
Extremely Secure Communication
Research Project 2

Daniel Romão - daniel.romao@os3.nl
System and Network Engineering, MSc

University of Amsterdam

July 5, 2015

Abstract

Companies nowadays rely on the Internet for various purposes. One of these, is communi-
cation between employees or work teams at different locations. Suspicions of governmental
agencies performing traffic collection and decryption exist, posing the threat of companies
having their Internet communication leaked. This is specially relevant when confidential
information is transmitted and their business secrets might be at risk.
This research shows how an extremely secure communication on the Internet can be deployed
for work teams and individuals around the globe. Having the knowledge that random num-
ber generators used for cryptographic operations might contain backdoors, a true random
number generator was implemented. This random number generator is based on an older
true random number generator project, which uses a single PN junction for noise genera-
tion, and will include new features and more noise sources: a second PN junction and a
jitter-based noise generator. This device improves the entropy of the Linux system used
by clients, improving the cryptographic operations. Companies, often have Virtual Private
Networks (VPNs), which employees can use when are outside of the company. These not
only provide an isolation layer, but also access to internal services. However, this means
that communication between employees will always go through a central location, making all
communication easier to obtain. This happens because only the Internet link to the location
of the VPN server needs to be tapped. In order to avoid this, a multipoint VPN is used.
The technology used is Dynamic Multipoint Virtual Private Network (DMVPN). With a
multipoint VPN, the VPN clients communicate directly with each other. The operating
system used for the clients is Tails Linux. Because Tails Linux always boots from a clean
state, a bootstrap software was created to allow easy deployment of the multipoint VPN
and random number generator software.
Testing results of the random number generator obtained from the tools Ent and rngtest
show good performance, favoring the dual PN junction without filtering setting. Through-
put tests shown that the throughput of the jitter-based noise generator is significantly lower
than the throughput of the PN junction noise generators, diminishing its usefulness as a
suitable noise generator. Tests of the bootstrap software shown that the deployment of the
multipoint VPN and random number generator software is not only possible, but easy when
the software created is used. It is possible to conclude that the scenario proposed is valid
and both random number generator and multipoint VPN integrate well.

Contents

1 Introduction 2
1.1 Problem statement . 2
1.2 Research methods . 2

1.2.1 Given the hardware random number generators on computer hardware not
being secure, how feasible is it to use an external one? 2

1.2.2 What kind of TRNGs designs exist and what are their advantages/disad-
vantages? . 3

1.2.3 How feasible is it to implement a TRNG design using easily available, low
cost, resources? . 3

1.2.4 What implementations of open-source multipoint VPNs exist? 3
1.2.5 How feasible is the deployment of one of this technologies on volatile op-

erating systems? . 3
1.2.6 How feasible is the implementation of this multipoint VPN using the

TRNG built for sub-question 3? . 3

2 Related work 4
2.1 True random number generator . 4
2.2 Multipoint VPN . 4

3 Scope 5
3.1 Multipoint VPN and Operating System . 5
3.2 True random number generator . 5

4 Approach 6
4.1 True Random Number Generator . 6

4.1.1 PN Junction circuit . 6
4.1.2 Arduino code . 8
4.1.3 Tests . 9

4.2 Multipoint VPN . 10
4.3 Bootstrap software . 12

5 Results 14
5.1 True Random Number Generator . 14
5.2 Multipoint VPN . 18

6 Conclusion 19

7 Future Work 20

8 Acknowledgement 21

9 Appendix 23
9.1 RNG code . 23
9.2 DMVPN spoke bootstrap code . 26

1

1 Introduction

Privacy on the Internet is a huge topic of discussion nowadays. Not only data people supply
voluntarily is subject of analysis by companies and governments, such as pictures on social net-
works, but also private and confidential data which is meant to be kept secret. For example, the
National Security Agency (NSA)1 is known for collecting Internet traffic from several links2, store
the traffic collected, and attempt to decrypt it or at least collect metadata from the traffic[1].
In addition, suspicion of backdoors on current encryption-related software and random number
generators exist[2]. Those backdoors allow decryption of captured traffic to be made easier, al-
lowing access to data.

In this research, a scenario to enable remote work teams and individuals to communicate and
share data securely is proposed and developed. Examples where this would be useful, are an
oil company finding a new source of oil, or a company in process of a due diligence assessment
on taking over another company and does not want to influence the market value. In order to
tackle the issue of possible backdoors, an open-source, verifiable, operating system was used and
a true random number generator (TRNG)[3], also known as hardware random number generator
(HRNG), was implemented. Further, this device will also be referred simply as RNG. To reduce
the possibility of having a link tapped, where the sensitive data is transported, all data is not
only encrypted, but also travels over a multipoint VPN. A multipoint VPN ensures that all
traffic is isolated and no single tap point exists, as individual VPN tunnels are created between
all participants.

1.1 Problem statement

The main research question is:

How can an extremely secure communication on the Internet be deployed for work
teams and individuals around the globe?

This question leads to the following sub-questions:

1. Given the hardware random number generators on computer hardware not being secure,
how feasible is it to use an external RNG device?

2. What kind of TRNGs designs exist and what are their advantages/disadvantages?

3. How feasible is it to implement a TRNG design using easily available, low cost, resources?

4. What implementations of open-source multipoint VPNs exist?

5. How feasible is the deployment of one of this technologies on volatile operating systems?

6. How feasible is the implementation of this multipoint VPN using the TRNG built for
sub-question 3?

1.2 Research methods

In this sub section, the research methods applied for each sub question will be described.

1.2.1 Given the hardware random number generators on computer hardware not
being secure, how feasible is it to use an external one?

For this question, the process of building the RNG and interfacing it with a computer will show
how easily this can be done.

1https://www.nsa.gov
2http://www.theguardian.com/world/2013/jul/31/nsa-top-secret-program-online-data

2

1.2.2 What kind of TRNGs designs exist and what are their advantages/disadvan-
tages?

Research on currently developed noise generator circuits and TRNGs exist and investigate how
those compare. A noise generator circuit design will be used for the TRNG created.

1.2.3 How feasible is it to implement a TRNG design using easily available, low
cost, resources?

The process of implementation of the TRNG will show how easy it is. This will also show if it
can be build using easily available parts, and how expensive it is.

1.2.4 What implementations of open-source multipoint VPNs exist?

Suitable open-source multipoint implementations will be searched and one will be picked for the
proof-of-concept.

1.2.5 How feasible is the deployment of one of this technologies on volatile oper-
ating systems?

The process of deploying and configuring the multipoint VPN software will show how easy it is
to deploy and configure the software.

1.2.6 How feasible is the implementation of this multipoint VPN using the TRNG
built for sub-question 3?

To answer this question, the integration of the TRNG built with the multipoint VPN will be
evaluated.

3

2 Related work

2.1 True random number generator

Encrypted connections are essential for secure communication. However, those can still be ex-
ploited in case of a presence of a backdoor in the implementation of security-related protocols or
on what will be explored, a randomization source of key material generation.
Several TRNGs have been produced over the years. Good examples are the OneRNG3, the
TrueRNG4, and the entropy key5. From those, OneRNG is the only having an open hardware
design. This is important as a user can assess how the device operates and look for possible
flaws that might reduce its performance in producing random numbers. Unfortunately, it is not
available for sale at the time of this research. The OneRNG and the entropy key are known to
use PN junctions[4] as noise source.
While those products are great, the possibility of building a TRNG from scratch allows better
control and understanding of a TRNG, adding the possibility for experimentation, such as adding
noises sources or try different components. Arduino6 is a popular micro-controller development
project, where several development boards are produced within the project.
The Arduino is a good option for interfacing an analog circuit to a computer. Other options,
such as Field Programmable Gate Arrays (FPGAs), have been used for the same purpose. An
example where an FPGA was used for same purpose can be seen in the paper “An embedded
true random number generator for FPGAs” by Paul Kohlbrenner and Kris Gaj[5]. Even though
good results can be possible to obtain using FPGAs, the Arduino platform is not only more
affordable, but also more widespread.
As for the circuit itself, a few designs exist, which follow the same technology as the TRNGs
mentioned before, using PN junctions. An interesting one, because it can be easily implemented
and capable of good results, and base for the TRNG that will be implemented, was created
by Rob Seward[6], while his work was based on work of Will Ware[7] and Aaron Logue[8]. A
different approach for noise generation, is to use ring oscillators[9][10]. While ring oscillators
could also be an option, the PN junctions will be preferred as the implementation is easier.

2.2 Multipoint VPN

A large number of initiatives for Internet privacy have been started. A well known one is Tor7.
Tor is a network aimed at providing secure and anonymous access to the Internet. While Tor
is a great complement to the target scenario, it does not provide the isolation desired. It is
relevant to notice that in this project, anonymity is not a requirement, while data confidentiality
and an easy to use private environment is. Virtual Private Networks are commonly used by
companies who wish remote employees or sites, to be able to connect to a trusted company
network. However, having a central point of connectivity that can be exploited is not a desirable
situation. Networking vendors have been putting an effort in developing technologies to provide
secure multipoint VPNs. Using a multipoint allows remote sites/users to communicate with each
other without having their traffic going trough a central location. The most relevant multipoint
VPN technology found is the DMVPN[11], developed by Cisco8. Good detail of this technology
can be found on their patent, named “Method and apparatus for dynamically securing voice and
other delay-sensitive network traffic”[12]. Information about deploying a secure DMPVN can be
seen on the paper ”Design and implementation of secure enterprise network based on DMVPN”
by Huaqi Chen[13].
A very interesting alternative is N2N[14], as it also has desired characteristics for this research,
such as a peer-2-peer topology. N2N is a secure peer-2-peer VPN, which uses UDP for traffic
encapsulation. Unfortunately, N2N is not being developed at the moment, and for that reason,
it was not considered as a suitable solution for the networking component of this project.

3http://onerng.info/
4http://ubld.it/products/truerng-hardware-random-number-generator/
5http://www.entropykey.co.uk/
6http://www.arduino.cc/
7https://www.torproject.org/
8http://www.cisco.com

4

3 Scope

3.1 Multipoint VPN and Operating System

The planned multipoint VPN technology for deployment in this project is DMVPN. An open-
source implementation of this technology was used. On the hosts, the Tails Linux9 operating
system was used, and where the DMVPN implementation run on. Because this operating system
always starts from its installed state, a set of scripts was created to deploy the software with
minimal user interaction. Creating a new distribution with the VPN software pre-installed is out
of scope, not only for the sake of time, but also because of the maintenance effort that would be
needed to keep the new distribution up-to-date. Using a bootstrap script will allow the software
to be deployed and run on new versions of the Tails Linux operating system, requiring at most,
minimal changes that might be required for compatibility with a new version of the operating
system or VPN-related software.

3.2 True random number generator

The purpose of implementing a true random number generator in this project, is to assess the
feasibility of the implementation, along with the assessment of the advantages over a pseudo
random number generator. Research was done into the circuits typically deployed, and one was
deployed. Designing new circuits/methods, as well as deep statistical/mathematical analysis is
out of the scope of this project. However, basic statistical analysis were done in order to do an
assessment of the RNG deployed, such as entropy calculation.

9https://tails.boum.org/index.en.html

5

4 Approach

4.1 True Random Number Generator

The first part of the approach was implementing a TRNG, which is primarily based on a PN junc-
tion circuit for avalanche noise[15] generation and an Arduino for data processing and interfacing
with a PC. In order to experiment and attempt to improve the performance of the RNG, two
equal PN junction circuits were built. The output of these circuits were connected to an Arduino
development board, which performs proper acquisition and processing of the noise by converting
the analog signal to digital, and comparing it with a baseline which leads to assessment of the bit
value of the analog signal sampled. On the Arduino board, an internal noise generator was also
used in conjunction with the analog circuits. This internal RNG uses the jitter of the watchdog
timer of the Arduino, to generate a random stream. The library Entropy[16] implements this
technique and was used in this project. Figure 1 shows how the components are connected.

Figure 1: Block diagram of the RNG

After the signal from the PN junctions is converted to a digital value, between 0 and 255
(8 bit) and mixed, which is achieved by a xor operation, the bit value is mixed with the the
jitter-based noise generator and filtering is performed. After the filtering, the the result is sent
over a serial interface. The output of the RNG is used to feed the (Linux) kernel entropy pool of
the host where it is connected, in order to be used by /dev/random and /dev/urandom. For this
task, rng-tools10 was used. The Arduino used in this project is a Duemilanove clone. Even not
being an original board from the Arduino brand, it will be continued to be referred as ”Arduino”,
as the boards are compatible. Other Arduino and Arduino-like boards might be compatible with
the noise generator circuits and code, however proper checking is advised, specially because the
output of the PN junction noise generators might damage lower voltage (3.3V) boards.

4.1.1 PN Junction circuit

The RNG implementation includes two PN junction circuits for noise generation. A diagram of
the circuit implemented can be seen on figure 2. This circuit was originally designed by Aaron
Logue[8], and later modified by Rob Seward[6].

10https://www.gnu.org/software/hurd/user/tlecarrour/rng-tools.html

6

Figure 2: PN Junction circuit11

During the practical implementation of the circuits, the 1.5MΩ resistor was replaced by a
1.2MΩ resistor in series with a 220KΩ resistor, because of the lack of availability of resistor of
the original value, and a single 10µF capacitor was used for both circuits. The assembly was
done on a traditional breadboard and can be seen on figure 3. The RNG was powered with a
12V adapter, as 12V is required by the PN junction circuits.

Figure 3: Picture of the RNG created

11Image retrieved from: http://robseward.com/misc/RNG2/RNG_Version_2_images/rng2_circuit_small.png

7

http://robseward.com/misc/RNG2/RNG_Version_2_images/rng2_circuit_small.png

4.1.2 Arduino code

The Arduino code was based on work done by Rob Seward. His code supports a single PN
junction noise generator and can perform two different filtering functions: exclusive or (xor) and
Von Neumann. In order to find a baseline for the noise generator, before any data is sent to the
PC, a large (50000) amount of samples is taken, and the median is found. The code will then
use this median to assess if the value of a certain sample should be translated into a 0 or 1. The
Arduino model used support analog signals between 0V and 5V. The analog to digital converter,
convert the analog signal to a digital value.

The code implements the following output modes:

• ASCII byte

• Binary

• ASCII Boolean

Even though the code already developed seemed to work well, it was too limited for the RNG
intended. The code was then extended to support more noise generators and a raw byte output
mode for rng-tools, and a few other improvements. A summary of the new features contributed
is:

• Support for a second PN junction noise generator

• Support for the watchdog timer jitter-based noise generator provided by the Entropy library

• New raw byte output mode

• Continuous calibration

• Support for a second serial interface for logging messages

• Send log messages, such as baseline values, mode of operation, etc, over the second serial
interface

In an attempt to improve the performance of the RNG, two more sources of noise were added:
a second PN junction circuit and a different noise source are now supported. This new noise
source (watchdog time jitter) is handled by the Entropy library, which made its integration easy.
The rng-tools expects to receive raw bytes from a RNG, an output mode missing in the original
code. This output mode was implemented and used for all tests.

One issue with the original code, is the calibration operation is only done once, when the
device is powered on. This is fine if the device is unplugged often, but if the device is left running
for several months, the bias of the circuit will drift over time, and the threshold will no longer be
valid. This results in a reduced performance of the RNG. Factors that might cause this bias drift
are, for example, the room temperature, aging components, and voltage fluctuations. To allow
the device to run for long periods of time, for example, when connected to a server, without
performance degradation, besides the calibration on start-up, the device will be continuously
calibrating itself and adjust the threshold as needed. This is achieved by using the same proce-
dure done when the device boots, in simultaneous with the regular operation of the RNG. This
is possible because the result of the analog to digital converters is used for both calibration and
regular operation. After each calibration operation is performed, the structure containing the
data captured and used for the median calculation, is re-initialized and the calibration operations
starts from the beginning. Each PN junction has its own baseline.

With the addition of a second serial interface, one serial interface can be used as RNG out-
put and one for logging purposes. The additional serial interface is software emulated, as this
device only has one hardware serial interface. In contrast with the original code, which uses the

8

hardware serial port for output, the output of the RNG implemented is sent over the software
serial interface and log messages over the hardware serial interface. The reason for this is closing
and opening operations on the hardware serial interface triggers a reset on the micro-controller,
a feature used for programming the device. If the software reading the RNG interrupts the con-
nection because, for example, no data from the RNG is needed at a certain moment, the Arduino
will restart and go through the boot process over and over. This behaviour is non-existent on the
software serial interface and in case of interruptions, the Arduino will continue running without
interruptions.
An example log output can be seen below:

TRNG Sta r t i ng . . .
2 ex t e rna l no i s e genera to r (s) w i l l be used
The i n t e r n a l no i s e generato r i s d i s ab l ed
F i l t e r i n g app l i ed : von Neumann
The output format i s byte
∗∗∗∗∗∗∗∗∗
The thre sho ld 1 i s : 59

The th re sho ld 2 i s : 24

4.1.3 Tests

In order to validate and assess the performance of the RNG, several statistical tests were per-
formed. First, 512 Kb samples of raw data from the RNG are planned to be collected, for all
possible modes of operation and filtering. For collection of these samples, a Linux machine was
used, and the following example commands can be used for the effect:

time head −c 512K </dev/ttyUSB0 >r n g s i n g l e x o r

time head −c 512K </dev/ttyUSB0 > j i t t e r n o f i l t e r i n g

The time command was used for time measurement. This allows the calculation of the
throughput of the RNG in the different modes of operation and filtering options.
For performing the statistic tests, the tools rngtest and Ent were used. The rngtest tool checks if
the data complies with the FIPS 140-2 standard. It checks every 2500 byte blocks individually,
and as output shows how many of these blocks meet the requirements of the standard, and in
case of blocks not meeting the requirements, it shows the category of the reason.
Ent performs several checks and calculations on the data. These tests are listed on table 1.

Test Description Ideal Result

Entropy
Density of the information in a file
Measured in bits per character

Should be as close to the number 8 as
possible

Optimum
compression

Perform data compression
Ideally, data compression will not be
possible, showing a totally unpredictable
sequence

Chi square Calculate the Chi square distribution[17] Should be between 10% and 90%

Arithmetic mean
Calculate the arithmetic mean of the
data: Sum all bytes and divide by file size

Should be as close to 127.5 as possible

Monte Carlo
value for Pi

Calculates the value of Pi using the
Monte Carlo method[18]

Should as close to the value of Pi as
possible: 0% error

Serial correlation
coefficient

Measures how much a byte depends on
the previous

Should be as close to zero as possible

Table 1: Tests performed by the Ent utility

9

4.2 Multipoint VPN

Having a good source of entropy, the next step is to make the communication over the Internet
as secure and private as possible. As one the goals is to have a single computer system to be
autonomous, OpenNHRP, an open-source implementation of the DMVPN protocol was used,
as it can run on a standard Linux system. OpenNHRP implements the Next Hop Resolution
Protocol and aims to be Cisco compatible. Using other Linux software, ipsec-tools and racoon,
it is possible to build an entire secure DMVPN topology.

The operating system users run is the Debian-based Tails Linux. Tails Linux was chosen
for this research, as it is an operating system aimed at providing a secure, private access to the
Internet. Since the functionality of Tails Linux is very likely of interest of the target audience of
this research, the multipoint VPN makes it a great addition.
Opposite to the way DMVPN is typically deployed, a DMVPN spoke, traditionally a border
router on a site, is self contained within the users’ system. This allows single, independent users,
to access the VPN without any extra equipment. Figure 4 shows an example topology.

Figure 4: Example topology

The DMVPN hub in the experimental setup is an Ubuntu Linux 14.04 server machine. The
hub authenticates users (spokes) and register them after successful authentication. The hub han-
dles ARP-like messages from the spokes, requesting to know what is the outside IP address of
another spoke with whom they wish to communicate with. After receiving the address resolution
reply from the hub, a spoke can contact the other spoke in order to establish a dedicated tunnel.

Deploying a DMVPN spoke on Tails Linux poses extra challenges when comparing with an
ordinary Linux distribution:

1. Tails Linux is made to no leave traces behind. All data changes on a machine are lost on
shutdown/reboot and after every boot a clean system is presented.

2. The operating system typically runs from a USB stick, without persistent storage.

10

3. To ensure anonymity, only traffic to the Tor and I2P networks is allowed. All other traffic
is dropped.

In order to solve the first two points, one of the functionalities of Tails Linux, is the possibility
to create an encrypted persistent storage drive on the USB stick where it runs. The existence
of such persistent storage space will allow for user data to be placed, and ultimately, bootstrap
scripts/software that can customize the operating system, accommodating the changes required
for a DMVPN spoke to operate. This is covered in the section 4.3.
To solve the third point, a customized set of firewall rules is loaded, replacing the standard rule-
set. This customized set of rules keep the standard set of rules, with the addition of allowing
traffic required for the multipoint VPN.

Essentially, the DMVPN is supported by three software components: OpenNHRP, ipsec-tools,
and racoon.

• OpenNHRP: Implementation of the NHRP protocol

• IPsec-tools: IPsec-related utilities

• Racoon: IKE key management, required for IPsec authentication

The main software for the DMVPN deployment is OpenNHRP. OpenNHRP can be used on
both DMVPN hub and spokes. For a DMVPN spoke, the configuration is mainly composed by:

• IP address of the DMVPN hub

• Network settings of the VPN tunnel

• Authentication string: A string used as form of password that need to match with the hub
configuration for successful registration

• Destination interface: In this case, the host itself, represented by the loopback interface

The (GRE) tunnel interface used for the VPN is configured separately. Example of configu-
ration:

ip tunne l add gre1 mode gre key 1234 t t l 64
ip addr add 10 .255 . 255 . 10/24 dev gre1
ip l i n k s e t gre1 up

This configures a GRE tunnel interface, with IP address 10.255.255.10 and network mask
255.255.255.0.

Configuring ipsec-tools is a straight forward process: All GRE traffic should be enabled and
Encapsulating Security Payload (ESP) should be used for packet authentication, which in the
experimental setup was configured in transport mode. The full configuration for ipsec-tools, as
well as for all other components can be seen in the appendix section.
The last main component of the DMVPN network is racoon. Racoon handles the security as-
sociations with the other hosts. Racoon can use either pre-shared keys or certificates for this
purpose. In the deployed scenario, x509 certificates were used. A certificate authority (CA) was
created and used to sign the hosts’ certificates. For validation, each host not only has its own
key and certificate, but also the CA certificate.

The most important details of the configuration are:

• Exchange mode: main

• NAT transversal enabled. Presence of NAT is automatically detected, allowing a spoke to
operate behind NAT.

11

• Encryption algorithm for phase 1: AES

• Hash algorithm for phase 1: SHA-1

• Authentication method for phase 1: RSASIG

4.3 Bootstrap software

The possibility of storing data on the same USB stick where Tails Linux is installed, allow storing
a bootstrap software that can easily configure and deploy a DMVPN spoke. In order to minimize
time of deployment and user effort, the bootstrap software is modular, and is composed by the
following:

• Bootstrap DMVPN spoke setup script

• Bootstrap DMVPN spoke start script

• Pre-made configuration files for rng-tools, OpenNHRP, racoon, ipsec-tools and ferm12

The setup script only has to be run once on each spoke. This script takes user input, where
the network parameters are asked, as well as the DMVPN authentication secret. The pre-made
configuration files contain place holders, where the spoke configuration will need to be present.
As the user inserts the parameters, these place holders are filled with the right parameters, lead-
ing to at the end, a set of configuration files adjusted for the specific spoke.
The setup script also handles the key and certificate generation for the spoke. Prior to the key
and certificate generation, rng-tools is installed and configured. Having rng-tools operational
allows the key and certificate generation process to benefit from the added entropy from the
RNG. It is advised then, that the RNG is plugged to the spoke machine before starting the
setup script. In order to save time when actually deploying the DMVPN spoke, OpenHNRP,
which is not available in the Tails Linux repositories, is downloaded and compiled. The source
code and result of the compilation are stored in the persistent storage. When the deployment is
performed, OpenNHRP only needs to be installed.

After successful configuration, the certificate generated will need to be signed by the CA, and
the certificate of the CA will need to be copied to the persistent storage.
The most relevant part of the setup script output where user input is requested can be seen
below, and a diagram of the tasks performed by the setup script can be seen on figure 5.

I n s e r t IP address o f the hub tunne l i n t e r f a c e (ex . 1 0 . 2 5 5 . 2 5 5 . 1) : 1 0 . 2 55 . 2 55 . 1

I n s e r t IP address o f the s e r v e r / route r that i s the DMVPN hub : 145 . 100 . 104 . 48

I n s e r t IP address f o r t h i s spoke tunne l i n t e r f a c e (ex . 1 0 . 2 5 5 . 2 5 5 . 1 0) : 1 0 . 255 . 255 . 10

I n s e r t netmask o f the tunne l network (ex . 2 4) : 24

I n s e r t DMVPN authen t i c a t i on s t r i n g : s e c r e t

12http://ferm.foo-projects.org

12

Figure 5: Tasks performed by the spoke setup script

When the spoke certificate is signed, and the CA certificate is included, the DMVPN spoke
can finally be deployed. For this, the start script can be used.
The start script installs all software and deploy the configuration files on the Tails Linux system.
No user interaction is required. The script starts by installing and configuring rng-tools, for
RNG operation. After, it installs all remaining software and copies the configuration files. It
also configures the GRE interface for the VPN. The process is finished by restarting all services,
for the new configuration be loaded, and start the OpenNHRP software. A diagram of the tasks
performed by can be seen on figure 6.

Figure 6: Tasks performed by the spoke start script

13

5 Results

5.1 True Random Number Generator

In order to verify the performance of the RNG and compare operation modes and filtering op-
tions, samples were collected and analysed. Even though the desired sample size was 512Kb, it
was not possible to collect samples of this size for the operation modes where the jitter-based
noise generator is used. The reason of this is the very low throughput of the jitter-based noise
generator, lowering significantly the throughput of the RNG. On table 2, the throughput of the
RNG for all modes and filtering options can be seen. Samples from /dev/urandom where col-
lected without the RNG.

RNG Filtering
Throughput
(byte/sec)

Single PN junction None 586.59

Single PN junction XOR 587.12

Single PN junction Von Neumann 208.24

Dual PN junction None 383.39

Dual PN junction XOR 375.59

Dual PN junction Von Neumann 115.46

Jitter None 0.85

Jitter XOR 0.85

Jitter Von Neumann 0.21

Single PN junction + jitter None 0.85

Single PN junction + jitter XOR 0.85

Single PN junction + jitter Von Neumann 0.21

Dual PN junction + jitter None 0.85

Dual PN junction + jitter XOR 0.85

Dual PN junction + jitter Von Neumann 0.22

/dev/urandom n.a. 2730666.67

Table 2: Throughput of all operation modes and filtering options of the RNG, and /dev/urandom

As it can be observed, the performance of the RNG, when the jitter-based noise generator is
used, is very low, specially when the Von Neumann filtering is used, which is expected to reduce
the performance. Even using no filtering or the xor filtering, the amount of time needed to gather
one 512Kb sample is well beyond the duration of this research, which is limited to five weeks.
For this reason, 2504 byte samples where gathered for all operation modes and filtering options,
as well as for /dev/urandom for comparison purposes. The reason of the sample size chosen is
the minimum size required by rngtest. Rngtest splits data into 2500 byte samples (4 bytes are
wasted) and analysis each individually. Having samples of this size, the rngtest can run one test
on each sample. As will be seen later, 512Kb samples were also captured for the non jitter-based
operation modes for better confidence in the results. Table 3 shows the results of the Ent tests
for the 2504 byte samples.

14

RNG Filtering Entropy
Optimum

compression
Chi Square
(2504 samples)

Arithmetic
mean

Monte Carlo
Pi

Serial
correlation

Single PN junction None 7.920038 0% 252.70 (50.00%) 129.5843
3.069544365
(2.29%)

-0.016443

Single PN junction XOR 7.902325 1% 322.84 (0.50%) 130.6138
3.050359712
(2.90%)

-0.012846

Single PN junction
Von

Neumann
7.903012 1% 305.25 (2.50%) 129.4093

3.059952038
(2.60%)

-0.004145

Dual PN junction None 7.909748 1% 290.12 (10.00%) 126.6058
3.155875300
(0.45%)

-0.034352

Dual PN junction XOR 7.905288 1% 306.07 (2.50%) 128.8694
3.098321343
(1.38%)

0.010862

Dual PN junction
Von

Neumann
7.920281 0% 257.20 (50.00%) 129.9812

3.223021583
(2.59%)

-0.013156

Jitter None 7.907869 1% 290.73 (10.00%) 130.4720
3.031175060
(3.51%)

0.007691

Jitter XOR 7.919676 1% 260.68 (50.00%) 128.6118
3.031175060
(3.51%)

0.023880

Jitter
Von

Neumann
7.919558 1% 255.36 (50.00%) 129.3962

3.194244604
(1.68%)

0.024030

Single PN junction
+ jitter

None 7.908752 1% 288.69 (10.00%) 128.5555
3.117505995
(0.77%)

0.008573

Single PN junction
+ jitter

XOR 7.923098 0% 240.23 (50.00%) 127.3027
3.165467626
(0.76%)

-0.006640

Single PN junction
+ jitter

Von
Neumann

7.909490 1% 299.73 (5.00%) 131.0276
3.184652278
(1.37%)

-0.020073

Dual PN junction
+ jitter

None 7.920467 0% 250.25 (50.00%) 125.5395
3.165467626
(0.76%)

-0.008814

Dual PN junction
+ jitter

XOR 7.924311 0% 242.68 (50.00%) 128.7999
3.107913669
(1.07%)

0.027533

Dual PN junction
+ jitter

Von
Neumann

7.911900 1% 282.35 (25.00%) 130.8427
3.194244604
(1.68%)

0.000254

/dev/urandom n.a. 7.932694 0% 228.37 (75.00%) 126.3586
3.050359712
(2.90%)

0.002745

Table 3: Ent tests of 2504 byte samples of all operation modes and filtering, and /dev/urandom

For better understanding of table 3, the results were color coded according to the following rules:

• Entropy: The best result has the color green and the weakest red. Yellow shows the
intermediate results.

• Optimum compression: Green was used for 0% of compression and red for 1%, which shows
data is compressible.

• Chi Square: For this test, color were used to show the differences, as indicated on the Ent
manual13

– Less than 1% or greater than 99%: Red, as the sequence is almost certainly not
random

– Between 1% and 5% or between 95% and 99%: Orange, as the sequence is suspect

– Between 5% and 10% or between 90% and 95%: Yellow, as the sequence is almost
suspect

– Between 10% and 90%: Green

• Arithmetic mean: The best result has the color green and the weakest red. Yellow shows
the intermediate results.

• Monte Carlo Pi: The best result has the color green and the weakest red. Yellow shows
the intermediate results.

• Serial Correlation: The best result has the color green and the weakest red. Yellow shows
the intermediate results.

13http://www.fourmilab.ch/random/

15

The results of each test will be analyzed individually.

Entropy

Most of the operation modes produced similar results, all slightly below the pseudo random num-
ber generator /dev/urandom. The operation settings that produced the best results are single
and dual PN junctions with jitter and xor filtering. The setting with two PN junctions produced
the best result.

Optimum compression

The results of this test are rather inconclusive. All performed similar, having the possibility of
compression up to 1%.

Chi Square

Most of the operation modes and filtering performed well in this test. Exceptions are when the
jitter-based noise generator was not used and the filtering applied is xor. Also, when the Von
Neumann filtering was used in combination with a single PN junction or a single PN junction
and jitter, the results where rather poor.

Arithmetic mean

In this test, the best setting was single PN junction with jitter and xor filtering, producing a
very interesting result, very close to the ideal value, 127.5. Even /dev/urandom shown a lower
performance on this test.

Monte Carlo Pi

Most of the settings produced a better results then /dev/urandom in this test, particularly the
dual PN junction mode without filtering. The modes where the jitter-based noise generator was
combined with either one or two PN junctions, produced consistently good results.

Serial Correlation

In this test, only one mode produced a result better than /dev/urandom, that is dual PN junc-
tions with jitter and Von Neumann filtering. This is also the most complex mode, where the
input data is taken from the three noise generators and the more complex Von Neumann filtering
is applied. Data manipulation seems to be key in this test.

As written above, even though it was not possible to obtain 512 Kb samples of the RNG when
the jitter-based noise generator was used, samples of this size for the other modes were taken.
In this situation, it is also possible to compare results of the tests when samples of different sizes
are used. Table 4 show the results obtained for the 512Kb samples. The colors used on table 4
have the same meaning as the color used on table 3.

16

RNG Filtering Entropy
Optimum

compression
Chi Square

(524288 samples)
Arithmetic

mean
Monte Carlo

Pi
Serial

correlation

Single PN junction None 7.987673 0% 4868.18 (0.01%) 128.0038
3.145489294
(0.12%)

0.000724

Single PN junction XOR 7.987554 0% 4957.42 (0.01%) 128.1143
3.123058789
(0.59%)

-0.001192

Single PN junction
Von

Neumann
7.988300 0% 4410.29 (0.01%) 128.8105

3.119213559
(0.71%)

0.000148

Dual PN junction None 7.988324 0% 4392.78 (0.01%) 128.2537
3.137615729
(0.13%)

0.000895

Dual PN junction XOR 7.988355 0% 4370.00 (0.01%) 128.2837
3.131390119
(0.32%)

0.000916

Dual PN junction
Von

Neumann
7.988333 0% 4386.37 (0.01%) 128.3335

3.129467504
(0.39%)

-0.001960

/dev/urandom n.a. 7.999602 0% 288.92 (10.00%) 127.3549
3.140408098
(0.04%)

-0.000704

Table 4: Ent tests of 512Kb samples of all operation modes and filtering, excluding jitter, and
/dev/urandom

When using the bigger samples, all settings produced very similar results in most of the tests.
Exceptions were the Monte Carlo Pi and Serial Correlation tests. The results of the Monte Carlo
Pi test shows that either when using one or two PN junctions, the absence of filtering produces
better results. This result is consistent for the dual PN junction without filtering setting, anal-
ysed previously, but not for the single PN junction mode, which produces a very different results
when the smaller sample was used.

Subjecting the 2504 byte samples to the FIPS 140-2 test, performed by rngtest, all samples
were successful. As written above, in the case of this sample size, only one test is performed per
sample, due to the 2500 byte block size. Table 5 shows the result of the same test for the 512Kb
samples.

RNG Filtering
Number of
Successes

Number of
Failures

Percentage
of Success

Single PN junction None 199 10 95.22%

Single PN junction XOR 206 3 98.56%

Single PN junction Von Neumann 209 0 100.00%

Dual PN junction None 209 0 100.00%

Dual PN junction XOR 209 0 100.00%

Dual PN junction Von Neumann 209 0 100.00%

/dev/urandom n.a. 209 0 100.00%

Table 5: FIPS 140-2 tests on 512Kb samples of operation modes and filtering, excluding jitter,
and /dev/urandom

The tests performed show that, besides the single PN junction mode when using no filtering
or xor filtering, the RNG is capable of producing a byte stream that for the sample size analyzed,
100% of blocks pass the test. It is, of course, possible that for larger sample sizes, the result
might not be 100%, but from these tests, it is possible to predict a good quality byte stream.
Rng-tools, which receives the byte stream from the RNG, performs the FIPS 140-2 test on the
data received before feeding the entropy pool of the Linux kernel. This means that not all data
received from the RNG when it is operating on the single PN junction mode without filtering,
or with xor filtering, would be used. The byte blocks that fail the test are discarded.

By combining the results of the 512Kb samples and throughput, it is possible to obtain a
better overview of the results. Table 6 shows this combination. The columns ”Ent Green”, ”Ent
Yellow”, and ”Ent Red”, are related to the color code used in table 4, describing the best, average
and the weakest score(s), respectively.

17

RNG Filtering Ent Green Ent Yellow Ent Red FIPS 140-2
Throughput
(byte/sec)

Single PN junction None 1 4 1 95.22% 586.59

Single PN junction XOR 1 3 2 98.56% 587.12

Single PN junction Von Neumann 2 1 3 100% 208.24

Dual PN junction None 1 4 1 100% 383.39

Dual PN junction XOR 1 4 1 100% 375.59

Dual PN junction Von Neumann 1 4 1 100% 115.46

/dev/urandom n.a. 4 1 9 100% 2730666.67

Table 6: Results of the 512Kb samples combined with the throughput

The single PN junction settings, either with no filtering or with xor filtering, provide the
best throughput, even having in mind that not all data will be used to feed the entropy pool, as
those settings achieved a sub-100% mark on the FIPS 140-2 tests. Right next on the throughput
capacity, the dual PN junction mode with no filtering or with XOR filtering achieved 100% on
the FIPS 140-2 test and still are capable of a relatively high throughput. Also, both performed
similarly on the Ent tests.
When the Von Neumann filtering is used, both single and dual PN junction performed well on the
FIPS 140-2 test, obtaining a 100% success rate. These, however are capable of less throughput
when comparing with the other filtering options. The results for the Ent tests were mixed, where
the dual PN junction mode produced average results, when comparing with the other settings,
and the single PN junction mode produced good results in two tests, but weak results in three.

5.2 Multipoint VPN

Running the proof-of-concept software has shown it is possible to deploy a DMVPN spoke with
minimum effort. The time taken for deployment is heavily influenced by the hardware specs
of the machine and by the speed of the Internet connection. Even a non technical user could
configure a DMVPN spoke, just by inserting the network configuration and secret as told by an
administrator. In case a user receives a USB stick with Tails and the DMVPN spoke already
configured, then all that is needed is to run the start script and wait for the procedure to finish,
as user interaction is not required.

As it can be expected, the performance tests show a speed degradation when the multipoint
VPN is in use. Table 7 shows the bandwidth achieved when using the multipoint VPN to
communicate between two spokes over a common ADSL home connection and over a 1Gb link.
For these tests, iperf14 version 2 with the default settings was used.

Connection type Multipoint VPN Direct

Home connection 682 Kbit/s 743 Kbit/s

1Gb link 254 Mbit/s 949 Mbit/s

Table 7: Result of the bandwidth tests using iperf version 2.

The result of the bandwidth measurements show a high performance degradation when the
tunnel is used to communicate between two hosts over the 1Gb link. However, over the domestic
connection, the results were very similar, showing that there are other factors contributing to
the difference, besides the overhead of the VPN.

14https://iperf.fr/

18

6 Conclusion

The outcome of this research shows that the scenario proposed is feasible and capable of achiev-
ing good results.
To start, it is possible to conclude about the performance and throughput of the RNG in the
different settings. The results of the throughput of the RNG, when the samples were collected,
show that the operation modes where the jitter-based noise generator is used, the throughput is
very low, making the contribution of the RNG to the kernel entropy pool significantly smaller
when comparing to the operation modes where this noise generator is disabled. For this reason,
only operation modes without the jitter-based noise generator will be considered.
Rng-tools, which receives random bytes from the RNG, performs the FIPS 140-2 test before
feeding the kernel entropy pool. Because of this, a RNG setting that produces high throughput,
but does not have a probability of success on the FIPS 140-2 test close to 100%, might not con-
tribute as much to the kernel entropy pool as a setting that has a smaller throughput, but has
a very high probability of success. This was not, however, the case for the settings where 100%
of success was not achieved, since the throughput was high enough to make up for that. On the
other hand, because having blocks being discarded will have a negative consequence when the
system is in need of entropy, the settings with 100% of success rate are preferred. The setting
for which 100% of success was obtained and has the highest throughput, is dual PN junction
without filtering, being closely followed by dual PN junction with xor filtering.
When looking at the results of the remaining tests, comparing the dual PN junction mode with
xor filtering and without filtering, the setting where filtering is not used, provided better results
on the entropy, Chi square, arithmetic mean and Monte Carlo tests, when looking at the results
of the 2504 byte samples. If comparing the results of the 512Kb samples, there is an inconsis-
tency on the entropy test, where the setting with xor filtering performed better. Still, the setting
without filtering performed better in the majority of the tests, making the dual PN junction
without filtering overall, the best setting found for the RNG implemented. Different users might
however, value more certain tests than others, and some users might make a different choice on
the operation setting for the RNG.

The bootstrap software developed to deploy the multipoint software on Tails Linux has proven
to allow, very likely even non-technical users, to deploy a DMVPN spoke easily. A company can
either distribute Tails Linux with the software pre-configured (run spoke setup beforehand, have
the certificate signed and include the CA certificate), or it can simply tell a user where to get the
software and provide the network setting and authentication string, to be inserted by the user
when running the spoke setup script. In this situation, the user would then have to provide the
certificate generated to a system administrator to have it signed by the CA, as well as obtain
the CA certificate, required for validation of other certificates signed by the same CA.
While there was a high bandwidth loss when spokes were connected via a 1Gb link, the same was
not observed when a regular domestic ADSL connection was used. Taking into account that the
end-users would be dispersed around the world, the connection type mostly used would likely be
similar to the second type, a standard ADSL connection. In this case, the overhead of operating
on such VPN will not be significant. Users can then have a more secure connection between
them, without compromising the usability.

Considering the RNG and multipoint VPN as a whole, it can be concluded that both integrate
well with each other, and while the DMVPN is the basis for better data confidentiality, the
plug-and-play RNG provides a valuable contribution to the scenario by improving the quality of
the encryption.

19

7 Future Work

The work done in in this research is a step towards data confidentiality on the Internet. There
is, however, work that can be done to improve the proposed scenario and create alternative sce-
narios with the same purpose. Focusing on the scenario proposed, not only more testing could
be done, but some improvements could be made. A company willing to use the RNG of this
project, would have to manufacture it or have it manufactured, as using the RNG mounted on
a breadboard is not practical. Having this in mind, a pcb design would be required. Also, the
code of the RNG could be modified to exclude the logging serial interface and the jitter-based
noise generator, as its performance is very low. The integration of the RNG with rng-tools can
also be optimized. In this research, the default options of rng-tools were used, however, there
seems to be room for improvement that could lead to a better sourced kernel entropy pool.

Going beyond what was already described, implementing the RNG with a faster micro-
controller could lead to significant throughput enhancements, which is one of the weak points of
the current RNG.
On the multipoint VPN, the configuration, primarily related IPsec might have some room for
improvement.
The deployment software, at the moment, assumes that all operations run as expected. Error
handling code could be a first addition to the bootstrap software. For large companies intending
to use the prototype developed, a way to easily generate Tails USB pen drives with the spoke
pre-configured, including certificates, could be developed.

20

8 Acknowledgement

This research project was done at KPMG, in Amstelveen, The Netherlands. I would like to
sincerely thank my supervisors Ruud Verbij, Jarno Roos, and Martijn Sprengers for their great
support during my research project and for the opportunity to do this project with them at
KPMG.

21

References

[1] Susan Landau, ”Making Sense from Snowden: What’s Significant in the NSA Surveillance
Revelations,” IEEE Security & Privacy, vol. 11, no. 4, pp. 54-63, July-Aug., 2013 http:

//www.computer.org/csdl/mags/sp/2013/04/msp2013040054-abs.html

[2] Checkoway, Stephen, et al. ”On the practical exploitability of Dual EC in TLS implemen-
tations.” USENIX Security. Vol. 1. 2014. http://web.elastic.org/~fche/mirrors/www.
cryptome.org/2014/03/DualECTLS.pdf

[3] True Random Number Generator http://en.wikipedia.org/wiki/Hardware_random_

number_generator

[4] PN junction http://en.wikipedia.org/wiki/Pn_junction

[5] Paul Kohlbrenner and Kris Gaj. 2004. An embedded true random number generator
for FPGAs. In Proceedings of the 2004 ACM/SIGDA 12th international symposium
on Field programmable gate arrays (FPGA ’04). ACM, New York, NY, USA, 71-78.
DOI=10.1145/968280.968292 http://doi.acm.org/10.1145/968280.968292

[6] Make your own True Random Number Generator 2 http://robseward.com/misc/RNG2/

[7] Hardware Random Bit Generator https://web.jfet.org/hw-rng.html

[8] Hardware Random Number Generator http://www.cryogenius.com/hardware/rng/

[9] Ring Oscillator http://en.wikipedia.org/wiki/Ring_oscillator

[10] Sunar, B.; Martin, W.J.; Stinson, D.R., ”A Provably Secure True Random Number Gen-
erator with Built-In Tolerance to Active Attacks,” Computers, IEEE Transactions on ,
vol.56, no.1, pp.109,119, Jan. 2007 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=

&arnumber=4016501&isnumber=4016489

[11] Cisco IOS DMVPN Overview http://www.cisco.com/c/dam/en/us/products/

collateral/security/dynamic-multipoint-vpn-dmvpn/DMVPN_Overview.pdf

[12] R. Kalimuthu, Y. Kalley, M.L. Sullenberger, and J. Vilhuber. Method and apparatus for-
dynamically securing voice and other delay-sensitive network traffic, April 29 2008. URL-
https://www.google.com/patents/US7366894. US Patent 7,366,894

[13] Huaqi Chen, ”Design and implementation of secure enterprise network based on DMVPN,”
Business Management and Electronic Information (BMEI), 2011 International Conference
on , vol.1, no., pp.506,511, 13-15 May 2011 doi: 10.1109/ICBMEI.2011.5916984 http://

ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5916984&isnumber=5916840

[14] Luca Deri and Richard Andrews. N2n: A layer two peer-to-peer vpn. Resilient Net-
works and Services, volume 5127 of Lecture Notes in Computer Science, pages 53-64.
Springer Berlin Heidelberg, 2008. ISBN 978-3-540-70586-4. http://dx.doi.org/10.1007/
978-3-540-70587-1_5

[15] Avalanche noise http://en.wikipedia.org/wiki/Avalanche_diode

[16] Entropy Library https://sites.google.com/site/astudyofentropy/

project-definition/timer-jitter-entropy-sources/entropy-library

[17] Biebighauser, Dan. ”Testing Random Number Generators.” University of Minnesota (2000).
http://math.umn.edu/~garrett/students/reu/pRNGs.pdf

[18] M. Hnon, ”The Monte Carlo method”, Astrophysics and Space Science, November 1971,
Volume 14, Issue 1, pp 151-167 http://dx.doi.org/10.1007/BF00649201

22

http://www.computer.org/csdl/mags/sp/2013/04/msp2013040054-abs.html
http://www.computer.org/csdl/mags/sp/2013/04/msp2013040054-abs.html
http://web.elastic.org/~fche/mirrors/www.cryptome.org/2014/03/DualECTLS.pdf
http://web.elastic.org/~fche/mirrors/www.cryptome.org/2014/03/DualECTLS.pdf
http://en.wikipedia.org/wiki/Hardware_random_number_generator
http://en.wikipedia.org/wiki/Hardware_random_number_generator
http://en.wikipedia.org/wiki/Pn_junction
http://doi.acm.org/10.1145/968280.968292
http://robseward.com/misc/RNG2/
https://web.jfet.org/hw-rng.html
http://www.cryogenius.com/hardware/rng/
http://en.wikipedia.org/wiki/Ring_oscillator
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4016501&isnumber=4016489
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4016501&isnumber=4016489
http://www.cisco.com/c/dam/en/us/products/collateral/security/dynamic-multipoint-vpn-dmvpn/DMVPN_Overview.pdf
http://www.cisco.com/c/dam/en/us/products/collateral/security/dynamic-multipoint-vpn-dmvpn/DMVPN_Overview.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5916984&isnumber=5916840
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5916984&isnumber=5916840
http://dx.doi.org/10.1007/978-3-540-70587-1_5
http://dx.doi.org/10.1007/978-3-540-70587-1_5
http://en.wikipedia.org/wiki/Avalanche_diode
https://sites.google.com/site/astudyofentropy/project-definition/timer-jitter-entropy-sources/entropy-library
https://sites.google.com/site/astudyofentropy/project-definition/timer-jitter-entropy-sources/entropy-library
http://math.umn.edu/~garrett/students/reu/pRNGs.pdf
http://dx.doi.org/10.1007/BF00649201

9 Appendix

9.1 RNG code

arduino-rng.ino

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
/∗ Rob Seward 2008−2009 ∗/
/∗ v1 .0 ∗/
/∗ 4/20/2009 ∗/
/∗ ∗/
/∗ Extended by Danie l Romao ∗/
/∗ 6/12/2015 ∗/
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

#inc lude <So f twa r eSe r i a l . h>
#inc lude <Entropy . h>

So f twa r eSe r i a l r n gS e r i a l (10 , 11) ;

#de f i n e BINS SIZE 256
#de f i n e CALIBRATION SIZE 50000

#de f i n e NO BIAS REMOVAL 0
#de f i n e EXCLUSIVE OR 1
#de f i n e VONNEUMANN 2

#de f i n e ASCII BYTE 0
#de f i n e BINARY 1
#de f i n e ASCII BOOL 2
#de f i n e BYTE 3

#de f i n e INTERNAL ONLY 0
#de f i n e SINGLE 1
#de f i n e DUAL 2

/∗∗∗ Conf igure the RNG ∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
in t rng mode = DUAL;
in t r n g i n t e r n a l = f a l s e ;
i n t b ias remova l = EXCLUSIVE OR;
in t output format = BYTE;
in t baud rate = 19200;
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

unsigned in t b ins [2] [BINS SIZE] ;
i n t adc p ins [] = {4 , 5} ;
i n t l e d p in = 13 ;
boolean i n i t i a l i z i n g = true ;
unsigned in t c a l i b r a t i o n c oun t e r = 0 ;
byte thre sho ld [2] ;

void setup (){
pinMode (l ed p in , OUTPUT) ;
S e r i a l . begin (baud rate) ;

f o r (i n t i =0; i < rng mode ; i++){
c l e a r b i n s (i) ;

}

i f (r n g i n t e r n a l){
Entropy . i n i t i a l i z e () ;

}

r n gS e r i a l . begin (baud rate) ;
l o g s t a r t i n g () ;

}

void loop (){

byte adc byte [2] ;
i n t adc va lue ;
i n t i ;

f o r (i =0; i < rng mode ; i++){
adc va lue = analogRead (adc p ins [i]) ;
adc byte [i] = adc va lue >> 2 ;

}

i f (c a l i b r a t i o n c oun t e r >= CALIBRATION SIZE){

f o r (i =0; i < rng mode ; i++){
thre sho ld [i] = f indThresho ld (i) ;
c l e a r b i n s (i) ;

}

c a l i b r a t i o n c oun t e r = 0 ;
i n i t i a l i z i n g = f a l s e ;

}

f o r (i =0; i < rng mode ; i++){
c a l i b r a t e (adc byte [i] , i) ;

}

23

i f (rng mode != INTERNAL ONLY){
c a l i b r a t i o n c oun t e r++;

}

i f (i n i t i a l i z i n g == f a l s e | | rng mode == INTERNAL ONLY){
proces s Input (adc byte , th re sho ld) ;

} e l s e {
pr in tS ta tus () ;

}
}

void proces s Input (byte adc byte [] , byte thre sho ld []) {
boolean input boo l [2] ;
boolean i n pu t b o o l a f t e r ;
i n t i ;

f o r (i =0; i < rng mode ; i++){
i nput boo l [i] = (adc byte [i] < thre sho ld [i]) ? 1 : 0 ;

}

i f (rng mode == DUAL){
i n pu t b o o l a f t e r = input boo l [0] ˆ input boo l [1] ;

} e l s e i f (rng mode == SINGLE) {
i n pu t b o o l a f t e r = input boo l [0] ;

}

i f (r n g i n t e r n a l){
u in t 8 t b o o l i n t e r n a l = Entropy . random (2) ;
i f (rng mode == INTERNAL ONLY){

i n pu t b o o l a f t e r = boo l i n t e r n a l ;
} e l s e {

i n pu t b o o l a f t e r ˆ= boo l i n t e r n a l ;
}

}

switch (b ias remova l){
case VONNEUMANN:

vonNeumann(i n pu t b o o l a f t e r) ;
break ;

case EXCLUSIVE OR:
exc lus iveOr (i n pu t b o o l a f t e r) ;
break ;

case NO BIAS REMOVAL:
bui ldByte (i n pu t b o o l a f t e r) ;
break ;

}
}

void bui ldByte (boolean input){
s t a t i c i n t byte counter = 0 ;
s t a t i c byte out = 0 ;

i f (input == 1){
out = (out << 1) | 0x01 ;

}
e l s e {

out = (out << 1) ;
}
byte counter++;
byte counter %= 8 ;
i f (byte counter == 0){

i f (output format == ASCII BYTE) rngSe r i a l . p r i n t l n (out , DEC) ;
i f (output format == BINARY) rngSe r i a l . p r in t (out , BIN) ;
i f (output format == BYTE) rngSe r i a l . wr i t e (out) ;
out = 0 ;

}
i f (output format == ASCII BOOL) rngSe r i a l . p r in t (input , DEC) ;

}

aux functions.ino
// Bl inks an LED a f t e r each 10 th o f the c a l i b r a t i o n completes
void pr in tS ta tus (){

unsigned in t increment = CALIBRATION SIZE / 10 ;
s t a t i c unsigned in t num increments = 0 ; // prog re s s un i t s so f a r
unsigned in t thre sho ld ;

thre sho ld = (num increments + 1) ∗ increment ;
i f (c a l i b r a t i o n c oun t e r > thre sho ld){

num increments++;
S e r i a l . p r in t (F(”∗”)) ;
bl inkLed () ;

}
}

void bl inkLed (){
d i g i t a lWr i t e (l ed p in , HIGH) ;
delay (3 0) ;
d i g i t a lWr i t e (l ed p in , LOW) ;

}

void c l e a r b i n s (i n t ng){
i n t i ;
f o r (i =0; i < BINS SIZE ; i++){

bins [ng] [i]=0;
}

24

}

calibration.ino
void c a l i b r a t e (byte adc byte , i n t ng){

bins [ng] [adc byte]++;
}

unsigned in t f indThresho ld (i n t ng){
unsigned long ha l f ;
unsigned long t o t a l = 0 ;
i n t i ;

f o r (i =0; i < BINS SIZE ; i++){
t o t a l += bins [ng] [i] ;

}

ha l f = t o t a l >> 1 ;
t o t a l = 0 ;
f o r (i =0; i < BINS SIZE ; i++){

t o t a l += bins [ng] [i] ;
i f (t o t a l > ha l f){

break ;
}

}

p r i n t t h r e s ho l d (ng , i) ;

re turn i ;
}

filtering.ino

void exc lus iveOr (byte input){
s t a t i c boolean f l i p f l o p = 0 ;
f l i p f l o p = ! f l i p f l o p ;
bui ldByte (f l i p f l o p ˆ input) ;

}

void vonNeumann(byte input){
s t a t i c boolean prev ious = 0 ;
s t a t i c boolean f l i p f l o p = 0 ;

f l i p f l o p = ! f l i p f l o p ;

i f (f l i p f l o p){
i f (input == 1 && prev ious == 0){

bui ldByte (0) ;
}
e l s e i f (input == 0 && prev ious == 1){

bui ldByte (1) ;
}

}
prev ious = input ;

}

logging.ino

void l o g s t a r t i n g (){
S e r i a l . p r i n t l n (F(”\nTRNG Star t ing . . . ”)) ;

S e r i a l . p r in t (rng mode) ;
S e r i a l . p r i n t l n (F(” ex t e rna l no i s e generator (s) w i l l be used ”)) ;

S e r i a l . p r in t (F(”The i n t e r n a l no i s e generator i s ”)) ;

i f (r n g i n t e r n a l) {
S e r i a l . p r i n t l n (F(” enabled ”)) ;

} e l s e {
S e r i a l . p r i n t l n (F(” d i sab l ed ”)) ;

}

S e r i a l . p r in t (F(” F i l t e r i n g app l i ed : ”)) ;

switch (b ias remova l){
case VONNEUMANN:

S e r i a l . p r i n t l n (F(” von Neumann ”)) ;
break ;

case EXCLUSIVE OR:
S e r i a l . p r i n t l n (F(” xor ”)) ;
break ;

case NO BIAS REMOVAL:
S e r i a l . p r i n t l n (F(” none ”)) ;
break ;

}

S e r i a l . p r in t (F(”The output format i s ”)) ;

switch (output format){
case ASCII BYTE :

S e r i a l . p r i n t l n (F(”ASCII byte ”)) ;
break ;

case BINARY:
S e r i a l . p r i n t l n (F(” binary ”)) ;
break ;

25

case ASCII BOOL :
S e r i a l . p r i n t l n (F(”ASCII boolean ”)) ;
break ;

case BYTE:
S e r i a l . p r i n t l n (F(” byte ”)) ;
break ;

}
}

void p r i n t t h r e s ho l d (i n t ng , i n t thre sho ld){
S e r i a l . p r in t (F(”\nThe thre sho ld ”)) ;
S e r i a l . p r in t (ng+1);
S e r i a l . p r in t (F(” i s : ”)) ;
S e r i a l . p r i n t l n (thre sho ld) ;

}

9.2 DMVPN spoke bootstrap code

Spoke setup

#!/bin /bash
I n t i a l setup s c r i p t
Tested with Ta i l s 1 .4

Conf igure s e r i a l i n t e r f a c e
s t ty −F /dev/ttyUSB0 19200 c l o c a l cs8 −cstopb −parenb

#I n s t a l l rng−t o o l s and con f i gu r e RNG
apt−get update
apt−get i n s t a l l rng−t o o l s −y

cp f i l e s / con f i gu r a t i on /rng−t o o l s / etc / de f au l t /rng−t o o l s
s e r v i c e rng−t o o l s r e s t a r t

Download bui ld t o o l s and dependec ies
apt−get i n s t a l l bui ld−e s s e n t i a l l i b c−ares−dev pkg−con f i g −y

Download and compile OpenNHRP
wget http :// downloads . s ou r c e f o r g e . net / p ro j e c t /opennhrp/opennhrp/opennhrp −0 .14 .1 . ta r . bz2
tar xf opennhrp −0 .14 .1 . ta r . bz2
cd opennhrp −0.14.1
make
cd . .
rm opennhrp −0 .14 .1 . ta r . bz2

Conf igure Hub
echo −e ”\ nIns e r t IP address o f the hub tunnel i n t e r f a c e (ex . 1 0 . 2 5 5 . 2 5 5 . 1) : \c”
read TUNNEL HUB IP

sed −i ” s /TUNNEL HUB IP/$TUNNEL HUB IP/g” f i l e s / con f i gu r a t i on /opennhrp . conf

echo −e ”\ nIns e r t IP address o f the s e rv e r / route r that i s the DMVPN hub : \c”
read HUB IP

sed −i ” s /HUB IP/$HUB IP/g” f i l e s / con f i gu r a t i on /opennhrp . conf
sed −i ” s /HUB IP/$HUB IP/g” f i l e s / con f i gu r a t i on / ferm . conf

Conf igure Spoke
echo −e ”\ nIns e r t IP address f o r t h i s spoke tunnel i n t e r f a c e (ex . 1 0 . 2 5 5 . 2 5 5 . 1 0) : \c”
read TUNNEL SPOKE IP

sed −i ” s /TUNNEL SPOKE IP/$TUNNEL SPOKE IP/g” spoke−s t a r t . sh

Conf igure netmask
echo −e ”\ nIns e r t netmask o f the tunnel network (ex . 24) : \c”
read TUNNEL NETMASK

sed −i ” s /TUNNEL NETMASK/$TUNNEL NETMASK/g” f i l e s / con f i gu r a t i on /opennhrp . conf
sed −i ” s /TUNNEL NETMASK/$TUNNEL NETMASK/g” spoke−s t a r t . sh

#Conf igure s e c r e t
echo −e ”\ nIns e r t DMVPN authent i ca t i on s t r i n g : \c”
read SECRET

sed −i ” s /SECRET/$SECRET/g” f i l e s / con f i gu r a t i on /opennhrp . conf

Create keys
echo −e ”\nA key and c e r t i f i c a t e w i l l be created now f o r t h i s spoke\n”

opens s l genrsa −des3 −out key encrypted . key 4096
opens s l r sa −in key encrypted . key −out key . pem
opens s l req −new −key key . pem −out c e r t . c s r

mkdir −p f i l e s / c e r t s
mv key . pem f i l e s / c e r t s /key . pem
mv ce r t . c s r f i l e s / c e r t s / c e r t . c s r
rm key encrypted . key

echo −e ”\nEnd of c on f i gu r a t i on !\n”
echo ”The f i l e . / f i l e s / c e r t s / c e r t . c s r w i l l need to be s igned us ing the Root CA key and c e r t i f i c a t e . ”
echo ”The f i l e name of the c e r t i f i c a t e should be : c e r t . pem”
echo −e ”The c e r t i f i c a t e o f the CA w i l l a l s o have to be inc luded in the c e r t s d i r e c t o r y . The f i l e should be named ca . pem\n”

26

Spoke start

#!/bin /bash
Deployment s c r i p t
Tested with Ta i l s 1 .4

export DEBIAN FRONTEND=non in t e r a c t i v e

Conf igure s e r i a l i n t e r f a c e
s t ty −F /dev/ttyUSB0 19200 c l o c a l cs8 −cstopb −parenb

#I n s t a l l rng−t o o l s and con f i gu r e RNG
apt−get update
apt−get i n s t a l l rng−t o o l s −y

cp f i l e s / con f i gu r a t i on /rng−t o o l s / etc / de f au l t /rng−t o o l s
s e r v i c e rng−t o o l s r e s t a r t

I n s t a l l dependencies and bu i ld t o o l s
apt−get i n s t a l l racoon ipsec−t o o l s bui ld−e s s e n t i a l l i b c−ares−dev pkg−con f i g −y

I n s t a l l OpenNHRP
cd opennhrp −0.14.1
make i n s t a l l
cd . .

Copy con f i gu r a t i on f i l e s
cp f i l e s / con f i gu r a t i on /opennhrp . conf / etc /opennhrp/opennhrp . conf
cp f i l e s / con f i gu r a t i on / racoon . conf / etc / racoon/ racoon . conf
cp f i l e s / con f i gu r a t i on / ipsec−t o o l s . conf / etc / ipsec−t o o l s . conf
cp f i l e s / con f i gu r a t i on / ferm . conf / etc / ferm/ ferm . conf

Copy keys ’ d i r e c t o r y
cp f i l e s / c e r t s /∗ / etc / racoon/ c e r t s /

Load GRE kerne l module
modprobe i p g r e

Create GRE i n t e r f a c e
ip tunnel add gre1 mode gre key 1234 t t l 64
ip addr add TUNNEL SPOKE IP/TUNNEL NETMASK dev gre1
ip l i n k s e t gre1 up

Restart s e r v i c e s
s e r v i c e rng−t o o l s r e s t a r t
s e r v i c e racoon r e s t a r t
s e r v i c e setkey r e s t a r t
s e r v i c e ferm r e s t a r t

Start OpenNHRP
/usr / sb in /opennhrp −d

echo −e ”\nCompleted !\n”

ferm.conf
−∗− mode : conf [space] −∗−
#
Conf igurat ion f i l e f o r ferm (1) .
#

I2P ru l e s that grant acce s s to the ” i2psvc ” user (those with $use i 2p) w i l l
only be enabled i f the s t r i n g ” i2p ” i s entered at the boot prompt .
Deny or r e j e c t r u l e s a f f e c t i n g ” i2psvc ” w i l l always be s e t .
de f $use i 2p = ‘ t e s t −d / usr / share / i2p && echo 1 | | echo 0 ‘ ;

IPv4
domain ip {

tab l e f i l t e r {
chain INPUT {

po l i c y DROP;

Estab l i shed incoming connect ions are accepted .
mod s t a t e s t a t e (RELATED ESTABLISHED) ACCEPT;

Tra f f i c on the loopback i n t e r f a c e i s accepted .
i n t e r f a c e l o ACCEPT;

Allow GRE t r a f f i c
proto gre ACCEPT;

Allow a l l t r a f f i c on the tunnel i n t e r f a c e
i n t e r f a c e gre1 ACCEPT;

}

chain OUTPUT {
po l i c y DROP;

Estab l i shed outgoing connect ions are accepted .
mod s t a t e s t a t e (RELATED ESTABLISHED) ACCEPT;

White− l i s t a c c e s s to l o c a l r e s ou r c e s
ou t e r f a c e l o {

White− l i s t a c c e s s to Tor ’ s SOCKSPort ’ s
daddr 1 2 7 . 0 . 0 . 1 proto tcp syn dport 9050 {

mod owner uid−owner root ACCEPT;
mod owner uid−owner proxy ACCEPT;

27

mod owner uid−owner nobody ACCEPT;
}
daddr 1 2 7 . 0 . 0 . 1 proto tcp syn mod mult iport de s t ina t i on−ports (9050 9061 9062 9150) {

mod owner uid−owner amnesia ACCEPT;
}
daddr 1 2 7 . 0 . 0 . 1 proto tcp syn dport 9062 {

mod owner uid−owner htp ACCEPT;
mod owner uid−owner t a i l s −iuk−get−target− f i l e ACCEPT;
mod owner uid−owner t a i l s −upgrade−f rontend ACCEPT;

}

White− l i s t a c c e s s to Tor ’ s ControlPort
daddr 1 2 7 . 0 . 0 . 1 proto tcp dport 9051 {

mod owner uid−owner tor−launcher ACCEPT;
Needed by a workaround in tordate (NM’ s 20−time . sh hook)
fo r temporar i ly changing Tor ’ s l ogg ing s e v e r i t y .
mod owner uid−owner root ACCEPT;

}

White− l i s t a c c e s s to the Tor con t ro l port f i l t e r
daddr 1 2 7 . 0 . 0 . 1 proto tcp dport 9052 {

mod owner uid−owner amnesia ACCEPT;
}

White− l i s t a c c e s s to Tor ’ s TransPort
daddr 1 2 7 . 0 . 0 . 1 proto tcp dport 9040 {

mod owner uid−owner amnesia ACCEPT;
}

White− l i s t a c c e s s to system DNS and Tor ’ s DNSPort
daddr 1 2 7 . 0 . 0 . 1 proto udp dport (53 5353) {

mod owner uid−owner amnesia ACCEPT;
}

White l i s t a c c e s s to Tor ’ s DNSPort so I2P can r e s o l v e hostnames when bootst rapping
daddr 1 2 7 . 0 . 0 . 1 proto udp dport 5353 {

@if $use i 2p mod owner uid−owner i2psvc ACCEPT;
}

White− l i s t a c c e s s to ttdnsd
daddr 1 2 7 . 0 . 0 . 2 proto udp dport 53 {

mod owner uid−owner amnesia ACCEPT;
}
daddr 1 2 7 . 0 . 0 . 2 proto tcp syn dport 53 {

mod owner uid−owner amnesia ACCEPT;
}

White− l i s t a c c e s s to I2P s e r v i c e s f o r the amnesia user (IRC , SAM, POP3, SMTP, and Monotone)
For more information , see https :// t a i l s /boum . org / cont r ibute / des ign /I2P and https :// get i 2p . net / port s
daddr 1 2 7 . 0 . 0 . 1 proto tcp syn mod mult iport de s t ina t i on−ports (6668 7656 7659 7660 8998) {

@if $use i 2p mod owner uid−owner amnesia ACCEPT;
}

White l i s t a c c e s s to I2P s e r v i c e s f o r the i2psvc user ,
otherwise mail and e ep s i t e host ing won ’ t work . The mail port s (7659 and 7660) are
acces sed by the webmail app
daddr 1 2 7 . 0 . 0 . 1 proto tcp syn mod mult iport de s t ina t i on−ports (7658 7659 7660) {

@if $use i 2p mod owner uid−owner i2psvc ACCEPT;
}

White l i s t a c c e s s to the i2pbrowser user
daddr 1 2 7 . 0 . 0 . 1 proto tcp syn mod mult iport de s t ina t i on−ports (4444 7657 7658) {

@if $use i 2p mod owner uid−owner i2pbrowser ACCEPT;
}

White− l i s t a c c e s s to the java wrapper ’ s (used by I2P) con t ro l port s
(see : http :// wrapper . tanuk i so f tware . com/doc/ eng l i s h /prop−port . html)
I f , f o r example , port 31000 i s in use , i t ’ l l t ry the next one in sequence .
daddr 1 2 7 . 0 . 0 . 1 proto tcp sport (31000 31001 31002) dport (32000 32001 32002) {

@if $use i 2p mod owner uid−owner i2psvc ACCEPT;
}

White− l i s t a c c e s s to CUPS
daddr 1 2 7 . 0 . 0 . 1 proto tcp syn dport 631 {

mod owner uid−owner amnesia ACCEPT;
}

White− l i s t a c c e s s to Monkeysphere
daddr 1 2 7 . 0 . 0 . 1 proto tcp syn dport 6136 {

mod owner uid−owner amnesia ACCEPT;
}

}

c l e a rn e t i s a l lowed to connect to any TCP port v ia the
exte rna l i n t e r f a c e s (but l o i s blocked so i t cannot i n t e r f e r e
with Tor etc) in c lud ing DNS on the LAN. UDP DNS que r i e s are
a l s o al lowed .
ou t e r f a c e ! l o mod owner uid−owner c l e a rn e t {

proto tcp ACCEPT;
proto udp dport domain ACCEPT;

}

Local network connect ions should not go through Tor but DNS s h a l l be
r e j e c t e d . I2P i s e x p l i c i t l y blocked from communicating with the LAN.
(Note that we exc lude the VirtualAddrNetwork used f o r . onion : s here .)
daddr (1 0 . 0 . 0 . 0 / 8 172 . 16 . 0 . 0/12 192 . 168 . 0 . 0/16) @subchain ” lan ” {

proto tcp dport domain REJECT;

28

proto udp dport domain REJECT;
mod owner uid−owner i2psvc REJECT;
ACCEPT;

}

Tor i s a l lowed to do anything i t wants to .
mod owner uid−owner debian−tor ACCEPT;

i2p i s a l lowed to do anything i t wants to on the i n t e rn e t .
ou t e r f a c e ! l o mod owner uid−owner i2psvc {

@if $use i 2p proto (tcp udp) ACCEPT;
}

Allow IPSEC + GRE
proto udp dport (500 4500) daddr HUB IP ACCEPT;
proto esp daddr HUB IP ACCEPT;
proto gre ACCEPT;

Allow a l l t r a f f i c on the tunnel i n t e r f a c e
ou t e r f a c e gre1 ACCEPT;

Everything e l s e i s logged and dropped .
LOG log−p r e f i x ”Dropped outbound packet : ” log−l e v e l debug log−uid ;
REJECT re j e c t −with icmp−port−unreachable ;

}

chain FORWARD {
po l i c y DROP;

}
}

tab l e nat {
chain PREROUTING {

po l i c y ACCEPT;
}

chain POSTROUTING {
po l i c y ACCEPT;

}

chain OUTPUT {
po l i c y ACCEPT;

. onion mapped addres se s r e d i r e c t i o n to Tor .
daddr 127 .192 . 0 . 0/10 proto tcp REDIRECT to−ports 9040;

Redirect system DNS to Tor ’ s DNSport
daddr 1 2 7 . 0 . 0 . 1 proto udp dport 53 REDIRECT to−ports 5353;

}
}

}

IPv6 :
domain ip6 {

tab l e f i l t e r {
chain INPUT {

po l i c y DROP;
}

chain FORWARD {
po l i c y DROP;

}

chain OUTPUT {
po l i c y DROP;
Everything e l s e i s logged and dropped .
LOG log−p r e f i x ”Dropped outbound packet : ” log−l e v e l debug log−uid ;
REJECT re j e c t −with icmp6−port−unreachable ;

}
}

}

ipsec-tools.conf

#!/ usr / sb in / setkey −f

spd f lu sh ;
spdadd 0 . 0 . 0 . 0 / 0 0 . 0 . 0 . 0 / 0 gre −P out i p s e c esp / t ranspor t // r equ i r e ;
spdadd 0 . 0 . 0 . 0 / 0 0 . 0 . 0 . 0 / 0 gre −P in ip s e c esp / t ranspor t // r equ i r e ;

opennhrp.conf

i n t e r f a c e gre1
holding−time 3600
map TUNNEL HUB IP/TUNNEL NETMASK HUB IP r e g i s t e r
c i s co−authent i ca t i on SECRET
shortcut
r e d i r e c t
mul t i ca s t dynamic
non−caching

i n t e r f a c e l o
shortcut−de s t i na t i on

29

racoon.conf
path c e r t i f i c a t e ”/ etc / racoon/ c e r t s ” ;
remote anonymous {

exchange mode main ;
l i f e t im e time 2 hour ;
c e r t i f i c a t e t y p e x509 ”/ etc / racoon/ c e r t s / c e r t . pem” ”/ etc / racoon/ c e r t s /key . pem” ;
ca type x509 ”/ etc / racoon/ c e r t s /ca . pem” ;
my i d en t i f i e r asn1dn ;
n a t t r a v e r s a l on ;
s c r i p t ”/ etc /opennhrp/ racoon−ph1dead . sh” phase1 dead ;
dpd delay 120 ;
proposa l {

encrypt ion a lgor i thm aes 256 ;
hash algor i thm sha1 ;
authent icat ion method r s a s i g ;
dh group modp4096 ;

}
proposa l {

encrypt ion a lgor i thm aes 256 ;
hash algor i thm sha1 ;
authent icat ion method r s a s i g ;
dh group 2 ;

}
}

s a i n f o anonymous {
pf s group 2 ;
l i f e t im e time 2 hour ;
enc rypt ion a lgor i thm aes 256 ;
au then t i ca t i on a l go r i thm hmac sha1 ;
compress ion a lgor i thm de f l a t e ;

}

rng-tools

HRNGDEVICE=/dev/ttyUSB0

opennhrp.conf for the DMVPN Hub

i n t e r f a c e gre1
holding−time 3600
mul t i ca s t dynamic
shor tcut
r e d i r e c t
non−caching

c i s co−authent i ca t i on s e c r e t

30

	Introduction
	Problem statement
	Research methods
	Given the hardware random number generators on computer hardware not being secure, how feasible is it to use an external one?
	What kind of TRNGs designs exist and what are their advantages/disadvantages?
	How feasible is it to implement a TRNG design using easily available, low cost, resources?
	What implementations of open-source multipoint VPNs exist?
	How feasible is the deployment of one of this technologies on volatile operating systems?
	How feasible is the implementation of this multipoint VPN using the TRNG built for sub-question 3?

	Related work
	True random number generator
	Multipoint VPN

	Scope
	Multipoint VPN and Operating System
	True random number generator

	Approach
	True Random Number Generator
	PN Junction circuit
	Arduino code
	Tests

	Multipoint VPN
	Bootstrap software

	Results
	True Random Number Generator
	Multipoint VPN

	Conclusion
	Future Work
	Acknowledgement
	Appendix
	RNG code
	DMVPN spoke bootstrap code

