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Abstract

This project investigated the current state of forensic live data acquisition when dealing with
Linux operating systems. It identified current common tools and techniques, disseminated
from di↵erent sources. Flaws within the current process and useable tools that could form
the basis of anti-forensic techniques have been laid down. Some of the shortcomings were ex-
ploited by utilising a ring zero rootkit, o↵ering an e↵ective way of performing anti-forensics
against acquisition applications, like dd and tar. Two kinds of detection mechanisms are
functional, namely a command based detection and a linear variant. The command based
detection monitors certain system calls aimed at blacklisted locations in the file system. A
suggested solution against such a form of anti-forensics could be found in simply encrypting
the communication between user-space and kernel-space The linear based detection mech-
anism monitors the amount of consecutive reads and writes performed by an application.
When the threshold is exceeded, an alarm is raised and the corresponding data streams are
intercepted and changed. Hardening the digital forensic process against such a technique
can prove di�cult, but it could be achieved by moving the non-volatile data acquisition pro-
cess to the kernel. The main conclusion of this project is that the anti-forensic techniques
presented by the author should be deemed a serious risk to the digital forensic process and
that dedicated solutions must be engineered and adopted by law agencies to prevent losing
ground to technologically skilled suspects.
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1 Introduction

Perhaps slowly, but cybercrime seems on the rise. A survey published by Ponemon shows that
in 2014, a 10% increase in cybercrime over 2013 was experienced, hitting almost every industry
(Ponemon, 2014). The increase in computer related crime comes with a need for sophisticated
forensics aimed at those crimes. The need for those procedures became apparent during inves-
tigations regarding the alleged Silk Road owner operating under the pseudonym Dread Pirate
Roberts. Roberts, appearantly technologically aware, utilised full disk encryption, making the
work of the forensic investigators di�cult. Arresting him would only be useful if they could catch
him with his laptop turned on and logged in. When Roberts was apprehended, this appeared
to be the case. The investigators, in turn, quickly acquired evidence from the machine, which
eventually lead to the conviction of Ross William Ulbricht. However, can the data extracted
from Ulbrichts’ running machine be trusted?

Although not initially applicable, Shannon states that: “The enemy knows the system”(Shannon,
1949, pp. 662). This principle is originally aimed at cryptography, i.e. one should make sure the
system is secure even if its internals are uncovered. However, the same could apply to the tools
used by forensic investigators to acquire evidence from a running computer under investigation.
If Ulbricht would have been aware of the ongoing investigation and the tools used during the evi-
dence acquisition, could he have influenced the acquired data? Can a suspect who is aware of the
procedures create tools to actively deceive the forensic investigator by presenting di↵erent data
when an acquisition process is started? This project will set out to develop such a tool, called
the Anti-Forensic Toolkit (aftoolkit), to investigate if the presented scenario is realistic.

1.1 Research Question

The following research questions were formulated:

What tools can a forensic investigator use to perform a live-acquisition of a Linux computer?

What methods could a Linux system employ to defend against the identified live-acquisition tools?

How could live-acquisition tools be protected from the presented techniques?

1.2 Related Work

Jones (2007) already questioned the legitimacy of live-acquisition tools, stating that forensically
sound created images could be ’slurred’. This means that there is metadata inside the image that
points to files that have been changed during the acquisition (Jones, 2007, pp. 4). Jones suggests
a solution in the form of an acquisition tool that applies write command policies, e↵ectively
preventing any write from occurring during the acquisition process.

Rekhis et al (2012) suggest a method for forensic investigators that is hardened against the use
of anti-forensic toolkits (Rekhis & Boudriga, 2012). They propose changing the standard model
for forensic investigations, by including three extra steps concerning the finding, identifying and
cancelling of anti-forensic attacks. Garfinkel (2007) presents the, at that time, current techniques
used to perform anti-forensics and how to counter them. He discusses how anti-forensic toolkits
can, for example, hide themselves when they detect that the system is running from an imaged
disk (Garfinkel, 2007, pp. 82). Garfinkel claims that most anti-forensic techniques presented in
his work could be overcome with the help of improved monitoring systems (Garfinkel, 2007, pp.
82).

Significant work in this area has been performed by Bilby (2006). Bilby developed a Windows
rootkit, called DDefy, which has the ability to hide files from forensic acquisition tools. By
redirecting file accesses that have to be hidden towards other (clean) files, the acquisition tool
can not acquire the protected content (Bilby, 2006).
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Bunden (2009) held a talk at the Blackhat conference in Las Vegas, already warning for the risks
of rootkits to the anti-forensic process. He identified di↵erent attacks for di↵erent purposes, like
the destruction or fabrication of data. He concludes that state of the art anti-forensics can defeat
live disk analysis (Blunden, 2009) and that the detection of those techniques is di�cult.

Related to Bilby and Bunden is the work of Stuttgen and Cohen (2013), who investigated anti-
forensic resilient memory acquisitions (Stuttgen & Cohen, 2013). They identified the current
issues with memory forensics and created some simple anti-forensic methods by hooking the
system API used by the memory acquisition tool. Their technique works for di↵erent tools, on
di↵erent platforms (Linux, Mac OS X and Microsoft Windows). Stuttgen and Cohen provide
a solution which does not use the API methods and therefore talks directly to the hardware,
e↵ectively circumventing anti-forensic tools. Furthermore, they suggest encrypting the payload of
system calls used by the acquisition tools to further deceive possible anti-forensic rootkits.
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2 Theory

The following section will explain the relevant theory and background information regarding this
project. Time will be spend on the common notion of digital forensics and live data acquisition.
Additionally, the field of anti-forensics will be explained and what possibilities lie within it.

2.1 Digital Forensics

Rekhis et al (Rekhis & Boudriga, 2010) state the following regarding digital forensics: “[...]
aims to conduct a post-incident analysis on compromised systems and make inquiries about past
events.” Compromised systems could encompass personal computers, network switches, mobile
devices, or any other device holding data interesting to an investigation. This data is analysed
to reconstruct a chain of events, which in turn could be used in, for example, a court case. Most
commonly, it is used by incident-response teams or law enforcement to investigate, amongst
others, data breaches, child pornography cases, online drug tra�cking, large scale DDoS attacks
or, more generic, cybercrime. As an example, two businesses could hire a forensic investigator
to acquire evidence in regard to a copyright infringement claim, in which both companies are
holding files for which they claim they are the initial creator. An investigator would set out to
investigate the creation and access dates of the presented files and reconstruct a timeline o↵ering
a valid, forensically sound, conclusion. A di↵erent example would be the usage of digital forensics
to convict suspected distributors of child pornography by collecting evidence from their systems
hopefully indicating who created or spread the aforementioned illegal content.

Within digital forensics, many di↵erent types of data are deemed interesting and important
as evidence. Which type of data to collect depends on the type of investigation conducted.
Acquiring digital evidence from suspects is subject to the same procedure as a normal acquisition,
which means a search warrant is needed to perform certain acquisitions (as data stored on a
computer is usually considered private). When the correct warrants are in place, data could
be collected from network logs (portraying internet activity of the suspect), files located on
his or her system, data contained within the memory, archives contained on remote servers,
smart phones pertaining to the subject, and more. However, di↵erent, uncommon sources are
increasingly interesting for forensic investigators. For example, data could also be collected from
smart watches, televisions, public transport travel logs or even thermostates.

Just as with normal forensics, the process of digital forensics is heavily bound by general prac-
tice and standing procedures. Evidence collected and presented in court must be forensically
sound, which means it has to be acquired in a correct way, and prove of this must be available
when necessary. The general principles adhered by digital forensics are, for example, laid out
in the Advanced Data Acquisition Model (ADAM) (Adams, Hobbs, & G. Mann), n.d.). This
model describes the general thoughts and ideas a forensic investigator should follow to deliver
forensically sound evidence. The following is contained within ADAM, describing best practices
for forensic investigators:

1. The activities of the digital forensic practitioner should not alter the original data. If this
is not possible, the e↵ects must be minimal and documented.

2. Handling of the original data, and subsequent copies of it, must be documented. Failing to
do so will invalidate the chain of custody.

3. The forensic investigator should only undertake procedures within its own capabilities and
knowledge.

4. The forensic investigator must always take personal and equipment safety into consideration
while performing an investigation.

5. At all times, the legal rights of suspects a↵ected by the work performed by the forensic
investigator should be considered.

6. The investigator must be aware of all policies and organizational procedures pertaining to
the activities performed during their investigation.

7. A forensic investigator should communicate discretely and appropriately with the a↵ected
or included parties.
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As one can observe, the utmost care must be taken by a forensic investigator to guarantee
that evidence is not modified by the applied acquisition methods. Furthermore, it is impor-
tant that proof regarding the forensically soundness of the procedure can be delivered when
requested. These standards are perfectly valid for regular data acquisition, in which a device
can be switched o↵ to prevent it from changing any data. However, the same principles become
unreliable when performing an o✏ine analysis becomes di�cult due to, for example, full disk
encryption (FDE).

2.2 Live Data Acquisition

Live data acquisition is the process of acquiring data from a system which is online and preferably
logged in. Where normal acquisition procedures would simply remove the storage device and
perform an o✏ine analysis of the data, live acquisition is performed on the evidence as such.
Digital forensics and data acquisition is normally not performed on a live system when it could
just as well be performed on an o✏ine system. Performing a live analysis comes with the
serious risk of changing the evidence stored on the device under investigation. But, as there are
scenarios where normal acquisition is not possible (i.e. FDE), live acquisition of data is becoming
increasingly popular. If there are clear indicators that evidence has been encrypted (by looking
at running processes or the discovery of encryption software), turning of the device would render
it useless without the necessary decryption keys. However, as long as the system is logged in,
the underlying data is decrypted and can be retrieved.

There are several ways of performing a live acquisition of data stored on a suspect machine.
The acquisition can be performed with tools present on the system under investigation. This
comes with the risk that the binaries might have been changed to present faulty data to de-
ceive possible forensic investigations. Alternatively, the investigator could bring a USB drive,
containing verified binaries, which in turn are loaded onto the evidentiary system. By doing so,
alien content is being presented to the system, possibly destroying valuable evidence during the
process, which again illustrates the risk of performing live data acquisitions.

Live acquisition is not only performed on the storage devices holding the non-volatile data,
like the hard-drive. For example, another possibility is the retrieval of volatile information
stored in the RAM. As soon as the system under investigation is shutdown, the RAM starts
losing its content. This mean that, commonly, RAM is acquired while the system is logged in
and preferably before other data has been acquired (minimising the negative e↵ects of a live
acquisition on the evidence stored in the RAM).

Live data acquisition presents us with some important issues The destructive nature of such
an acquisition makes it almost impossible for a forensic investigator to not change any data on
the evidentiary system. As soon as an acquisition tool is executed, memory contained within
the system is changed, in turn changing possible evidence. However, adhering to the order of
volatility should minimise the destructive e↵ect. This principle states that a forensic investigator
should first secure the most volatile storage, to preserve the most evidence. Doing so should
minimise the changing of evidence, but it does not completely negate it. Even if the memory
footprint of a certain acquisition tool is minimal, evidence is still lost. This does not mean that
live data acquisitions are not deemed forensically sound. Performing a proper live acquisition
can serve as valid evidence in court.

2.3 Anti-Forensics

Anti-forensic attacks are aimed at increasing the di�culty of, or completely preventing, the work
performed by a forensic investigator. What it essentially comes down to is that an attacker tries
to outlast the forensic investigator by intervening with the digital forensic process (Blunden,
2009). There is a wide range of possibilities to influence or deceive the investigator. The possible
attacks can be, roughly, divided into six categories (Rekhis & Boudriga, 2010, pp. 2):

• Encryption: make evidence unusable when the decryption key is not available.
• Steganography: hide data inside files. An example is the hiding of messages in standard
PDF files.
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• Data Hiding: hide data inside the file system, for example in slack space.
• Data Wiping: wipe data in such a way that recovery is hard or impossible.
• Tail Obfuscation: obfuscate, for example, the source of an attack by spoofing e-mail head-
ers.

• Attack the forensic tools: infect the tools or systems used by the forensic investigator to
directly influence the evidence or to render the process not-forensically sound.

Most anti-forensic attacks aimed at the live acquisition process start with encrypting the data,
forcing the investigator to perform a live analysis of the system. This means the investigator
is depended on the software running on the system, and in turn means the system is now in
control. The investigator is able to identify tools that could possibly influence acquired evidence,
for example, by looking at the currently running processes or loaded modules. However, all the
information presented can already be influenced (sophisticated rootkits are capable of hiding
themselves from commonly used forensic techniques).

Generally, anti-forensics adheres to the Intruder’s Dilemma, as pitched by Richard Bejtlich
(Bejtlich, 2009). A commonly known dilemma is the Defender’s Dilemma; an intruder only needs
to exploit one victim to compromise the entire business. The intruder’s dilemma is the opposite;
“a defender only needs to detect one of the indicators of the intruders presence in order to initiate
incident response within the enterprise”(Bejtlich, 2009). This is specifically the case for anti-
forensic techniques. As soon as an investigator has one indicator that the evidentiary system
is intervening with the digital forensic process, counter measures can be taken to prevent any
damage to evidence or to completely neutralise the anti-forensic tool. This means that, when
developing anti-forensic techniques, close attention must be paid to detectability and stealth
mechanisms. For example, the presence of certain binaries or control scripts could lead an
investigator to further inspect the evidentiary system on possible malicious tools.

2.4 Forensics and Linux

Most forensic procedures are aimed at the Windows flavour of operating systems. Information
on how to perform forensics, and live data acquisition in particular, on Linux environments is
scarce. Luckily, court transcripts from the Silk Road lawsuit describe several steps taken by the
forensic investigators in regard to data acquisition and triage of the, alleged, Linux laptop of
Dread Pirate Roberts (Ross Ulbricht Day 5 Court Transcript , 2014; Ross Ulbricht Day 6 Court
Transcript , 2014).

2.4.1 Case Study: Silk Road investigation

In 2013, Ross William Ulbricht was arrested and accused of running the large scale online drug
market Silk Road. Based on evidence acquired from, amongst other sources, his laptop during
a live acquisition led him to be sentenced to life imprisonment on 29th May 2015. The follow-
ing information comes from the court transcripts describing day four, five and six of the trial
(transcripts of other days are not made publicly available).

There are several steps depicted in the transcripts, starting with the triage phase, that describe
how data was acquired. The o�cer that seized the laptop of the suspect performed an initial
acquisition of interesting files by archiving them with the tar utility and storing the created
archives on a USB storage device pertaining to the forensic investigator (Ross Ulbricht Day
6 Court Transcript , 2014, pp. 1217). By doing so, the o�cer in charge allegedly changed
all the access times of the archived files. However, the court accepted the archives as legitimate
evidence. Also, an initial run of the tar program returned an error indicating a wrongly executed
command. After the initial files were acquired, the investigator proceeded with creating a block
level copy of the hard-drive inside the laptop. By utilising the dd tool (and not the commonly
used forensic variant dcfldd), the data was then stored on a storage device supplied by the forensic
investigator (Ross Ulbricht Day 6 Court Transcript , 2014, pp. 1234). There is no mention of
how the investigator acquired root access to execute the dd command. The created image has
been handed over to a di↵erent forensic investigator, who analysed the image with FTK Imager
to extract the needed evidence. The integrity of all the files and images has been checked and
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verified with MD5 checksums. During every step in the procedure, images have been taken with
an FBI issued camera, which was running 40 minutes slow.

Clearly described in the transcripts is the issue of encryption to a forensic investigator. As
there was no guarantee untill when the laptop would be in a live state (i.e. there might be
an auto-shutdown mechanism, or the laptop simply runs out of battery), it was decided not to
adhere to the order of volatility. Not adhering to this principle means that, the tools used to
acquire the data, have tainted the memory which was retrieved three days later (Ross Ulbricht
Day 6 Court Transcript , 2014, pp. 1236).

Comparing the described techniques with the aforementioned ADAM model shows that several
crucial mistakes have been made. Access times have been altered, contrasting with the principle
of changing as little evidence as possible (instead, the cp -pr command would have left all
timestamps in tact). Apart from that, the execution of the tar program initially failed (possibly
changing evidentiary error logs). Judging by the error message, the investigator in charge possibly
tried to archive a directory which was also storing the created archive. Overall, it looks like the
forensic process was not strictly adhered.

2.4.2 Field Expertise

The Dutch High Tech Crime Unit has provided information regarding the data acquisition process
when considering Linux systems. They state that, when performing a live acquisition, there is
a trade-o↵ to be considered. Either, the investigator makes use of the binaries presented on
the evidentiary system, e↵ectively not introducing new content to the system. However, the
investigator is therefore subject to possible changes to the binary. When this is deemed a serious
risk (i.e. the suspect is perceived to be technologically aware enough to perform such an attack),
the investigator will present trusted binaries. In regard to the tools that they use, they stated
that mostly common tools are used to perform live acquisitions. For example, the cp, dd and tar
utility are commonly used.

Not every system is checked for the presence of anti-forensic tools. When a suspect is deemed
technologically skilled enough for such techniques, or other indicators are found during the foren-
sic process, extra steps are taken. For example, the /proc and /sysfs could be checked for the
presence of certain kernel modules. Commonly perceived anti-forensic techniques are, for exam-
ple, the remote locking of a computer as soon as a paired smartphone leaves its near vicinity.
However, more advanced anti-forensic techniques, like DDefy which is actively deceiving the
forensic tools, have not yet been encountered.

2.4.3 Non-Volatile Data Acquisition

Non-volatile data is all the data present on, for example hard disks and other storage media.
When possible, a block-level copy of a disk is created, ensuring a one to one comparison with
the original disk. The remainder of the digital forensic process will be carried out on the created
image, reducing the risk of changing the original evidence (CERT-EU, 2012).

Most of the tools created and used within the forensic world are aimed at Windows environ-
ments. However, there are tools that can be used to perform a live-acquisition of a Linux system.
As presented in the previous court case, a commonly used tool is dd, which can be used to create
a block-level copy of a storage device. As dd is not commonly seen as a forensically sound tool,
dcfldd was developed, which is the forensic counterpart to dd. FTK Imager and EnCase, which
are commonly used on Windows to create and analyse forensic images, have command line vari-
ants written for the Linux operating systems. Also mentioned throughout the Silk Road court
case is the usage of the tar archive utility during the triage stage to create a quick copy of inter-
esting files. It bundles specified files in one archive, without applying any form of compression
(although flags could be set to compress the files with, for example, gzip).

2.4.4 Volatile Data Acquisition

Volatile data, in contrast the non-volatile data, comes with the serious risk of disappearing when
the system is switched o↵. Amongst others, data contained within the memory, certain logs and
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network connections are considered volatile (CERT-EU, 2012).

Acquiring data from volatile sources (like the RAM) is more complicated. Where, in a Linux
system, internal storage is exposed to the user-space by the /dev/sda device, newer systems do
not supply a similar exposure of the RAM. Older linux systems allowed access to the ram through
the /dev/mem device, which means data could be acquired by simply using the dd utility. How-
ever, for newer systems, a loadable kernel module (LKM) has to be used to expose the memory.
The available options are, amongst others:

• Linux Memory Extractor (LiME): LKM that allows the acquisition of volatile memory on
a Linux-based system.

• Linux Memory Grabber: utilises the previously mentioned LiME module, but creates a file
that can be directly analysed in Volatility.

• fmem/pmem: LKM that both expose the memory in such a way the it can be acquired
with common tools, like dd.

2.5 Rootkits

Before describing the possibilities that rootkits create, it is first important to nail down a def-
inition. Commonly, rootkits are seen as malicious and made to create, for example, persistent
backdoors in systems. However, Greg Hogland (2005) gave a more accurate description, stating
the following: “A rootkit is a tool that is designed to hide itself and other processes, data, and/or
activity on a system”(Blunden, 2013). In essence, a rootkit is a piece of (malicious) code, hiding
in di�cult to find places in a target system (like the kernel). The x86 hardware architecture is
designed in a layered fashion, called privilege rings. At the core of the system is the kernel, which
is running in ring zero. The kernel has the most direct access to the underlying hardware, and
is thus the most privileged. Ring one and two contain device drivers, needed by the applications
running in the final ring. Ring three is hosting the user-space applications, and is the least
privileged of all rings.

Figure 1: The 4 security rings commonly perceived within in operating systems. Ring 0 has the
highest privileges and ring 3 is the least privileged.

A rootkit can hide within these privilege rings to form either a user-space rootkit or a kernel-
space rootkit. The user-space rootkit runs next to the other user-space applications and adheres
to the same privileges. On the other hand, a kernel-space rootkit mimics itself as being a
device driver, gaining high privilege access to the system. Kernel-space rootkits are especially
powerful, as all commands coming from applications in user-space can be intercepted within ring
zero. Apart from that, by hiding in kernel-space, detecting the rootkit becomes especially hard
(detection from a lower privileged ring is very di�cult).

Rootkits in the field of anti-forensics are not a new phenomena. As already described, Bilby
(2006) developed a rootkit to be used for anti-forensic purposes. Although generally perceived
as being an attack tool, it could just as well be utilised to defend a system. Getting back to the
previously stated definition of rootkits, hiding data or activity on a system would be perfectly
suited for anti-forensic purposes.
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3 Approach

This section will describe the approach followed throughout this research. The project has been
divided into several stages, which combined deliver the information needed to create a proof-of-
concept anti-forensic tool. First, information will be gathered on commonly used forensic tools.
The following are under investigation:

• dd/dcfldd : dd has been chosen for its appearance in the Silk Road court case. Dcfldd is
commonly perceived as the forensic counterpart to dd.

• FTK Imager : this is, next to EnCase, the most commonly used tool to acquire and analyse
data in Windows environments. It o↵ers a command line version for Linux operating
systems, which can be used to perform a live acquisition of data.

• Tar : selected due to its appearance in the Silk Road court case.

Due to the previous work performed by Stuttgen and Cohen (2013), it has been decided not
to focus on memory acquisition.

3.1 Environment

The anti-forensic scenarios will be developed for the following system, however, should function
on most newer Debian based kernels and operating systems:

• Operating System: Ubuntu 12.04.05 LTS (Precise Pangolin)
• Kernel: 3.13.0-32-generic

3.2 Information Gathering

By using the strace tool, which lists system calls that are used during execution of an application,
information has been gathered regarding the inner workings of the tools under investigation.
Strace is not the only way of investigating a programs internals. Most tools under investigation
are open source, which means their source code could be analysed to yield important attack
vectors. However, as FTK Imager is a proprietary application, and the pertaining source is not
released to the public, the decision has been made to follow a black box approach in which the
internals of the application are unknown.

3.2.1 dd & dcfldd

The dd tool functions relatively easy. The kernel executes the dd-binary by issuing the execve
command. After the binary has been loaded, the application starts executing. It begins by
acquiring relevant information from /etc. When the application is ready, it opens the block
device (/dev/sda) by using the open command. If the device has been opened correctly, the
associated file descriptor is copied by issuing the dup2 command. The application performs the
same routine for the newly created output image, which stores the acquired data. When both
the block device and the new image are open, dd starts reading (read data from the block device
and consecutively writing (write) it to the newly created output image. When all the data has
been written (or the specified amount of bytes has been reached), dd closes the block device and
the image. A shortened trace created with the strace application can be found in Appendix A.

Dcfldd behaves more or less the same as the dd utility, the only exception being the lack of
duplication of the associated file descriptors. Where dd creates a copy of the file descriptors
corresponding to the opened block device and newly created image, dcfldd uses them as is.
Apart from that, the reading and writing of data is performed in the same manner. A trace
corresponding to the execution of the dcfldd utility is listed in Appendix B
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Figure 2: Schematic overview of the interaction between the kernel and the dd/dcfldd utilities.

3.2.2 FTK Imager

FTK Imager comes in several forms. The variant under investigation is the FTK Imager Com-
mand Line version for 64-bit Debian based systems (versions 3.1.1) 1.

When the binary is executed, it starts by acquiring information, needed during execution,
from files located in the /etc directory (similar to dd and dcfldd). When FTK is ready with
setting up, it opens the specified block device (/dev/sda) and performs an llseek to get the
start and end sectors of the device. When the size-parameters are known, stat is executed to
get general information about the specified block device. As FTK identifies it as being a block
device, several ioctl calls are executed to acquire parameters pertaining to it (like the block size
used by the device). If it is not identified as being a block device (i.e an image has been specified
as input instead of a block device), the ioctl calls are not executed. After the block device has
been opened, and the relevant information has been acquired, the output file will be created and
consecutively data will be read from the block device and stored in the newly created file. Where
dd and dcfldd utilise regular read commands to acquire the data, FTK Imager is multi-threaded,
thus utilises futex to dispatch the reads and writes to the correct threads. When all the data has
been transferred, the output file and block device are closed, after which execution is completed
and the binary is unloaded. A trace pertaining to a run of FTK Imager can be found in Appendix
C.

Figure 3: Schematic overview of the interaction between the kernel and FTK Imager. Not every
system call is included, namely the stat command has been negated to avoid clutter.

1
FTK Imager CLI can be freely downloaded from: (http://accessdata.com/product-download/digital

-forensics/debian-and-ubuntu-x64-3.1.1
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3.2.3 Tar

The previously presented tools are used to create copies of raw block devices (or images). Tar,
on the other hand, is not used to create a block-level copy of the data. This means that tar does
not use the /dev/sda, but takes regular folders as input. A run of the tar application starts, like
the previous tools, by acquiring information from files located in /etc. When the information has
been retrieved, tar creates the output archive by using the creat system call (see Figure 4. As tar
interacts with the actual filesystem (and not the underlying raw data), to acquire files, it has to
traverse the directory tree. It does this by using the openat system call, which takes an already
opened folder, and traverses the content. The traversal process starts with the specified target
to archive. If the target is a directory, it traverses the corresponding entries (and in turn their
entries). When it encounters a file, tar writes it to the output archive file. This process continues
until all the data contained within the target has been written to the archive file, after which
all opened files are closed. A trace pertaining to the tar program can be found in Appendix D.

Figure 4: Schematic overview of the interaction between the kernel and the tar utility. Not every
system call is included, namely the stat command has been negated to avoid clutter.

3.3 Anti-forensic Scenarios

A simple scenario could be found in the loading of binaries. The system under investigation
could, for example, hold a malicious dd binary. When the system raises an alarm regarding
the execution of a non-malicious dd application, the loaded binary could be killed and in turn
the malicious one is executed. This means that, even if the investigator came well prepared
with own binaries, the actual acquisition is performed with the malicious binary running on the
system.

However, there might be a simpler, generic solution as following the aforementioned approach
means that for every available imaging application, the attacker should hold a malicious coun-
terpart, with the corresponding detection mechanisms to facilitate the execution. In contrast,
a more simple approach would be to create a generic method to intercepting these tools, by
utilising a ring zero rootkit. An interesting feature is that, because they run in kernel space,
they can intercept system calls coming from higher level rings (like ring three, which houses user
processes). As the live-acquisition tools are running in ring three, the system calls they use can
be intercepted and changed by the rootkit running in ring zero.

Intercepting the system calls is more commonly referred to as hooking. A hook is simply a
method attached to the original system call. For example, by hooking the open system call, all
uses of this call can be traced and influenced. However, later versions of the Linux kernel no
longer expose the system call table, which holds the addresses pertaining to the system calls,
in a writeable fashion. Luckily, the chosen rootkit-framework o↵ers mechanisms to retrieve the
table and make it writeable.

The rootkit will deliver the needed detection and interception mechanisms. By hooking system
calls generically used by imaging and archive utilities, hopefully a detection mechanism can
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be created. When such a mechanism is in place, a vast list of anti-forensic scenarios become
apparent. Instead of, as earlier presented, switching the requested binary for a malicious one
(by, for example, hooking the execve command), the data presented to the applications can be
changed without touching the internals of the acquisition tools.
Hiding data from tools, or destroying evidence all together, will inhibit the work from a forensic
investigator. However, presenting data from a di↵erent user changes the entire forensic process.
By injecting known clean files, and maybe even include a few bad ones, the investigator might
fall for such a decoy (Blunden, 2013). By e↵ectively framing a di↵erent user on the computer
(which in turn does not have to be a real user, but could just as well be an account created by
the suspect). This makes framing a more advanced form of hiding or wiping data, by presenting
back structured, valid data.

Changing data streams is not the only possibility when it comes to detecting acquisition
tools and performing anti-forensics. Judging by the information presented in the Silk Road court
transcripts, the forensic investigator utilises a USB stick to store the acquired data. The plugging
of this USB stick can easily be detected and in turn be exploited. However, this is outside of the
scope of this project.

Apart from the previously presented scenarios, an anti-forensic rootkit could just as well per-
form the already known anti-forensic techniques. It can hide data by changing flags pertaining
to the underlying inodes, or simply intercept the system calls used to fill directories and filtering
out files that must not be visible. If no e↵ective anti-forensic can be performed in the form
of deception or obfuscation, it could simply detect the presence of a acquisition tools and shut
down the system. Alternatively, data destruction could be performed by shredding metadata or
complete files. As a final scenario, it could fabricate data and thus leaving false trails for the
forensic investigator.
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4 Implementation

The following sections described how some of the aforementioned anti-forensic scenarios will
be implemented. First, the necessity for a rootkit will be described. Afterwards, information
will be gathered on how the identified behaviour of the applications under investigation can be
exploited.

4.1 Ring Zero Rootkit

The ring zero rootkit will allow access to the system calls used by the applications under in-
vestigation. As previously explained, the ring zero rootkit will mimic itself as a device driver
and because of that gain a high level of privileges. Instead of creating a rootkit from scratch,
a framework will be utilised.2. The chosen framework already o↵ers the capabilities needed to
hide files from the general directory listings, which will be used to hide the fake image and home
directory from the investigator.

The rootkit will be extended to a functional application. Control will be exercised by creating
certain files in the /tmp directory present on Linux systems. By hooking the open system call and
parsing the requested filenames, certain patterns can be picked up and coupled to command and
control of the rootkit. Doing so o↵ers a form of control that does not need any other applications,
again reducing the chance of detection. The e↵ectiveness of an anti-forensics application is based
on how well it is hidden and any indicator that something malicious could influence the data
acquisition process could seriously inhibit its e↵ectiveness. The presence of an undefined control
application could be seen as a serious indicator, leading the investigator to take extra precautions.
Luckily, the /tmp directory is often flushed, e↵ectively leaving no traces. In turn, the open system
calls could just as well be changed to prevent the actual creation of the file, as control is exercised
through the filename field in the open method, and not the actual presence or creation of the
requested file.

By hooking the system calls, code executed by the rootkit is perceived by the system as coming
from the currently running process. This means that the solution as pitched by Jones (Jones,
2007) will no longer be valid; writes are perceived to be coming from the imager itself, which
means the write policies must allow it. Apart from that, by instigating hooks in to the methods
used to fill /proc and /sysfs, the rootkit can hide its own existence.

A signature based detection would be specifically hard, as most of these techniques have to be
specifically crafted for the system they run on. This means that the signature corresponding to
the LKM will not be identified as malicious by most antivirus products. However, adhering to
the order of volatility, a skilled forensic investigator could detect its presence within the memory
dump created before starting the acquisition of non-volatile data.

4.2 Imager Deception

The imagers under investigation all utilise more or less the same method. The first stage of
performing anti-forensics is detecting the activity performed by the acquisition tool. The simplest
procedure would be to hook the execve method, and check if, for example, the dd binary is loaded.
However, this detection mechanism can be easily circumvented by renaming the binary. A more
solid approach would be to intercept the open system calls and parse them to check if they are
aimed at the raw block device (/dev/sda). Under normal operation, a Linux system usually does
not try to open the block device, which makes this behaviour rather specific to the presented
imagers.

Opening the device happens with a standard open system call. Given a pathname for a file,
the open call returns a file descriptor pertaining to the opened file, which in turn is used by the
read methods to retrieve data. To deceive the imagers, it has been decided to simply open a
di↵erent file or location, instead of the specified raw block device, leading the imager to retrieve
data from an unintended source (see Figure 5).

2
The Suterusu rootkit (https://github.com/mncoppola/suterusu) has been used as a basis for the work

presented in this project.
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Figure 5: Schematic overview of the interaction between the rootkit and the imagers. Depicted
in red is the behaviour, in pseudo-code, of the rootkit.

1 hook read ( f i l e d e s c r i p t o r ) :

2 i f ( p rev ious command == wr i t e ( ) ) :

3 and ( i f ( f i l e d e s c r i p t o r == prev ious f i l e d e s c r i p t o r ) :

4 l i n e a r r e a d c oun t e r ++;

5

6 hook wr i t e ( f i l e d e s c r i p t o r )

7 i f ( p rev ious command == read ( ) ) :

8 and ( i f ( f i l e d e s c r i p t o r == prev ious f i l e d e s c r i p t o r ) :

9 l i n e a r w r i t e c o un t e r ++;

10

11 i f ( l i n e a r r e a d c oun t e r >= thre sho ld ) or

12 i f ( l i n e a r w r i t e c o un t e r >= thre sho ld ) :

13 a l e r t

Figure 6: Simple detection algorithm for the linear behaviour exhibited by most forensic imagers.

Although parsing the open system call is relatively robust, simply changing the methods used
by the applications would break this detection mechanism. Luckily, imagers exhibit a notably
linear behaviour in their read and write commands. By looking at the straces in Appendix A, B
and C, it is clearly visible that a read is followed by a write. Apart from that, the file descriptor
used by the read command, is the same as the previous one, and the one before that, etc. The
same holds for the write command. This linear behaviour can be detected by simply storing the
corresponding file descriptors and counting the amount of read and writes (see Figure 6) initiated
by the same process.
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4.3 Tar Deception

For the tar utility, it has been decided to try and extend the known anti-forensic techniques by
implementing a form of framing. The tar utility, judging by the Silk Road court case, is used
to quickly archive interesting files. As a scenario, the archiving of a users home directory has
been chosen. Tar makes extensive use of the openat system. To achieve the aforementioned
framing behaviour, the tar process will not be pointed to an arbitrary file within the filesystem
like performed when deceiving the imagers. When tar is executed to archive the contents of the
home-directory, the corresponding openat system call is changed towards a di↵erent directory
e↵ectively returning files from a di↵erent user.

Figure 7: Schematic overview of the interaction between the rootkit and the tar utility. Depicted
in red is the behaviour, in pseudo-code, of the rootkit. As can be seen, any call towards the
/home/user directory will be pointer towards /home/clean
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5 Results

This section will present the results of implementing the aforementioned anti-forensic scenarios.
The imagers have had their behaviour changed in such a way that they return data stored in
a disk image instead of the raw block device. Although less advanced, the tar application is
intercepted to present a form of framing a di↵erent user on a computer under investigation. The
corresponding code has been released to the public through Bitbucket 3.

5.1 Command Based Detection

The command based detection proved successful. By intercepting and parsing the open and
openat commands, all tested imagers and tar could be deceived. In essence, every open command
initiated by an application is parsed by a rootkit. When the specified filename is in a blacklist
contained in the rootkit, the corresponding system call is stopped. Afterwards, the rootkit opens
a di↵erent file, containing some fake data, and returns the corresponding file descriptor to the
running application (either an imager or tar).

5.1.1 Imagers

The command based detection, which means intercepting the open commands aimed towards
the raw block device (/dev/sda) has proven to be successful. Under normal system operation, no
false positives have been perceived in which an application would have been labeled incorrectly
as an imager.

When the filename parameter pertaining to this command is assigned to /dev/sda, the com-
mand is intercepted and stopped. In response, the rootkit opens a raw disk image located in the
file system (/clean). When there are no errors, the corresponding file descriptor is returned to
the imager and the imager proceeds with its normal operations as if it was copying from a raw
block device.

However, for this approach to work for the FTK Imager application, several return values have
to be spoofed. As FTK is expecting a raw block device, it probes it with some ioctl commands.
If the commands return an error, FTK stops its operation and kills the process. Luckily, simply
intercepting the commands and returning non-erroneous values is enough to deceive FTK. Apart
from the ioctl commands, all imagers initiate a stat to acquire information from the opened block
device. These commands have to be intercepted and in turn changed to be executed towards the
fake image presented in the previous open interception. Following this approach, every imager
under investigation could be deceived (see Listing 8).

3https://bitbucket.org/yonne/aftoolkit
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1 i o c t l counter = 0

2 i o c t l th r e sho ld = 4

3

4 hook open ( f i l ename , parameters ) :

5 i f ( f i l ename == /dev/ sda ) :

6 move from ke rne l space to user space

7 fake f i l e d e s c r i p t o r = open (/ c lean , parameters )

8 imager boolean = 1

9 return to ke rne l space

10 re turn fake f i l e d e s c r i p t o r

11

12 hook s t a t ( f i l ename , parameters ) ;

13 i f ( imager boolean == 1 && f i l ename == /dev/ sda )

14 re turn s t a t (/ c lean , parameters )

15

16 hook i o c t l ( f i l e d e s c r i p t o r , parameters ) :

17 i f ( imager boolean == 1) :

18 i o c t l c o u n t e r++

19 i f ( i o c t l counter > i o c t l th r e sho ld ) :

20 re turn true

21 e l s e :

22 i o c t l counter = 0

23 imager boolean = 0

Figure 8: Deception algorithm for a command based detection mechanism.

1 hook openat ( pathname , parameters ) ;

2 i f ( cur r ent p roce s s == tar ) : #check seems ob so l e t e as openat ( ) i s not an o f t en

used command

3 i f ( pathname == conta ined in b l a c k l i s t ) :

4 move from ke rne l space to user space

5 re turn openat (/home/ clean , parameters )

Figure 9: Hook used to intercept and change the tar command.

5.1.2 Tar

Command based interception proved successful in deceiving tar. By intercepting and parsing
the Although the detection mechanism is easy to circumvent by simply changing the binary,
the exhibited behaviour by the archive utility is found interesting. When the tar process is
intercepted, the data presented back to the forensic investigator through the command line
represent the original directory structure, with the data from a di↵erent home directory. This
means that, to the investigator it will look as if files are being retrieved from the specified
directory, when in essence they come from a di↵erent user, e↵ectively framing this account.
openat system call the target specified to tar could be changed (see Listing 9).

5.2 Linear Based Detection

The linear based detection mechanism has been implemented as presented in listing 6. Internally,
the rootkit stores a counter that, based on the current process being executed and the correspond-
ing file descriptors, decides if a process is exhibiting linear behaviour. The threshold was found
to be best at 100 consecutive read and writes by the same process. Lowering the threshold means
the imagers are more quickly detected, however, they are not the only applications exhibiting
linear behaviour. By specifying a threshold of, for example, 50, many other applications were
flagged as being linear and thus have their system calls intercepted and changed. This means
that normal applications, like ls or dmesg were rendered useless. Even though a threshold of
100 negates most false positives, a blacklist was still implemented to prevent certain applications
from being picked up, namely dmesg and hexdump for debug purposes. This procedure has only
been tested on the imaging applications.
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1 t o t a l o f f s e t = 0

2 cache s t r u c t lp ;

3

4 hook read ( f i l e d e s c r i p t o r , count , parameters ) :

5 i f ( p rev ious f i l e d e s c r i p t o r != f i l e d e s c r i p t o r ) :

6 l i n e a r read counter = 0

7 prev ious f i l e d e s c r i p t o r = f i l e d e s c r i p t o r

8 e l s e :

9 l i n e a r read counter++

10 cache t h i s read ( f i l e d e s c r i p t o r , counter , cur r ent p roce s s )

11 i f ( l i n e a r read counter >= l i n e a r read th r e sho ld ) :

12 f o r ( i in open cache ) :

13 cr = open cache [ i ]

14 i f ( k i l l the app l i c a t i o n )

15 k i l l

16 e l s e i f ( t o t a l o f f s e t > s i z e o f the fake image ) :

17 count = s i z e o f the fake image � t o t a l o f f s e t

18 k i l l the app l i c a t i o n = 1

19 i f ( cr�>mode == 438 && cr�>f l a g s == 577 && cr�>proce s s == current p roce s s )

:

20 i f ( f i r s t time detec ted ) :

21 lp = cache t h i s open #probably the output f i l e

22 t o t a l o f f s e t = parse read cache

23 wipe the output f i l e

24 move from ke rne l space to user space

25 r e t = read n( t o t a l o f f s e t ) bytes from the fake image

26 wr i t e r e t to the output f i l e

27 f l a g the proce s s

28 f i r s t time detec ted = 0

29 move from user space to ke rne l space

30 re turn the read count

31 e l s e

32 move from ke rne l space to user space

33 r e t = read n( count ) bytes from the fake image

34 t o t a l o f f s e t += count

35 lp�>count = count

36 lp�>bu f f e r = bu f f e r #cache the c rea ted bu f f e r

37 move from user space to ke rne l space

38 re turn the read count

39

40 hook wr i t e ( f i l e d e s c r i p t o r , count , parameters ) :

41 i f ( lp�>proce s s == current p roce s s && lp�>bu f f e r != cur rent bu f f e r && lp�> f i l e

d e s c r i p t o r == f i l e d e s c r i p t o r )

42 drop t h i s wr i t e #f l a g t h i s wr i t e as being from the o r i g i n a l data stream

Figure 10: Simplified interception procedure for a linear based detection algorithm.

5.2.1 Imagers

Linear based detection proved relatively easy, but actually intercepting and changing the pertain-
ing commands came with a whole range of issues. The command based detection intercepts the
process at the absolute beginning, before any data has been retrieved or written, which means
the interception starts with a clean environment. A linear interception leads to the situation in
which several bytes of data have already been retrieved from the block device before the rootkit
is aware of its presence. This means that the rootkit performs a clean up stage, in which it wipes
the content of the output file created by the imager. Afterwards, it transfers the so called missing
bytes from the fake image. It transfers the amounts of bytes previously retrieved from the raw
block device. To facilitate this, the rootkit holds several caches, which store read, write and open
commands. As soon as an application has been flagged as being an imager, the corresponding
open cache is parsed to find the input and output files. Afterwards, the read cache is parsed
to determine the total amount of previously transferred bytes. The same amount of bytes is
retrieved from the fake imager, after which control is handed back to the imager. Every consec-
utive read performed by the flagged application is intercepted, stopped and replaced by a read
operation targeted towards the fake image. The writes command executed by the application are
blocked o↵ if they do not contain our changed bu↵er, e↵ectively preventing original data from
being written to the output file.
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A simple test shows the e↵ectiveness of this interception. Executing, for example, dd with
a count of one (i.e. one block of 512 bytes is retrieved), the master boot record (MBR) of the
original drive ends up in the output file. As soon as the dd process runs with a count higher than
the threshold, the MBR of the fake disk image is stored. The corresponding debug information
(displaying the rootkits internals) can be found in Appendix E.

1 root@ubuntu : ˜$ hexdump �n 512 /dev/ sda

2 0000000 63eb 1090 d08e 00bc b8b0 0000 d88e c08e

3 [ . . . ]

4 root@ubuntu : ˜$ hexdump �n 512 / c l ean

5 0000000 48eb 1090 d08e 00bc b8b0 0000 d88e c08e

6 [ . . . ]

7 root@ubuntu : ˜$ dd i f =/dev/ sda o f=output . img count=512

8 512+0 reco rd s in

9 512+0 reco rd s out

10 262144 bytes (262 kB) copied , 0 .0015403 s , 170 MB/ s

11 root@ubuntu : ˜$ hexdump �n 512 output . img

12 0000000 63eb 1090 d08e 00bc b8b0 0000 d88e c08e

13 [ . . . ]

14 root@ubuntu : ˜ $ dd i f =/dev/ sda o f=output . img count=512

15 512+0 reco rd s in

16 512+0 reco rd s out

17 262144 bytes (262 kB) copied , 0 .0219535 s , 11 .9 MB/ s

18 root@ubuntu ˜$ hexdump �n 512 output . img

19 0000000 48eb 1090 d08e 00bc b8b0 0000 d88e c08e

20 [ . . . ]

However, this procedure is far from stable. As a start, at point of writing, the proof-of-concept
only works for dd and dcfldd, due to FTK Imager being multi-threaded. The usage of futex
in combination with di↵erent process threads prevents the rootkit from detecting its behaviour.
Apart from this, the output file created by an imager that has been intercepted does not yield a
one to one comparison with the fake input image. When comparing the MD5 checksums of the
two images (the fake input image and the output file created by the imager), they only seem to
compare up to a randomly observed point. No original data seems to be present in the output
file, which is of course the wanted behaviour, but the structure of the image is corrupted.

18



6 Prevention

Demonstrated were two di↵erent forms of detecting and intercepting forensic acquisition tools.
This section will theorise how these anti-forensic techniques can be prevented and how the
acquisition process could possibly be improved.

6.1 Encryption

First demonstrated was a simple interception method in which the payload of certain system
calls is parsed for a so called magic string. The destructive nature of it could be seen in the tar
utility. However, harnessing for such a technique is relatively simple. Encrypting the payload
when passing it down to the kernel will e↵ectively prevent the rootkit, in its current form,
from detecting or parsing the content. The Linux kernel is already equipped with the necessary
libraries to support such a feature, namely the crypt.h implementation.

However, simply encrypting the payload will render it useless to the kernel as such. Therefore,
an improved system should come with a trusted kernel module to which the imager talks. When
adhering to the order of volatility, in most cases an investigator should first acquire the memory
before it attempts to retrieve stored data. This means that, as soon as the memory is acquired,
kernel modules can be loaded without destroying valuable evidence. Of course such a system
would deliver a significant amount of overhead due to the fact that every system call coming from
the imager has to be decrypted by the kernel module, before it is passed to a the actual kernel
(see Figure 11. A di↵erent solution would be to encrypt the entire command, instead of just the

Figure 11: Theorized hardening against rootkits intervening with the live data acquisition pro-
cess. By creating a trusted environment in the form of a kernel module and a trusted binary,
communication can possibly be obfuscated enough to deceive anti-forensic rootkits.

payload. This means that even linear based detection becomes harder, as no semantics can be
coupled to the intercepted commands. The downside to this approach is the fact that encrypted
commands would stand out from normal commands, delivering an easy detection mechanism
to be abused by anti-forensic techniques. Simply encrypting the payload would be harder to
detect, although arguably an attacker would still be capable of performing some form of entropy
calculation on the payload and draw conclusions from that.

Apart from preventing detection, the changing of retrieved data or intercepted commands
becomes near to impossible. If the evidentiary system does not contain the key used by the
decryption module in the kernel, any changes to bu↵ers or parameters pertaining to these com-
mands would fail to decrypt. This failure to decrypt o↵ers a perfect opportunity to inform a
forensic investigator that something is trying to change commands used by the imagers, increas-
ing the detection rate of such techniques.

6.2 Kernel-mode Acquisition

Although against most common practices, the acquisition process could be performed entirely
within the kernel. One of the main weaknesses in live acquisitions is the fact that commonly
known, easy to intercept, system calls are used to retrieve data. However, again adhering to the
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order of volatility, the acquisition process could just as well be performed with a loadable kernel
module (after the RAM has been acquired).

As demonstrated, regular imagers heavily interact with the system through system calls.
Kernel-mode acquisition would require just the initialisation to be performed with a regular
system call. The LKM could be controlled by a simple application. The application will send a
authentication token through a hooked system call (for example the ioctl system call). When the
LKM parses the system call and finds the authentication token, it sends back an acknowledgement
to indicate to the application that it is ready to receive encrypted commands. The application
in turn will send the initialisation parameters needed for the LKM to start acquiring the data
(like the input, output and count). As soon as the LKM is initialised, no more communication
between user-mode and kernel-space will be needed (reducing the chances of interception). The
rest of the acquiring process takes place in the kernel, directly aimed at the virtual file system
layer (VFS).

Figure 12: Suggested kernel-acquisition LKM. Communication and control is exercised through
an encrypted channel, the acquisition process is carried out within the kernel.

6.3 Hiding

When bad practice is not an issue nor harms the evidence, the entire acquisition tool could be
hidden within other processes. Although heavily inspired by the functioning of rootkits, such
an approach would be hard to detect. By hooking generic system calls and intercepting them
for random applications, the procedures to read and write data could be injected in di↵erent
processes. When deployed correctly, all the reading and writing of data could be spread out over
di↵erent applications.

6.4 Hardening Against Anti-Forensic Kernels

The previously presented solutions are aimed at the presented rootkit. However, a suspect could
run the same code just as well directly from within the kernel. Doing so would create an anti-
forensic kernel, which would still be able to function with the previously presented solutions. The
solutions run in kernel-space and by doing so would e↵ectively be hidden from most anti-forensic
tools. However, the presented code can be inserted deeper in to the kernel, calling for di↵erent
prevention techniques.

Apart from that, a custom kernel (or anti-forensic rootkit) could simply block the loading
of new kernel modules or applications. This would mean that the modules needed to perform
encryption or a kernel-mode acquisition would not be useable. However, simply blocking new
content will instantly reveal the existence of anti-forensic techniques in place and doing so would
not be the preferred route for an attacker to take.

To o↵er resistance against anti-forensic kernels, or when the previously presented mechanisms
are not applicable in the given situation. a non-linear acquisition could be performed. For ex-
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1 abu s e app l i c a t i on s [ ] = { l s }
2 counter = 0

3 block s i z e = 512

4 bu f f e r

5

6 hook s ta t :

7 i f ( cur r ent app l i c a t i o n == abu s e app l i c a t i on s [ i ] )

8 i f ( counter == di sk s i z e ) :

9 i nd i c a t e ready

10 bu f f e r = read data (/ dev/sda , b lock s i z e )

11 wr i t e data ( bu f f e r )

12 count += block s i z e

13

14 hook i o c t l :

15 i f ( cur r ent app l i c a t i o n == abu s e app l i c a t i on s [ i ] )

16 i f ( counter == di sk s i z e ) :

17 i nd i c a t e ready

18 bu f f e r = read data (/ dev/sda , b lock s i z e )

19 wr i t e data ( bu f f e r )

20 count += block s i z e

Figure 13: Hiding of the acquisition process within other, trusted applications, like ls
.

ample, acquisition could be performed on the file system level. By performing seemingly random
reads through the file system, detection by possible anti-forensic techniques becomes di�cult.
Simply masking the reads as normal system behaviour would require a very sophisticated algo-
rithm to still be detected. Such a tool would be a useful replacement for the tar utility. However,
when a block-level copy is required, accessing files through the file system will not lead to all
the data. Data could be hidden within slack-space, the master boot record, or other, more
innovative, locations.

To create a legitimate, trusted, block-level copy, dedicated hardware solutions should be de-
veloped. The acquisition must be performed without utilising parts of the operating system
running on the evidentiary system. Previously, imaging hardware has been aimed at extracting
the RAM from a running system. For example, the WindowsSCOPE PCIe card can be used to
perform a memory acquisition on a running Window systems 4. Similar devices could be used
to acquire data from non-volatile sources by directly communicating with the hardware.

4http://www.windowsscope.com/
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7 Discussion

The presented work raises the following question: how feasible is such a defense mechanism in
real-life? Is this technique a realistic threat to the current digital forensic investigation pro-
cess?

Although unstable, the proof-of-concept as such could already wreak havoc on a forensic
process, given that a forensic investigator is not paying close attention. As such, there are
plenty of indicators that the evidentiary system is intervening with the acquisition process. For
example, linear intercepted imagers do not always create a correct output file, or create files that
are smaller than expected. On the other hand, the rootkit is hidden from most places where
an investigator would commonly check, like /proc or /sysfs. An attacker, or from a di↵erent
perspective a defender, with enough time and knowledge about the digital forensic process can
create rootkits that actively and accurately deceive forensic acquisition tools. As an example:
the presented rootkit does not spoof information presented back to the forensic investigator
during the acquisition process (i.e. FTK Imager displays the size of the shadow image being
copied, not the actual disk size), but implementing the needed procedures is not impossible nor
hard. As soon as mechanisms are in place to spoof the displayed information, detection becomes
next to impossible. Apart from that, the read and writes speed decrease heavily, dropping from
150 MB/s to approximately 10-15 MB/s, which is something a forensic investigator could notice.
However, this could just as well be prescribed to a faulty hard-disk, or other programs influencing
the overall read and write speeds.

Recent developments in malware and backdoors showed the increased interest of hiding mali-
cious code in the firmware of devices. For example, malware hiding in the firmware of solid-state
drives is slowly moving away from being a myth to real life threats. If the presented rootkit
would be combined with malware running in firmware which is controlling a storage device, the
regular acquisition process could just as well be deceived. The author believes that it is only a
matter of time before more advanced anti-forensic techniques are created and possibly running
from within firmware, making detection and acquisition incredibly di�cult.

Judging by the available documentation on anti-forensic prevention and the corresponding anti-
forensic techniques, the author believes that the digital forensic world is slowly falling behind.
There is a vast list of tools and techniques that can be deployed to deceive investigators, but a
proper way of dealing with them seems to be absent. Of course, digital forensic models try to
incorporate defense mechanisms, which is the basis of solving this problem. However, the real
issue is the fact that the process of live data acquisition as such is neither resilient nor reliable,
mainly due to the insecure environment it is performed in. An investigator has to deal with the
fact the evidentiary system is not trusted, but the resulting evidence is treated as legitimate. A
technologically aware suspect could harden his system in such a way, that data can be retrieved
by the forensic investigator, but could enforce completely di↵erent investigatory tracks.

Even with the weaknesses present in the live data acquisition process, it is still a necessity. With
the rise in popularity of full disk encryption, o✏ine analysis is becoming harder, calling for an
online analysis. Therefore, the author believes that solution must be created to provide secured
environments within a non-trusted system. Within normal forensics, it is common practice to use
specifically marked tape to indicate a crime scene and prevent bystanders from possibly tainting
evidence. The same should apply to performing live data acquisitions; an investigator should first
create a secure environment, before an acquisition can be performed. This could be achieved by
the previously mentioned kernel-mode acquisition, in which a forensic investigator first deploys a
kernel module that is hard to intercept, and talks to that module through an encrypted channel.
Of course breaking with the, in this case, Linux and kernel development conventions is not the
most beneficial road to take. However, research should be aimed at finding di↵erent techniques of
acquiring data, even if that means changing current practices for those unique situations.

A bigger risk to the digital forensic process would be an actual anti-forensic Linux kernel. As
previously mentioned, the code included in this rootkit could just as well be ran from within a
kernel. Doing so would call for a di↵erent solution to still acquire correct data. A file system
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level non-sequential acquisition tool could be a perfect replacement to the tar utility, hopefully
e↵ectively negating detection possibilities. However, block-level copies are almost impossible to
perform when the entire kernel could have been patched. The development of hardware based
solutions might be to expensive and the usage of such a device comes with the serious risk
of crashing the system. Although, when the presented forensic techniques would implemented
on a firmware-level, for example the disk controller of a storage device, even hardware based
acquisitions become shaky Apart from this, new tools and techniques come with the lengthy
process of getting them accepted in court. All the aforementioned combined makes the author
believe that, as soon as an anti-forensic kernel is in place, it might be more beneficial to negate the
necessity of a live-acquisition. If it encompasses a FDE system, a pre-boot execution environment
might be able to extract the needed decryption keys. On the other hand, if the acquisition is
performed by law enforcement, they might be able to retrieve the keys and data through general
“rubber hose decryption”; the suspect might be willing to release the keys, negating the need for
a live-acquisition.

The fact that forensic investigators are still using old and proven acquisition techniques is not
unexpected; in the end, the evidence has to be presentable to court and as such known techniques
are more easy judged as delivering valid results. This means that delivering improvements to
the digital forensic process is hard. Getting new tools to be accepted in court becomes near to
impossible when not carrying the appropriate certifications. This makes the author believe that
the anti-forensic issues will not be solved or even counter e�ciently in the upcoming years, due
to the fact that new and experimental methods are needed to counter it in an e↵ective way. The
academic world can, and already does, provide solutions in regard to anti-forensics techniques,
but it is up to the law enforcement area to adopt them.

Even if it has not yet been observed in the wild, the presented techniques is deemed feasible and
a realistic threat to the current live data acquisition process. The development of the presented
anti-forensics kit is neither impossible nor hard due to the vast list of rootkits out there. Any
technologically aware suspect could download a working rootkit framework and patch it in such
a way that it can hide, counterfeit or obfuscate data, as most of the needed information is readily
available on the Internet.
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8 Conclusion

This project investigated the current state of live data acquisitions when dealing with a full disk
encrypted Linux machine.

To show the current problems with live data acquisitions, a rootkit for the Linux operating
system was developed. This rootkit hides itself within ring zero of the operating system (i.e.
the kernel), and takes control over the data stream pertaining to one of the aforementioned
acquisition tools. It o↵ers two forms of detecting the presence of such an application. By
running a command based detection mechanism, tar and the imaging applications can easily be
tricked in to returning di↵erent data. The alternative comes in the form of a linear detection
mechanism, which at point of writing only detects dd and dcfldd. By monitoring the reads and
writes executed by an application, the rootkit is capable of detecting imagers without creating
system inhibiting false positives.

When a forensic acquisition tool has been detected, several scenarios can be exploited. The
anti-forensic technique presented in this paper returns di↵erent data than requested back to the
acquisition tools. Imagers return data from a prefabricated disk image, instead of the /dev/sda
raw block device. The tar utility, when executed with a directory present in a blacklist (held by
the rootkit), retrieves data from a di↵erent home directory, thus framing a di↵erent user on the
computer.

Hardening against these techniques is not impossible, if forensic investigators are willing to
part with the common used tools. By encrypting the communication between user-space (the
acquisition tool) and kernel-space, command based detection becomes near to impossible. A
di↵erent solution can be found in moving the entire acquisition process to the kernel. By do-
ing so, a secured environment is created in which a non-volatile data acquisition can be safely
executed.

However, the aforementioned solutions are not applicable when the anti-forensic techniques
have been coded deep in to the Linux kernel. Such a kernel calls for di↵erent acquisition solutions.
The tar utility could be replaced with a non-sequential file system acquisition tool, which would
be di�cult to detect with the presented algorithm. Block-level copies become seriously risky
when dealing with a patched kernel, calling for dedicated hardware solutions, not unlike those
developed for RAM acquisition, to acquire non-volatile storage without using the evidentiary
operating system. Such a device could be beneficial in most scenarios, unless the anti-forensic
techniques are implemented on a firmware-level, which would e↵ectively negate the possibilities
of a live-acquisition.

To conclude, the presented techniques are deemed a serious risk to the digital forensics process.
Although not yet observed in real life situation, the usage of rootkits for anti-forensic purposes
is not new and is getting more advanced. More research must be performed aimed at improving
and securing the live data acquisition process. If not, the arms race might eventually be won
by the defending party, instead of the forensic investigator. The main conclusion is that the
presented techniques should be deemed a serious risk to the digital forensic process and that
dedicated solutions must be build and adopted by law enforcement to prevent losing ground to
technologically skilled suspects.
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9 Future Work

9.1 Stability and Improvements

First, time should be spend on creating a stable variant of the solution presented by this paper.
Normal system behaviour is sometimes inhibited or could even fail due to a kernel panic. For re-
search purposes, the kit should be stable so it can be used to test and improve forensic acquisition
tools. Next to this, some parameter optimisation could be beneficial, specifically the thresholds
used to label an application as being malicious to the evidentiary system. Apart from obvious
stability improvements, a linear detection algorithm for tar could be implemented.

If the code is running stable, tests can be performed with an actual anti-forensic kernel. Imple-
menting code inside the kernel calls for di↵erent prevention and detection techniques. Research
must be performed on how to counter against such a kernel.

9.2 Prevention

Presented in Section 6 are several solutions to improve the live acquisition process of non-volatile
data. Specifically, time must be spend on investigating the possible positive and negative e↵ects
of performing a kernel-mode acquisition. Doing so is against Linux kernel development standards,
as file interaction should take place in user-space. However, when there is a serious indication that
an evidentiary system is deploying advanced anti-forensic techniques as presented by this project,
such a technique could be justified. Apart from that, although more generic, an encryption and
decryption kernel module would be beneficial to facilitate secure communication between user-
space and kernel-space. Such a tool would be helpful to forensic investigators, as well as secured
environments trying to harden against rootkits.

9.3 Firmware-level Anti-Forensics

The presented techniques o↵er e↵ective defence against live-acquisitions. On the other hand, ss
soon as the storage device has been removed, and an o✏ine analysis is performed, the techniques
in place are no longer e↵ective. However, implementing the code on a firmware-level would o↵er
anti-forensic techniques e↵ective during an o✏ine analysis. Time could be spend on, for example,
creating anti-forensic techniques hiding in the disk controller of a solid-state drive.
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A DD Strace

1 execve("/bin/dd", ["dd", "if=/dev/sda", "of=dd.img"], [/* 16 vars */ ])
2 ....
3 open("/dev/sda", O_RDONLY)
4 dup2(3, 0)
5 close(3)
6 ....
7 open("dd.img", O_WRONLY|O_CREAT|O_TRUNC, 0666)
8 dup2(3, 1)
9 close(3)

10 ....
11 read(0, ..., 512) = 512
12 write(1, ..., 512) = 512
13 read(0, ..., 512) = 512
14 write(1, ..., 512) = 512
15 ....
16 close(1)
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B DCFLDD Strace

1 execve("/usr/bin/dcfldd", ["dcfldd", "if=/dev/sda", "of=new.img"], [/* 16 vars */ ]) = 0
2 ....
3 open("new.img", O_WRONLY|O_CREAT|O_TRUNC, 0666)
4 close(0)
5 open("/dev/sda", O_RDONLY)
6 ....
7 read(0, ..., 32768) = 32768
8 write(3, ..., 32768) = 32768
9 read(0, ..., 32768) = 32768

10 write(3, ..., 32768) = 32768
11 ....
12 close(0)
13 close(3)
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C FTK Imager Strace

1 execve("./ftkimager", ["./ftkimager", "/dev/sda", "dd.e01"], [/* 16 vars */ ])
2 ....
3 open("/dev/sda", O_RDONLY)
4 lseek(3, 0, SEEK_CUR)
5 lseek(3, 0, SEEK_END)
6 lseek(3, 0, SEEK_SET)
7 lseek(3, 0, SEEK_SET)
8 read(3, "\353c\220\20\216\320\274\0", 8)
9 close(3)

10 stat("/dev/sda", {st_mode=S_IFBLK|0660, st_rdev=makedev(8, 0), ...})
11 stat("/dev/sda", {st_mode=S_IFBLK|0660, st_rdev=makedev(8, 0), ...})
12 open("/dev/sda", O_RDONLY)
13 ioctl(3, 0x301, 0x7fff85082440)
14 close(3)
15 open("/dev/sda", O_RDONLY)
16 ioctl(3, BLKSSZGET, 0x7fff8508230c)
17 ioctl(3, BLKGETSIZE64, 0x7fff850822f0)
18 ioctl(3, 0x301, 0x7fff85082300)
19 open("/dev/sda", O_RDONLY|O_NONBLOCK)
20 ioctl(4, 0x30d, 0x7fff85082020)
21 close(4)
22 ....
23 open("dd.e01.001", O_WRONLY|O_CREAT|O_TRUNC, 0640)
24 write(4, ..., 262144)
25 write(2, "0.00 / 20480.00 MB", 180.00 / 20480.00 MB)
26 write(2, " \r", 9)
27 ....
28 futex(0x2227cd8, FUTEX_WAIT_PRIVATE, 2, NULL <unfinished ...>
29 <... futex resumed> )
30 futex(0x2227cd8, FUTEX_WAKE_PRIVATE, 1 <unfinished ...>
31 <... futex resumed> )
32 futex(0x2227cd8, FUTEX_WAKE_PRIVATE, 1)
33 futex(0x2227c58, FUTEX_WAIT_PRIVATE, 2, NULL <unfinished ...>
34 <... futex resumed> )
35 futex(0x2227c58, FUTEX_WAKE_PRIVATE, 1 <unfinished ...>
36 <... futex resumed> )
37 futex(0x2227c58, FUTEX_WAKE_PRIVATE, 1)
38 lseek(3, 1310720, SEEK_SET)
39 read(3, ..., 262144)
40 futex(0x2227cac, FUTEX_CMP_REQUEUE_PRIVATE, 1, 2147483647, 0x2227c80, 10) = 1
41 futex(0x2227d04, FUTEX_WAIT_PRIVATE, 5, NULL <unfinished ...>
42 <... futex resu[pid 4428] <... futex resumed> )
43 med>
44 futex(0x2227c80, FUTEX_WAKE_PRIVATE, 1)
45 futex(0x2227cac, FUTEX_WAIT_PRIVATE, 11, NULL <unfinished ...>
46 <... futex resumed> )
47 write(4, ..., 262144)
48 ....
49 close(4)
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D Tar Strace

1 execve("/bin/tar", ["tar", "cvf", "main.tar", "/home/yonne"], [/* 35 vars */ ])
2 ....
3 creat("main.tar", 0666)
4 fstat(3, {st_mode=S_IFREG|0664, st_size=0, ...})
5 newfstatat(AT_FDCWD, "/home/yonne", {st_mode=S_IFDIR|0755, st_size=4096, ...}, AT_SYMLINK_NOFOLLOW

),!

6 openat(AT_FDCWD, "/home/yonne", O_RDONLY|O_NOCTTY|O_NONBLOCK|O_NOFOLLOW|O_CLOEXEC)
7 fstat(4, {st_mode=S_IFDIR|0755, st_size=4096, ...})
8 fstat(4, {st_mode=S_IFDIR|0755, st_size=4096, ...})
9 fcntl(4, F_GETFL) = 0x28800 (flags O_RDONLY|O_NONBLOCK|O_LARGEFILE|O_NOFOLLOW)

10 fcntl(4, F_SETFD, FD_CLOEXEC)
11 getdents(4, /* 51 entries */ , 32768)
12 getdents(4, /* 0 entries */ , 32768)
13 ....
14 newfstatat(4, "Desktop", {st_mode=S_IFDIR|0755, st_size=4096, ...}, AT_SYMLINK_NOFOLLOW)
15 openat(4, "Desktop", O_RDONLY|O_NOCTTY|O_NONBLOCK|O_NOFOLLOW|O_CLOEXEC)
16 fstat(5, {st_mode=S_IFDIR|0755, st_size=4096, ...})
17 fstat(5, {st_mode=S_IFDIR|0755, st_size=4096, ...})
18 fcntl(5, F_GETFL) = 0x28800 (flags O_RDONLY|O_NONBLOCK|O_LARGEFILE|O_NOFOLLOW)
19 fcntl(5, F_SETFD, FD_CLOEXEC)
20 getdents(5, /* 6 entries */ , 32768)
21 getdents(5, /* 0 entries */ , 32768)
22 ....
23 newfstatat(5, "test", {st_mode=S_IFREG|0755, st_size=264, ...}, AT_SYMLINK_NOFOLLOW)
24 openat(5, "test", O_RDONLY|O_NOCTTY|O_NONBLOCK|O_NOFOLLOW|O_CLOEXEC)
25 fstat(6, {st_mode=S_IFREG|0755, st_size=264, ...}) = 0
26 write(1, "/home/yonne/Desktop/test\n", 26/home/yonne/Desktop/test)
27 read(6, "cd /mnt/hgfs/code/c/suterusu_roo"..., 264)
28 fstat(6, {st_mode=S_IFREG|0755, st_size=264, ...})
29 close(6)
30 ....
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E Linear Interception

1 [aftoolkit] linear imager detection (creates slurred images)
2 [aftoolkit] detecting linear read and writes: proc=dd
3 [aftoolkit] printing read cache
4 [aftoolkit] read: counter=100, fd=0, count=512, comm=dd
5 [aftoolkit] read: counter=99, fd=0, count=512, comm=dd
6 [aftoolkit] read: counter=98, fd=0, count=512, comm=dd
7 [aftoolkit] read: counter=97, fd=0, count=512, comm=dd
8 [aftoolkit] read: counter=96, fd=0, count=512, comm=dd
9 [aftoolkit] printing open cache

10 [aftoolkit] open: fd=1, filename=new.img, flags=577, mode=438, comm=dd
11 [aftoolkit] open: fd=0, filename=/dev/sda, flags=0, mode=0, comm=dd
12 [aftoolkit] printing write cache
13 [aftoolkit] write: counter=0, fd=1, count=512, comm=dd
14 [aftoolkit] write: counter=0, fd=1, count=512, comm=dd
15 [aftoolkit] write: counter=0, fd=1, count=512, comm=dd
16 [aftoolkit] write: counter=0, fd=1, count=512, comm=dd
17 [aftoolkit] write: counter=0, fd=1, count=512, comm=dd
18 [aftoolkit] dropping to user-space
19 [aftoolkit] read count till now: 52224
20 [aftoolkit] clearing contents of the output file
21 [aftoolkit] fake image: size=268435456
22 [aftoolkit] read bytes from fake image: fd=0, offset=0, count=52224
23 [aftoolkit] intercept read: count=52224, buffer=\xffffffebH\xffffff90\x10\xffffff8e\xffffffd0\

xffffffbc,!

24 [aftoolkit] wrote missing bytes: ret=52224
25 [aftoolkit] moving back to kernel-space
26 [aftoolkit] silently dropping write: comm=dd, fd=1, buf=0
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