Extremely Secure Communication

Daniel Romão - daniel.romao@os3.nl

What (almost) everyone knows:

NSA collects traffic

Confidential data can be compromised

Backdoors in encryption-related software and hardware make it easier

Research Question

How can an extremely secure communication on the Internet be deployed for work teams and individuals around the globe?

What can we do?

1 - Avoid possible backdoors on RNGs

2 - Avoid having all data going over a single link

What can we do?

- 1 Avoid possible backdoors on RNGs
 - Use a verifiable HRNG to improve the kernel entropy pool

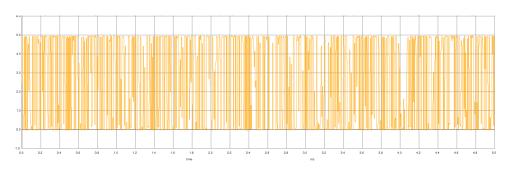
2 - Avoid having all data going over a single link

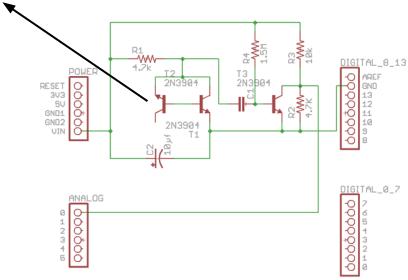
What can we do?

- 1 Avoid possible backdoors on RNGs
 - Use a verifiable HRNG to improve the kernel entropy pool

- 2 Avoid having all data going over a single link
 - Use a multipoint VPN!

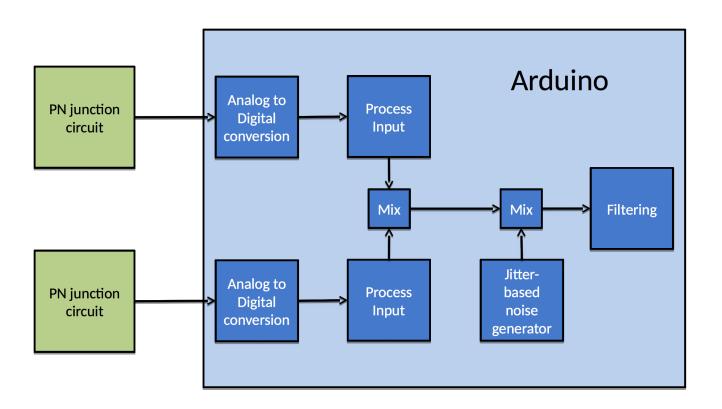
Hardware Random Number Generator

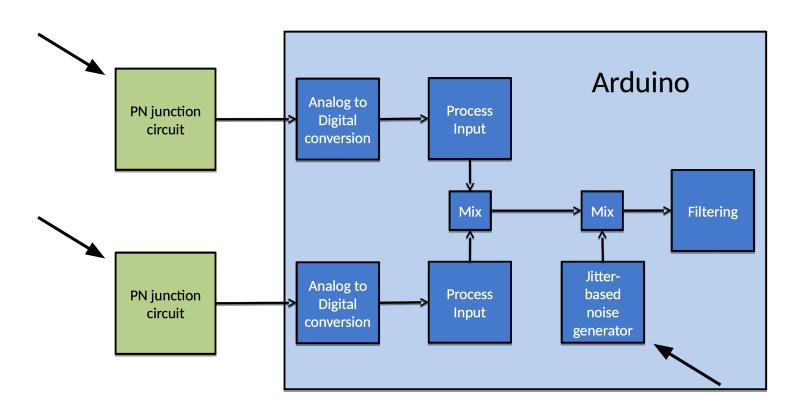

- Multiple devices exist, mostly closed source
 - Big price differences

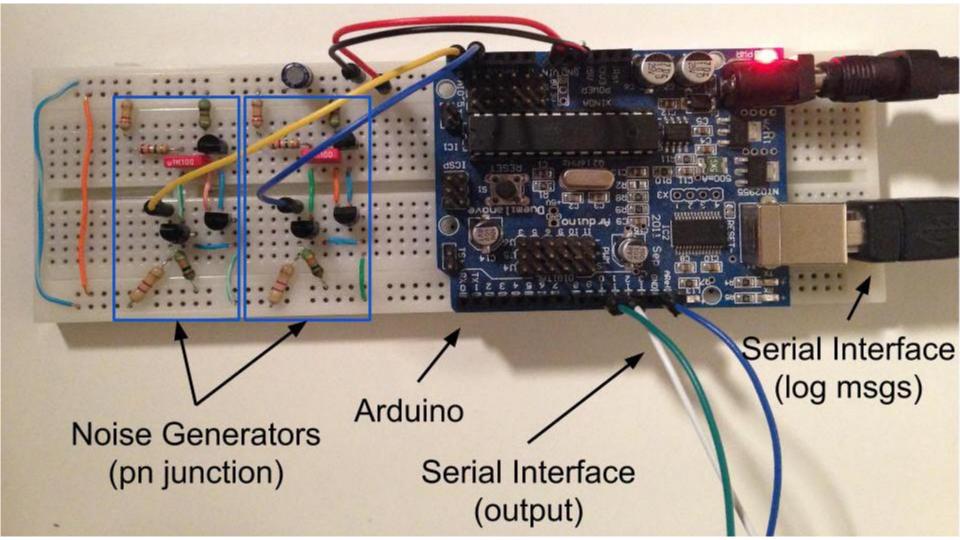

- Ongoing discussion on noise sources
 - PN junctions, RF noise, clock drift, thermal noise...

What if we implement a HRNG that is verifiable and has multiple noise sources?

HRNG - Related Work


- Rob Seward implemented a basic HRNG on Arduino using a single PN junction
 - Calibration on startup
 - XOR and Von Neumann filtering
 - Serial interface for output





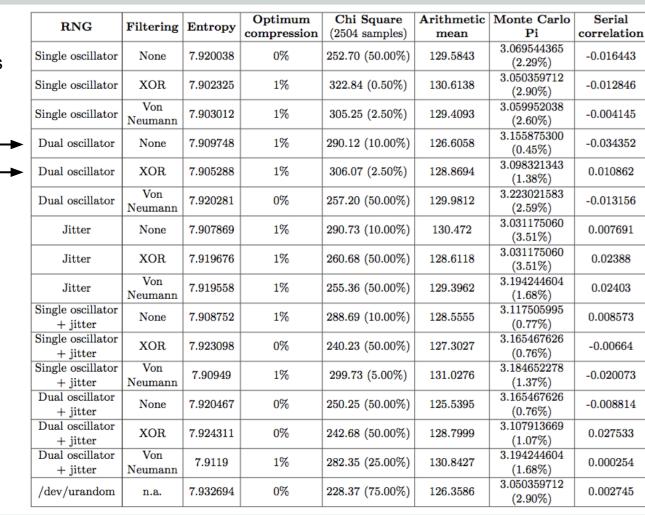
HRNG Implemented

- Extension of the previous work
 - Multiple noise sources
 - Continuous calibration
 - Second serial interface for logging
 - Raw byte output mode for rng-tools

HRNG Testing

Ent

Entropy, Optimum compression, Chi square,
Arithmetic mean, Monte Carlo Pi, Serial correlation


RNGtest

- FIPS-140-2 test
- To test cryptographic modules for use by the United States federal government

RNG	Filtering	$egin{array}{c} ext{Throughput} \ ext{(byte/sec)} \end{array}$
Single oscillator	None	586.59
Single oscillator	XOR	587.12
Single oscillator	Von Neumann	208.24
Dual oscillator	None	383.39
Dual oscillator	XOR	375.59
Dual oscillator	Von Neumann	115.46
Jitter	None	0.85
Jitter	XOR	0.85
Jitter	Von Neumann	0.21
Single oscillator + jitter	None	0.85
Single oscillator + jitter	XOR	0.85
Single oscillator + jitter	Von Neumann	0.21
Dual oscillator + jitter	None	0.85
Dual oscillator + jitter	XOR	0.85
Dual oscillator + jitter	Von Neumann	0.22
/dev/urandom	n.a.	2730666.67

Ent results

Sample size: 2504 bytes

Ent results

Sample size: 512Kb

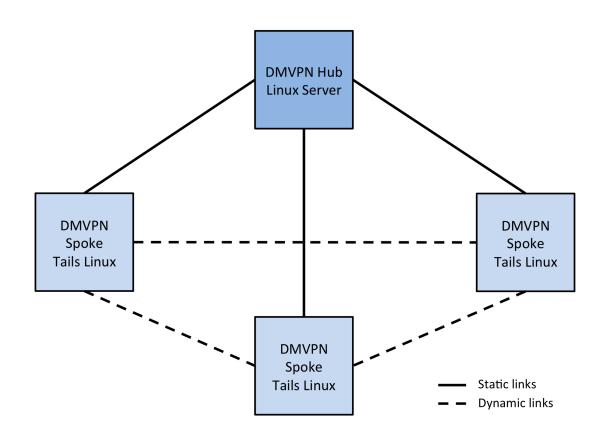
RNG	Filtering	Entropy	Optimum	Chi Square	Arithmetic	Monte Carlo	Serial
ILITO	rittering	Entropy	compression	(524288 samples)	mean	Pi	correlation
Single oscillator	None	7.987673	0%	4868.18 (0.01%)	128.0038	3.145489294 (0.12%)	0.000724
Single oscillator	XOR	7.987554	0%	4957.42 (0.01%)	128.1143	3.123058789 (0.59%)	-0.001192
Single oscillator	Von Neumann	7.9883	0%	4410.29 (0.01%)	128.8105	3.119213559 (0.71%)	0.000148
Dual oscillator	None	7.988324	0%	4392.78 (0.01%)	128.2537	3.137615729 (0.13%)	0.000895
Dual oscillator	XOR	7.988355	0%	4370.00 (0.01%)	128.2837	3.131390119 (0.32%)	0.000916
Dual oscillator	Von Neumann	7.988333	0%	4386.37 (0.01%)	128.3335	3.129467504 (0.39%)	-0.00196
/dev/urandom	n.a.	7.999602	0%	288.92 (10.00%)	127.3549	3.140408098 (0.04%)	-0.000704

RNGtest results

Sample size: 512Kb

RNG	Filtering	Number of	Number of	Percentage
		Successes	Failures	of Success
Single oscillator	None	199	10	95.22%
Single oscillator	XOR	206	3	98.56%
Single oscillator	Von Neumann	209	0	100.00%
Dual oscillator	None	209	0	100.00%
Dual oscillator	XOR	209	0	100.00%
Dual oscillator	Von Neumann	209	0	100.00%
/dev/urandom	n.a.	209	0	100.00%

Multipoint VPN


DMVPN

- Cisco technology
- Open source implementation exists: OpenNHRP
- IPSec
- Hub (server), Spokes (clients)

Operating System

Tails Linux

- Open source operating system
- Aimed at privacy and anonymity on the Internet
- Only traffic over Tor and I2P networks can go
- Always boots from a clean install state

How to deploy the DMVPN spoke software on Tails?

Conclusion

- HRNG and a Tails DMVPN spoke integrate well with each other
- Jitter-based noise generator has very low throughput
- Dual oscillator without filtering was overall the setting with best performance

Future Work

- More experiments with the HRNG
 - Other noise sources and filtering
 - Faster microcontroller

Optimization of the configuration

Thank you!

Go get it:

https://github.com/dromao/arduino-rng

https://github.com/dromao/dmvpn-spoke