, the AgentX subagent
specially developed for systemd service monitoring during this project can be
run on various OSs booting systemd. It provides monitoring of each service
by default with no need for configuration13 and can be fine-tuned if requested.

The Network Services Monitoring MIB the subagent has been written for
may show some limitations though. This is particularly true when fine-tune
monitoring is set14. Two other operational statuses would have made things
clearer from an SNMP point of view:

• “Down but OK”

• “Up but not OK”

Currently, we are stuck with “up” and “down” operational statuses. This
can be confusing when a service unit is “inactive” and reported by the agent
as “up” just because the unit is part of the to be down units file. One could
think of using the “halted” operational status instead. But it is already used
for units that should be enabled and are not.

In order to fully achieve the zero-effort service monitoring idea, the sub-
agent must be integrated with the operating system. This can be done by
directly integrating it into systemd as a shared library. The Net-SNMP
package would be a required dependency and the snmpd.service enabled in
systemd.

Only an snmpd daemon that can be queried on the monitored host is
required for any respectable monitoring application15 to retrieve service data.
This is the reason why the whole idea of this project is based on SNMP, to
minimize the configuration process. However, the monitoring system must
have a way to deal with SNMP tables in an automated way.

13From a systemd point of view. The subagent just needs an snmpd process running
14Especially when the to be down units file is filled in
15An application than can handle SNMP

23

7 Future Work

In order to fully integrate the zero-effort service monitoring, we have seen in
Section 5 that the proof of concept could either be packaged into a deb/rpm
file or even integrated within systemd. The actual state of proof of concept
of the subagent does not allow that for both solutions. Hence, it should be
re-written in C.

Finally, new operating statuses in the MIB would sweep away any ambi-
guities. At least two new operational statuses could be added as discussed in
Section 6. With standard but clear names so that they can apply to network
services as well, one could think of extending the RFC 2788 instead of writing
a new MIB. The MIB is standardized and it would be regrettable not to take
advantage of this.

24

8 References

[1] J. Case, M. Fedor, M. Schoffstall & J. Davin, A Simple Network
Management Protocol (SNMP), May 1990, https://www.ietf.org/rfc/
rfc1157.txt

[2] Patrick Proy, Nagios plugin for process monitoring, June 2007, http:
//nagios.proy.org/snmp process.html

[3] S. Waldbusser & P. Grillo, Host Resources MIB, March 2000, https:
//tools.ietf.org/html/rfc2790

[4] Wes Hardakerr, UCD-SNMP-MIB, January 2009, http://www.net-
snmp.org/docs/mibs/ucdavis.html

[5] Wikipedia, Lennart Poettering, May 2015, https://en.wikipedia.org/
wiki/Lennart Poettering

[6] Wikipedia, Adoption of systemd, June 2015, https://

en.wikipedia.org/wiki/Systemd#Adoption and reception

[7] freedesktop.org, systemd System and Service Manager, June 2015, http:
//www.freedesktop.org/wiki/Software/systemd/

[8] freedesktop.org, systemd for Administrators, Part III, October 2010,
http://0pointer.de/blog/projects/systemd-for-admins-3.html

[9] Chris Hoffman, Meet systemd, the controversial project taking over
a Linux distro near you, October 2014, http://www.pcworld.com/
article/2841873/meet-systemd-the-controversial-project-

taking-over-a-linux-distro-near-you.html

[10] Lennart Poettering, The Biggest Myths, January 2013, http://

0pointer.de/blog/projects/the-biggest-myths.html

[11] egalstad, NRPE - Nagios Remote Plugin Executor, September 2013,
https://exchange.nagios.org/directory/Addons/Monitoring-
Agents/NRPE--2D-Nagios-Remote-Plugin-Executor/details

[12] T. Ylonen & C. Lonvick, The Secure Shell (SSH) Protocol Architecture,
January 2006, https://tools.ietf.org/html/rfc4251

25

https://www.ietf.org/rfc/rfc1157.txt
https://www.ietf.org/rfc/rfc1157.txt
http://nagios.proy.org/snmp_process.html
http://nagios.proy.org/snmp_process.html
https://tools.ietf.org/html/rfc2790
https://tools.ietf.org/html/rfc2790
http://www.net-snmp.org/docs/mibs/ucdavis.html
http://www.net-snmp.org/docs/mibs/ucdavis.html
https://en.wikipedia.org/wiki/Lennart_Poettering
https://en.wikipedia.org/wiki/Lennart_Poettering
https://en.wikipedia.org/wiki/Systemd#Adoption_and_reception
https://en.wikipedia.org/wiki/Systemd#Adoption_and_reception
http://www.freedesktop.org/wiki/Software/systemd/
http://www.freedesktop.org/wiki/Software/systemd/
http://0pointer.de/blog/projects/systemd-for-admins-3.html
http://www.pcworld.com/article/2841873/meet-systemd-the-controversial-project-taking-over-a-linux-distro-near-you.html
http://www.pcworld.com/article/2841873/meet-systemd-the-controversial-project-taking-over-a-linux-distro-near-you.html
http://www.pcworld.com/article/2841873/meet-systemd-the-controversial-project-taking-over-a-linux-distro-near-you.html
http://0pointer.de/blog/projects/the-biggest-myths.html
http://0pointer.de/blog/projects/the-biggest-myths.html
https://exchange.nagios.org/directory/Addons/Monitoring-Agents/NRPE--2D-Nagios-Remote-Plugin-Executor/details
https://exchange.nagios.org/directory/Addons/Monitoring-Agents/NRPE--2D-Nagios-Remote-Plugin-Executor/details
https://tools.ietf.org/html/rfc4251

[13] Zabbix LLC., Agentless Monitoring, August 2015, http:

//www.zabbix.com/agentless monitoring.php

[14] Nagios Enterprises, LLC., Nagios XI Monitoring Hosts Using SSH, Au-
gust 2012, https://assets.nagios.com/downloads/nagiosxi/docs/
Monitoring Hosts Using SSH.pdf

[15] J. Case, M. Fedor, M. Schoffstall & J. Davin, A Simple Network
Management Protocol (SNMP), May 1990, https://www.ietf.org/rfc/
rfc1157.txt

[16] K. McCloghrie, D. Perkins & J. Schoenwaelder, Structure of Man-
agement Information Version 2 (SMIv2), April 1999, https://

tools.ietf.org/html/rfc2578

[17] M. Daniele, B. Wijnen, M. Ellison & D. Francisco, Agent Extensibility
(AgentX) Protocol Version 1, January 2000, https://www.ietf.org/
rfc/rfc2741.txt

[18] Dave from the Net-SNMP community, README.agentx, May 2011,
http://www.net-snmp.org/docs/README.agentx.html

[19] The Net-SNMP community, SNMP agent API, April 2001, http://

www.net-snmp.org/docs/man/snmp agent api.html

[20] Pieter Hollants, Writing Net-SNMP (AgentX) subagents in Python, June
2015, https://pypi.python.org/pypi/netsnmpagent

[21] N. Freed & S. Kille, Network Services Monitoring MIB, March 2000,
https://tools.ietf.org/html/rfc2788

[22] William Leibzon, SNMP Nagios Plugin, October 2006, http://

wleibzon.bol.ucla.edu/nagios/plugins/check snmp table.pl

26

http://www.zabbix.com/agentless_monitoring.php
http://www.zabbix.com/agentless_monitoring.php
https://assets.nagios.com/downloads/nagiosxi/docs/Monitoring_Hosts_Using_SSH.pdf
https://assets.nagios.com/downloads/nagiosxi/docs/Monitoring_Hosts_Using_SSH.pdf
https://www.ietf.org/rfc/rfc1157.txt
https://www.ietf.org/rfc/rfc1157.txt
https://tools.ietf.org/html/rfc2578
https://tools.ietf.org/html/rfc2578
https://www.ietf.org/rfc/rfc2741.txt
https://www.ietf.org/rfc/rfc2741.txt
http://www.net-snmp.org/docs/README.agentx.html
http://www.net-snmp.org/docs/man/snmp_agent_api.html
http://www.net-snmp.org/docs/man/snmp_agent_api.html
https://pypi.python.org/pypi/netsnmpagent
https://tools.ietf.org/html/rfc2788
http://wleibzon.bol.ucla.edu/nagios/plugins/check_snmp_table.pl
http://wleibzon.bol.ucla.edu/nagios/plugins/check_snmp_table.pl

	Introduction
	Research questions
	Related work

	Tools and protocols
	Tools
	Kernel tools
	systemd

	Protocols
	Proprietary protocols
	SSH
	SNMP
	The AgentX protocol

	Choices for the implementation

	Approach and methods
	Querying systemd services
	Retrieving the list of installed services
	Retrieving the status of services

	Writing the AgentX subagent
	The subagent
	The MIB

	Results
	The Python subagent
	Fine-tuned monitoring
	The algorithm

	Monitoring with Nagios

	Operating system integration
	Conclusion
	Future Work
	References

