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Abstract
This paper presents a novel memory acquisition algorithm for cold boot at-
tacks to compress the RAM of a system in the boot loader, before the op-
erating system is loaded. This makes efficient memory acquisition possible
using minimal, but fully featured Linux based operating systems. The ben-
efit of this approach is that the acquisition of the memory during a forensic
investigation can be combined with the collection of other evidence from for
example connected storage devices and other media. This project was initi-
ated as part of a larger project of the Netherlands Forensics Institute that
is currently developing a custom solution for automated evidence collection
and network based transmission.

As part of this project an extensive data compression algorithm comparison
has been conducted to select the optimal algorithm for this project. The
compression algorithms have been tested with RAM dumps generated from
scenarios that have been created to have samples of the wide spectrum of
possibilities regarding the content of the RAM and found entropy. Based on
the challenges identified in this project a new acquisition algorithm has been
developed that should recover the majority of the RAM even under the most
difficult conditions.

The memory acquisition algorithm has been realized in a proof of concept
and the results are compared against the current state-of-the-art solutions.
The amount of data that is overwritten before it can be secured is (slightly)
increased compared to the existing solutions. However, a significant improve-
ment has been realised compared with booting an unmodified operating sys-
tem.
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1 Introduction

During forensic investigations it is common practice to retrieve the content of the memory
of a running system. This is the place where advanced malware hides, suspects leave
digital traces regarding their recent computer usage and also contains the crypto keys for
the increasingly common full disk encryption. While several techniques (like DMA and
(cold) boot attacks) are available for this, none of them work in all possible scenarios
and in most cases only a single attempt to retrieve the data will be possible.

On some systems the memory is not cleared when the system is booted. While in most
cases the memory will be empty because the content of the RAM is not refreshed when
the system is turned off, there is a short time window (possibly extended by cooling the
RAM) where the system can be rebooted and a memory acquisition tool can be used to
retrieve its content.

The tools to acquire the memory can be divided in two groups. The first group consists
of tools that are part of an (forensic) operating system that is booted. The downside of
this approach is that this will destroy a part of the memory content to load the operating
system. This will mostly be in the lower memory regions where (for forensic purposes)
interesting data can be found such as memory page tables. An alternative approach is
the usage of a bootable, self containing tool that has a very small memory footprint and
dumps the memory.

Several of such tools have already existed for some years, such as msramdmp1 and
{bios, efi} memimage2. Their downside is that because they try to keep their memory
footprint as low as possible the functionality and abilities to store the retrieved data
is pretty limited. For example, storing the memory dump on the USB drive that was
used to boot the tool or over the network using a very limited driver and network stack.
This results in a limited portability and time-consuming effort if the memory of many
machines has to be retrieved.

The Netherlands Forensic Institute proposed the idea to research the feasibility of adding
a pre-boot compression stage before the forensic operating system to compress the con-
tent of the memory and move the content of the lower memory regions to higher memory
regions and protect them against the booting operating system.

1.1 Research question

The main research question to answer during this project is: Is pre-boot compres-
sion a useful technique to reduce the destruction of data when an operating system is
loaded?

To answer the research question, the following sub-questions have been formulated:

• How much memory is used by the firmware (e.g. BIOS or UEFI) before the oper-
ating system is started?

• Does this amount depend on the firmware type of the system?

• How compressible is the data that is typically found in RAM?

• What is the optimal algorithm to compress data considering maximal compression
using a minimal amount of memory during execution?

1 http://mcgrewsecurity.com/oldsite/projects/msramdmp.1.html
2 http://citp.princeton.edu/research/memory/code
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• In which way can a memory region be hidden from or protected against a booting
operating system?

• How can the compressed data be retrieved after the operating system is started?

• How can the validity of the decompressed data be proven?

1.2 Related work

As part of his master thesis regarding the forensic analysis of memory dumps Kollr [25]
has created an overview of different methods to acquire such dumps. It lists several
methods, including DMA attacks using FireWire and special insert cards and cold and
hot boot attacks.

While the theory for a cold boot attack was not new, the attack was accomplished for
the first time by Halderman et al. [19] in 2008. Because their tools were initially not
released, McGrew decided [32] to create an independent implementation of their attack
and released the tool msramdmp.

The usefulness of cold boot attacks for forensic purposes was studied during a research
project by Hannay and Woodward [21] and a project by Carbone et al. [8]. While
in some cases it is the only option a forensic investigator has, the method has serious
limitations and drawbacks, and mixed success was achieved.

Besides the previously mentioned specialized tools to dump the memory of a system
is also looked into the usage of forensic operating systems. Such systems exist and are
commonly Linux based systems that boot from CD, DVD or USB drive into a ramdisk. A
longer, on-going project of The Netherlands Forensic Institute is to acquire the evidence
of a computer system over the network. Last year, Cortjens [12] and van den Haak [48]
looked into the feasibility of such system to do automated forensic acquisition of the
local storage devices. The results of this project will be used to integrate support for
memory acquisitions.

The compression of the RAM content of a system is hardly a new concept. While in the
past it was mainly used because RAM was expensive and swapping to disk is slow and
power consuming, even modern operating systems [36] use it to make more efficient use
of the available resources by compressing in-active applications. This resulted in the de-
velopment [37, 45] of special compression algorithms by the academic community.
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2 Background Information

As introduction to the concepts used later on in this research project, several of them are
explained in this chapter. First, a general overview of memory forensics and data com-
pression will be given. Then the memory layout of common modern operating systems
will be discussed.

2.1 Memory Forensics

Getting a copy of the hard drive of the involved machine(s) has been a long-standing
procedure [35, p. 28] in digital forensics. However, the increasing popularity of full
disk encryption and advancing malware makes this no longer sufficient [10]. Without
the crypto keys which are lost when a machine is powered off, it will be an (almost)
worthless effort to break or bypass the encryption and gain access. Because the crypto
keys and other valuable data reside in the memory of the system, methods to extract the
content of the system memory have seen an increased interest in the last decade.

2.1.1 Typical Content

For a forensic analyst the memory is a goldmine with information. Based on the infor-
mation that is commonly [6] found, it is possible to reconstruct the last actions of the
user, the files that are used and sometimes even previous versions.

The memory of a system contains all the live data of that system. It is the location of
the operating system, the running applications, opened files, crypto keys and all other
objects needed for a correct functioning system. When certain data is needed during the
usage of the system, it is loaded into the memory where it remains until it is no longer
needed and gets overwritten with other data. How long it takes before the old data is
overwritten depends [6, p. 9] on how actively the system is used.

Some modern operating systems even try to predict [22] the user’s next action. By
loading files from the disk that the user is likely to use based on earlier behaviour, the
responsiveness and experienced performance of the system is increased. At the same
time, this reveals information about the usage patterns of the user as certain metadata
such as usage counters are stored to improve this mechanism.

It is also the location where malware hides. Advanced malware will not leave traces on
the disk [29], but successful hiding in the memory of a system is almost impossible. If
the malware wants to be executed, it must be somewhere in the memory of the system
leaving traces of modified OS components or inconsistent data structures. Even when it
cannot easily be found, because the malware consists only of malicious data instead of
executable code [51].

2.1.2 Acquisition Methods

There are multiple ways to get a copy of the memory of a system. In 2013, Osborn gave
[33] an overview of the known techniques and their characteristics.

When the system is unlocked and trusted, an application whether or not combined with
a kernel driver can be used to create a dump of the memory. However, this will not
be the case in most cases during a forensic investigation. Either the system is locked
and the user is not willing to give his password or the system cannot be trusted because
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installing and running an application could trigger a booby trap that shuts down the
system and/or destroys all data.

Multiple hardware-based methods have been developed of which the DMA attack using
FireWire [31] is best known. This is not the only way as several of the busses in a system
allow peripherals to read and/or write to the memory of a system without intervention
of the CPU. This enabled the possibility to develop dedicated insert cards for the PCI
[9] and PCIe [3] busses to copy the memory.

Hardware based methods have the risk that they can crash [20] the system during the
acquisition. Modern systems have the possibility to block the attack by preventing
unauthorized access to the RAM using the IOMMU [53]. As there is in general only a
single attempt possible, software based approaches could have the preference.

Some systems do not overwrite the memory during the initialization of the system. This
opens the door for a (cold) boot attack [19] where the system is rebooted or reset and
another (micro) operating system is started.

When this is not possible, for example because the system firmware (i.e. the BIOS)
reinitializes the memory, the same research team proposed the idea to cool down the
memory module, remove it from the system and use another system to extract the
content. Almost two years ago, a different approach was demonstrated [42] where a
custom version of the system firmware was developed and used to acquire a memory
dump.

2.1.3 Data Integrity

One of the challenges [23] of digital forensics is to prove later on the evidence has not
been changed or manipulated. Cryptographic hashes are calculated during or soon after
the acquisition of the data. Such hashes, like MD5 and SHA-1, can later be used to
compare the data against and confirm it has not been changed. The change of only a
single bit results in a totally different hash value.

Cryptanalysis in the last two decades revealed weaknesses [47, 15] in both algorithms.
Stronger alternatives like SHA-2 and SHA-3 are available, but MD5 and SHA1 remain
widely in use for forensic purposes as intentional and meaningful collisions are hard to
introduce [26].

2.2 Data Compression

Data compression is used to store data in less space than needed before the compression.
This is possible by encoding the same information in fewer bits or removing information
that is not entirely necessary as is commonly done with, for example, audio, video
or image compression. However, this requires insight in the data that is compressed
and what must be preserved or is acceptable to remove. This project focuses on data
compression where the original data can be recovered by decompressing it, so called
lossless compression.

The ideas still used today in compression algorithms go back many years, even from
before the invention of the computer. One of these ideas is the usage of short codes for
commonly used words and expressions. Braille and Morse code can be seen [13, p. 17]
as one of the first methods to compress textual information.
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Two important groups of algorithms for general-purpose data compression are the sta-
tistical based and dictionary based algorithms. The first group [13, p. 47] uses variable
length codes assigned to the symbols they represent, based on how frequently they oc-
cur in the data. By assigning shorter codes to (a group of) symbols that occur more
frequently, less data is needed to represent the same information. The second group
uses fixed size dictionaries [13, p. 171], which could be static or dynamic depending on
the algorithm. If an entry of the dictionary is found, it is replaced with the correspond-
ing index. Otherwise the original data are used together with a flag that the decoder
shouldn’t interpret the following symbols as an index.

2.2.1 Compression Algorithms

Only a few algorithms form the building blocks and inspiration for most currently widely
used algorithms like those that are used in the gzip, zip or 7z formats. One of those
building blocks is RLE, Run Length Encoding. It replaces sequences of characters with
their occurrence. A very simple example would be to encode aaaaa as 5a.

In 1948 Claude Shannon published the very famous paper A Mathematical Theory of
Communication [44]. Not only was it the start of a whole new field of applied mathe-
matics, called information theory, it also introduced an algorithm developed by Robert
Fano. It creates a binary tree sorted by the occurrence of the symbols. Based on the
position in the tree, each symbol is assigned a code. A variant of this algorithm that
gives slightly better results by building the tree in a different way was proposed [24] by
David Huffman in 1952. Even today, his method, called Huffman coding, is still widely
used in DEFLATE [14], JPEG [52], MP3 [7] and many others.

LZ77 is another “ancestor” (and in fact, DEFLATE is a combination of LZ77 and Huff-
man coding) of many newer algorithms. It was designed [56] in 1977 by Jacob Ziv and
Abraham Lemper and together with LZ78 [57] it was the start of dictionary-based com-
pression. It works by a fixed-size sliding window which forms the current dictionary.
The encoding works by outputting relative offsets to corresponding symbols into the
dictionary or the original data if no substitute can be found.

Many, many more algorithms have followed resulting in hundreds of algorithms in thou-
sands of applications and file formats. While some newer, better methods are developed
such as arithmetic coding, patents and the complexity of some algorithms prevented [40,
p. 5] wide adoption.

2.2.2 Shannon Entropy

In the same paper where Shannon introduced information theory, he proposed [44, p.
14] a new measuring unit to express the (un)predictability of information. The idea [34]
is that when the probability of a symbol is relatively high, the information a message
can carry is low. The Shannon entropy limits this way the (theoretical) best possible
lossless compression of the data. This makes it to some level an interesting metric to
have a (rough) estimate about the compressibility of certain data.

2.3 Memory Layout

It is inevitable that when the content of the RAM of a system is acquired using a method
that requires an application or operating system running from that same RAM, a part of
it will be overwritten. For this reason it is interesting to know how the physical layout of
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common operating systems such as Linux and Windows look like and what the impact
of the system firmware on this is.

The study of how the RAM of a system should be managed is a field on its own because
of the performance implications it has on the system. Several [30] books [18] have been
published that give an insight in how an operating system manages it, but most of this
information is (to some degree) outdated.

Most information is known about the virtual memory layout of operating systems. De-
tailed information about how this maps to the physical memory is much rarer. An
attempt is made to create a high-level overview based on this information and empirical
research on several machines using the RamMap tool3 for Windows and the information
that can be found in /proc on Linux based systems.

2.3.1 System Firmware

Before the loader of the operating system starts, the firmware of the system (e.g. BIOS,
UEFI, Coreboot) is executed first. It is located on a flash chip that is mapped in the
address space of the system. Therefore, it has no impact on the content of the RAM.
Only the data that are generated and used by the firmware is written to the RAM.

However, the space on the flash chip is limited. This resulted in the compression [41, p.
107] of parts [4, p. 949] of the firmware. This has to be decompressed into the memory
first before it can be executed.

The size of the data and decompressed parts remain largely unknown. Intel published
[54] a whitepaper with some numbers as part of their effort to optimize the reference
UEFI implementation4 for their Quark platform5 that is intended to be used in wearables
and other low resource devices. This whitepaper states that a stripped down version
(that fits compressed in 64 kilobytes) of the UEFI firmware requires 624 kilobytes for
the data and 136 kilobytes for the decompressed firmware components.

The firmware found in the average computer system is much larger. Therefore, it can
be expected that the memory usage is also much higher. Browsing through a site6

that offers modified versions of the firmware of many systems, reveals sizes up to eight
megabytes. Another whitepaper [53] from Intel where the memory map of “a typical”
UEFI system during several phases of the initialization is discussed shows a situation
where 232 megabytes of RAM is reserved by the UEFI firmware. However, reserved
memory is not the same as used or overwritten memory and more information about
this is very rare. Listing 1 shows two examples of typical memory maps, one for a BIOS
based system and one for a UEFI based system.

2.3.2 Linux

The Linux kernel divides the physical memory in several zones [28, p. 233] depending
on the architecture and memory configuration of the system. The reason for this is that
some devices have limitations on which addresses they can use for DMA transfers and
that especially on 32-bit systems the virtual address space is limited. While for a major
part of the memory it is not a problem to be paged out, many kernel-space structures

3 https://technet.microsoft.com/en-us/library/ff700229.aspx
4 http://www.tianocore.org
5 http://www.intel.com/content/www/us/en/embedded/products/quark/overview.html
6 https://www.bios-mods.com/BIOS
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e820: BIOS-provided physical RAM map:

[mem 0x00000000-0x0008efff] usable

[mem 0x0008f000-0x0008ffff] reserved

[mem 0x00090000-0x0009e7ff] usable

[mem 0x0009e800-0x0009ffff] reserved

[mem 0x000e0000-0x000fffff] reserved

[mem 0x00100000-0x7ee94fff] usable

[mem 0x7ee95000-0x7eebefff] reserved

[mem 0x7eebf000-0x7eee3fff] usable

[mem 0x7eee4000-0x7efbefff] ACPI NVS

[mem 0x7efbf000-0x7efeefff] usable

[mem 0x7efef000-0x7effefff] ACPI data

[mem 0x7efff000-0x7effffff] usable

[mem 0x7f000000-0x7fffffff] reserved

[mem 0xe0000000-0xe3ffffff] reserved

[mem 0xffe00000-0xffffffff] reserved

Type Start End

BS Code 0000000000000000-0000000000000FFF

Available 0000000000001000-000000000003CFFF

BS Code 000000000003D000-0000000000057FFF

Reserved 0000000000058000-0000000000058FFF

Available 0000000000059000-000000000005FFFF

BS Code 0000000000060000-0000000000087FFF

BS Data 0000000000088000-0000000000088FFF

BS Code 0000000000089000-000000000009EFFF

Reserved 000000000009F000-000000000009FFFF

Available 0000000000100000-000000000FFFFFFF

BS Code 0000000010000000-000000001000AFFF

Available 000000001000B000-000000006AAFCFFF

BS Data 000000006AAFD000-000000006AFAAFFF

Available 000000006AFAB000-000000006AFDBFFF

BS Data 000000006AFDC000-000000006B1BDFFF

ACPI Recl 000000006B1BE000-000000006B1DCFFF

BS Data 000000006B1DD000-000000006B26DFFF

Available 000000006B26E000-000000006B2ABFFF

BS Data 000000006B2AC000-000000006B2BCFFF

Available 000000006B2BD000-000000006C27BFFF

BS Data 000000006C27C000-000000006C2CEFFF

Available 000000006C2CF000-000000006C2D2FFF

BS Data 000000006C2D3000-000000006C431FFF

LoaderCode 000000006C432000-000000006C50DFFF

(Skip lots of BS Data/BS Code entries)

RT Code 000000007A160000-000000007A22FFFF

RT Data 000000007A230000-000000007A24FFFF

Reserved 000000007A250000-000000007A74FFFF

ACPI NVS 000000007A750000-000000007A767FFF

Reserved 000000007A768000-000000007A768FFF

ACPI NVS 000000007A769000-000000007A7B5FFF

ACPI Recl 000000007A7B6000-000000007A7E2FFF

BS Data 000000007A7E3000-000000007A7FEFFF

Available 0000000100000000-00000001007FFFFF

Listing 1: On the left the memory map of a BIOS based system as seen by the Linux
kernel. On the right the memory map of a UEFI system [53, p. 17].

are critical for a correct functioning kernel or for performance reasons have to remain in
the address space at all times. When memory is allocated, the requester can indicate in
which zone the memory must reside and if this is a hard requirement or that when there
is not enough memory available in that zone, a different zone can be used.

Assuming an Intel x86 based system, three zones (see Figure 1) are used. Both 32-bit
and 64-bit systems assign the first sixteen megabyte to ZONE DMA for DMA transfers
with devices that are not able to use the full 32-bit address space. On 32-bit systems the
remaining memory is divided over ZONE NORMAL and ZONE HIGHMEM. Up to 896 megabytes
is assigned to ZONE NORMAL, when more is available this will be assigned to ZONE HIGHMEM.
The reason [55] for this limit is that normally the virtual address space for applications
is split in one gigabyte for the kernel and three gigabytes for the application. However,
PAE allows a 32-bit system to use more than four gigabytes of memory by temporary
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mapping those parts into the virtual address space. The ZONE NORMAL zone is always
mapped in the (virtual) kernel address-space (by adding 0xC0000000 [11] to the physical
address), leaving 128 megabytes for mapping parts of ZONE HIGHMEM.

On 64-bit systems the (virtual) address space is big enough to be able to map the
whole memory without the need of a separation between normal and high memory.
Therefore, ZONE HIGHMEM is no longer used and everything above sixteen megabytes
would be assigned to ZONE NORMAL. However, a new problem appeared. Many devices
that weren’t limited to the first sixteen megabyte for their DMA transfers are limited to
the memory in the first 32-bit of the address space. This resulted in the creation of the
ZONE DMA32 zone that consists of all the memory above the first sixteen megabyte in the
lower 32-bit of the address space.

0 16M 4G 8G896M

ZONE_DMA ZONE_NORMAL ZONE_HIGHMEM

ZONE_DMA ZONE_DMA32 ZONE_NORMAL

32-bit:

64-bit:

Figure 1: An impression of which parts of the RAM are assigned to which zone on 32-bit
and 64-bit Intel systems.

Where specific data is allocated is hard to predict. Most allocations in the kernel are
dynamic and position independent. In the default configuration, the kernel itself is
loaded directly at the beginning of ZONE NORMAL followed by most of the critical data
structures. Userspace allocations and the page cache are evenly spread [49] over the
zones, proportionally to their size.

2.3.3 Windows

The situation on Windows based systems is quite different. While the layout of the
virtual address space is well understood [50] and documented [1, 2] and not that different
from Linux, the way the allocation of pages is managed is barely documented.

The Windows kernel manages its memory by assigning memory pages to pools with a
certain purpose. Two of the main pools [38], the paged and nonpaged pool, are used for
memory that can be paged out and not paged out respectively. A typical example of
data stored in the nonpaged pool are the data structures of the kernel and drivers. The
registry is an example what is stored in the paged pool.

When RamMap is used to explore where the data resides that is used for certain pur-
poses, no pattern could be identified. The pages belonging to a pool are spread all
over the physical address space. The only exception appears to be the first megabyte of
memory. This region is mostly used by drivers, but even there a few exceptions could
be found.

The Page Frame Number database [39, p. 297] is used to keep track of the status of
the physical pages. Each page is assigned a state like Active, Free or Zeroed and put
in a corresponding list. When the system needs a free or zeroed page, depending on
the security requirements of the allocation, the corresponding list is consulted. Because
pages are tracked by their state instead of their location like on Linux based systems,
the location of an object can be anywhere in the memory of the system.

8



3 Approach and Methods

The next step is to determine the approach of this research project. While some an-
swers have already been found during the literature study, of which the results have
been described in the previous section, most of them will require several experiments to
gather the necessary data. The information learned will be used during the design of an
algorithm to compress the content of the RAM of a computer system. The last step is
to realise the algorithm in a proof of concept to validate it and compare it against the
existing solutions.

3.1 RAM Profiles

As preparation for the selection of the compression algorithm to use and to get insight
in the behaviour of operating systems and the way the RAM is managed, several profiles
of potential target systems have been created. Each profile describes a different usage
pattern of the system using an operating system that could be found during a forensic
investigation. While many configurations are possible, a selection of twelve different has
been made. Table 1 shows an overview of the selected scenarios.

The profiles can be divided in three groups. The first one is the group with office systems.
Both Windows and Linux based systems are tested using different configurations such as
versions, the amount of RAM and the usage of full disk encryption. The second group
consists of two server scenarios. A fileserver and a webserver, both Linux based, are
added. The fileserver will be filled half with text-based content using public domain e-
books and half with pictures and other media. The webserver will use full disk encryption
and is filled with pictures.

The last group consists of three special scenarios. Two of them consist of the usage of
the Tails live operating system, which can be booted from a DVD or USB stick.

Operating System Version RAM FDE7 Simulated usage

Windows XP SP2 32-bit 512 MiB ✗ Desktop8

Windows 7 SP1 32-bit 2048 MiB ✗ Desktop
Windows 7 SP1 64-bit 2048 MiB ✗ Desktop
Windows 8.1 RTM 64-bit 4096 MiB Ø Desktop
Windows 8.1 RTM 64-bit 8192 MiB ✗ Desktop9

Ubuntu 14.04 32-bit 2048 MiB ✗ Desktop
Ubuntu 14.04 64-bit 4096 MiB Ø Desktop
Tails 1.4 64-bit 2048 MiB ✗ Browsing with Tor

Tails 1.4 64-bit 2048 MiB Ø
Encrypted volume (10 GiB)
filled with pictures

Debian 7.8 32-bit 2048 MiB ✗
File server filled with
text files and pictures

Debian 8.1 64-bit 4096 MiB Ø Web server with pictures

OpenWRT 15.05-rc1 64-bit 256 MiB ✗
Embedded device e.g.
NAS or STB

Table 1: The scenarios that are used to create a baseline for the content of RAM dumps.

7 Full Disk Encryption
8 Normal desktop usage e.g. browsing the web, playing music and video, etc.
9 This is a dump of a virtual machine that was used during this project as normal workstation for a

couple of hours.
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It can be used to access the web anonymously using TOR, but also to encrypt the hard
drive of the system. Tails promises to leave no persistent traces on a system during its
usage and as such is also interesting to make the forensic analysis of a seized system
harder. The last special scenario is the usage of an embedded operating system such as
OpenWRT. Such systems can be found as NAS or setop box and have usually limited
resources. While such systems are not the primary target for this project, their existence
could have implications for the applicability of the project.

All the profiles are realised as virtual machine. This makes it easy to extract the whole
content of the RAM and differences between the systems can in no way influence the
content or its spreading. The desktop systems are used for web browsing, listening to
music and viewing photos. To make sure that each system represents the usage for a
longer period of time, for Windows a tool called RAMMap10, part of the Sysinternals
Suite, is used to determine if the RAM has been completely filled at least once. For
Linux based systems the free command is used.

The dumps of the RAM content are then analysed. The most interesting property to
measure is the Shannon entropy. This gives an indication of the information density
(in bits of information per byte of data) and how well the data are compressible. This
is used to determine if there are certain locations with an exceptionally low or high
entropy and could be used to determine the starting point of the compression because
in the worst-case scenario the compression of already compressed data could result in
a bigger output than input. Since the only place to store the compressed output is on
the location of the already processed input, this would result in overwriting the input
data or having to drop some of the input until there is enough space again to store the
compressed output.

A special case that is added to the desktop systems is a dump of the RAM content of
a system that was used for a couple of hours during this project. This is to add the
content of a real system to compare with the results from the simulated profiles. The
reason for this is to have a sufficient level of certainty that the acquired information is
valid for real-world scenarios.

3.2 Compression Algorithms

The next step is to select the compression algorithm to use. While several11 bench-
marks12 exist13 that compare compression algorithms, most of them focus on speed or
compression ratio. While these are important factors to determine which algorithm to
use, at least as important for this project is the information about the memory usage
during the compression, the size of the output if the input is not compressible in the
worst case scenario, and if the compression can be split in smaller blocks that are chained.
However, when this is not possible, a solution would be to wrap the compressed blocks
in a custom container format. The decompression characteristics of the algorithms are
not tested.

A total of thirteen different general-purpose data compression algorithms (see Table 2)
have been tested. Five of them are compression algorithms that are used as building
block or inspiration for most widely used compression algorithms. A special case is the
chaining of three (RLE, LZ77 and Huffman) of them as this would combine the strengths
of each of them [16]. The other algorithms are widely used and selected based on

10 https://technet.microsoft.com/en-us/library/ff700229.aspx
11 http://compressionratings.com
12 http://www.squeezechart.com
13 http://mattmahoney.net/dc/text.html

10

https://technet.microsoft.com/en-us/library/ff700229.aspx
http://compressionratings.com
http://www.squeezechart.com
http://mattmahoney.net/dc/text.html


Algorithm Library Used settings Max. output (in byte)14 Window15 Part. comp.?16 Remarks

RLE BCL 1.2.0 n/a 257
256 · originalSize + 1 n/a After mod.17

The full input is read to create the histogram,
which is used during the compression. Then the
input is processed byte for byte.

Huffman ” n/a originalSize + 320 n/a ”

The full input is read to create the histogram and
Huffman tree, which are used during the
compression. Then the input is processed byte for
byte.

Rice ” Unsigned 8-bit words originalSize + 1 n/a ”

When the compression fails, the output buffer is
cleared and a null byte is written to the begin of it.
Then the input buffer is copied to the output buffer.

Rice ” Unsigned 16-bit words originalSize + 1 n/a ” ”

Rice ” Unsigned 32-bit words originalSize + 1 n/a ” ”

LZ77 ” n/a 257
256 · originalSize + 1 10000 b ”

The full input is read to determine the least
commonly used byte to use as marker during the
compression.

Shannon-Fano ” n/a 257
256 ·

257
256 · originalSize + 386 n/a ”

The full input is read to create the histogram,
which is used during the compression. Then the
input is processed byte for byte.

RLE - LZ77 - Huffman ” n/a originalSize + 320 10000 b ”

BWT libbzip2 1.0.6 Block size 100 KiB originalSize · 1.05 + 50 [43] 100 KiB Ø
DEFLATE zlib 1.2.8 Default originalSize + 5 · (originalSize

215
+ 1) [14] 32 KiB Ø

LZ4 lz4 r130 Default originalSize +
originalSize

255 + 16 64 KiB ✗
Maximum output length based on the
LZ4 COMPRESSBOUND macro. The maximum input
size is two gigabytes.

LZF liblzf 3.6 Default Up to 104% of original size 4 KiB Ø
LZMA xz 5.2.1 Default 1.001 · originalSize + 1024 [17] 2 MiB Ø
LZO lzo 2.0.9 LZO1 preset Up to 106% of original size 8 KiB ✗
LZO ” LZO1X-1 preset Up to 106% of original size 2 KiB ✗
LZO (mini) minilzo 2.0.9 Default Up to 106% of original size 16 KiB ✗

LZW Unknown18 9-bit table Unknown n/a ✗
The input is processed byte for byte using a
dynamic dictionary table.

LZW ” 12-bit table Unknown n/a ✗ ”
LZW ” 15-bit table Unknown n/a ✗ ”

Table 2: An overview of the tested algorithms and their theoretical characteristics.

14 Based on the documention or code. Other sources are cited.
15 The amount (input) data that is considered during the compression, for example, as a sliding window based dictionary.
16 Partial Compression: Is it possible to compress the data in (small) blocks?
17 After modification: Not by default in the used implementation, but it is easy to implement.
18 http://rosettacode.org/wiki/LZW_compression#C
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their inclusion in operating systems or usage in file formats. Several algorithms have
been tested with different settings that should influence the compression ratio or the
memory usage during the compression. Of the tested algorithms, three of them are used
in multiple configurations. This results in a total of nineteen different tests.

The data to conduct the tests with are the RAM dumps gathered during the previous
step. A script is written to automate the testing and to exclude the human factor. Each
algorithm is tested using a minimal application written in C to set up the environment
and run the algorithm. The applications are compiled in release mode (stripped bina-
ries, maximal optimisation and no debug symbols). The gettimeofday API is used to
determine how long it takes to compress the data. This information is recorded with mil-
lisecond precision. The amount of memory required for the compression is determined
using Valgrind with the Massif profiler. Because the usage of Valgrind imposes a signif-
icant overhead, this is done as a separate test instead of combined with measuring the
compression duration. For the code size the size utility is used. The theoretical maxi-
mum output length for the worst case scenario and the ability to split the compression
up in smaller blocks is based on the documentation of the used library, a (manual) review
of the library source code and the corresponding theoretical analysis of the compression
algorithm.

The tests are conducted on a 64-bit system with a Linux based operating system as
a Linux based system is required by the Valgrind tools and there is no easy substitute
available to determine the amount of used heap and stack memory. The proof of concept
will be executed before an operating system is loaded and only a very limited runtime
will be available. This will influence (to some level) the measured compression duration
and memory usage. However, for this project the relative differences are used which
should not be influenced.

Another difference from the proof of concept is that the RAM dumps have to be loaded
from disk. Compared to the execution of the compression algorithm the overhead should
be limited, because in the proof of concept the data to compress is the content of the
RAM instead of a file on disk. For this reason, the time measurement is implemented
in the application itself and started after the full image is loaded in memory. The input
and output buffers are allocated on the heap and subtracted from the reported usage as
in the proof of concept these buffers are not used.

3.3 Acquiring Algorithm

While the compression of the RAM content of a system appears quite easy at first sight,
doing it with code stored in and running from the same RAM is quite complicated. This
results in the need for a more advanced acquiring algorithm than just starting at address
zero, that takes care of the practical implications of such situation.

During the design phase of the algorithm, several design goals have been used as guide-
line. Those goals are that as much as possible of the RAM should be acquired, in a
reasonable time frame and independent from the memory layout of the system. As long
there is enough space to boot the forensic operating system to extract the compressed
data, achieving the highest possible compression is not the goal.

While the goal to acquire the data in a reasonable time frame is very vague, the time
taken by the acquiring algorithm is (almost) fully dependent on the chosen data com-
pression algorithm. Therefore, the designed algorithm should be as generic as possible
and fully independent from the used algorithm to compress the data. When selecting
the data compression algorithm for the proof of concept, only the algorithms that are
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able to compress four gigabytes of data in less than an hour will be considered, even
when a slower algorithm is able to compress better or overwrites less data.

For legacy reasons, the memory layout of a system is not continuous. The available
RAM is split in multiple regions. Between some of those regions address ranges are
reserved for devices that have to be mapped in the address space. Also the firmware of
the system will reserve space for its own use, for the system configuration data or for
other reasons (such as earlier detected memory errors) to mark a part of the memory as
not usable.

Several memory locations are also safe to read, and the possibility exists they contain
interesting information, but it is not possible to overwrite them. For example, because
it is assigned to the system firmware or contains the code or data of the application that
executes the acquiring algorithm. Such locations should be stored by the algorithm on
a different location, where space is created by compressing that data first.

An inevitable consequence of compressing already compressed or encrypted data is that
with most compression algorithms the resulting output is bigger than the input. As the
output of the compression has to be written on the same location as the input originates
from, this results in a conflict. If the situation is not handled, the still-to-be-processed
input is overwritten resulting in the never ending situation of recompressing the last
output from before the situation started. This would destroy all data after the moment
this occurred and is only stopped by reaching the end of the memory region.

If this situation occurs, only two solutions are possible to prevent damaging the not
processed data further. The first solution would be to stop compressing this region and
finish the other regions. The operating system where the application runs that extracts
the compressed data should be informed about where the compressed data ends and
what part should be acquired by reading the raw data. However, if this occurs early
on in the compression stage, it is very likely there will not be enough space to boot the
operating system and an unsolvable situation is created.

A better solution is to drop a small amount of input data and replace it with null bytes,
just enough so that there is space again to continue with the compression. While this
results in a loss of data, compared to the situation when all data is lost because booting
the operating system fails, this has to be accepted.

To reduce the chance such situation occurs, the algorithm should determine its starting
point by measuring the Shannon entropy. By searching for a location with a low entropy
measured over a couple of hundreds of kilobytes, in most situations the loss of data will
be prevented as later on there will be enough space created by compressing low entropy
data to handle the non-compressible regions.

A serious risk is the corruption of the compressed data while it is in RAM. This could
happen because a (small) part is overwritten by the booting operating system or firmware
itself or (in the very unlikely event of) faults in one of the RAM modules that result in
flipped bits. While overwriting the data should be prevented by marking the locations
where the compressed data blocks reside, it is better to take it in account. An easy
solution is to split the compressed data in smaller blocks. Then is in the worst-case only
a small amount of data lost.

Another issue is that many operating systems, such as the Linux kernel in the default
configuration, assume they are loaded and started from a predetermined, fixed address.
The usage of those locations to store the compressed data should be prevented where pos-
sible, for example by moving the compressed parts to a different location. By spreading
the data over multiple blocks, it is easier to move them around.
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3.4 Proof of Concept

To realise and test the effectiveness of the algorithm, a proof of concept is developed.
This proof of concept is a minimal application that is executed before the real operating
system. This application implements the previously described algorithm and compresses
the RAM content. Then it loads the kernel of the operating system that runs an appli-
cation to extract the compressed data. The operating system that is booted after the
compression stage is a modified Linux distribution.

The goal of the algorithm is to acquire as much as possible of the RAM content while
the data should not be overwritten before it is compressed. However, it is inevitable that
a (small) part will be overwritten during the loading of the application that implements
the algorithm. For this reason, the size of the application should be as small as possible
and be executed as early as possible in the boot procedure.

Because this project fits in the bigger picture of projects to make remote acquisition
possible, it is desirable the proof of concept works not only when it is started from CD
or UBS stick, but also when it is booted over the network using PXE. And as more and
more systems use UEFI nowadays, both BIOS and UEFI should be supported.

The development for each of the before mentioned environments is different. For this
reason a bootloader is used to provide a generic runtime to implement the application on
top of. The bootloader used for this project is Syslinux19. Syslinux provides specialised
builds for booting from hard drives, CDs and DVDs, and over the network using PXE
for both BIOS and UEFI based systems.

Applications for Syslinux are developed as loadable modules. Several modules have been
developed for this project and one of them, the memcompress module is used as proof of
concept of the algorithm. After executing the algorithm, it loads a 64-bit OpenWRT20

based operating system. This system runs several scripts to mount a NFS volume on a
remote server and executes a Python script that extracts the RAM content and saves it
to the NFS volume.

OpenWRT is chosen because it is a Linux distribution designed for usage on devices with
limited resources. It is easy to customize and has extensive support for many platforms.
In the upcoming release support for 64-bit Intel systems is added. As this is required
to have access to the full memory when a system has more than three gigabytes of
RAM, the first release candidate that was released just before the start of this project
is used.

To protect the compressed data from the booting operating system, the memory map
as is provided by the firmware of the system is manipulated in such a way that to
the operating system those parts appear to be not usable. By using a modified kernel
command line, the extraction script is instructed which parts of the memory have to be
stored.

The script that extracts the compressed blocks, accesses the RAM using the special
/dev/mem device node that allows a userland application with sufficient access rights
to read and write directly to the RAM using the physical addresses. As last step, the
compressed data is decompressed and an overview is created with which data is recovered,
what is missing and the integrity of the recovered data.

Normally, the Linux kernel prevents access to memory addresses that (according to the
kernel) do not exist. Besides this, as part of an effort to improve the security of the

19 Syslinux 6.03
20 OpenWRT version 15.05-rc1
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system, by default the access is restricted [5, 27] to a small subset of the memory such as
the first megabyte of RAM for legacy reasons and the PCI mmio resources. Because the
extraction scripts must have access to the full memory, including the regions with the
compressed data that are shielded from the kernel, both protections are removed from
the kernel.

3.4.1 Data Format

While not strictly necessary, the proof of concept stores a header before every block
of compressed data. This block contains a marker, the compressed and uncompressed
lengths, the originating address range, how much data is lost and a checksum gener-
ated from the original data. Listing 2 shows the struct definition of the header that is
prepended.

The marker is added so that by simply carving the full RAM, the compressed blocks can
be found back. While this is normally not needed as the memcompress module reports
to the extraction script the locations using the kernel command line, the situation could
occur that the extraction fails and another method is used to dump the RAM. As the
RAM now contains parts of the loaded operating system together with the compressed
blocks on unknown locations, this 8-byte marker can then be used to still recover the
parts that are still intact. When a data block is moved, the original block is not removed
but the marker is modified by overwriting the second byte and change “E” to “3”. This
way if the moved block is lost but the original block is preserved a part of the data can
still be recovered without the risk that both blocks are extracted. For 010editor21, a
binary editor of SweetScape, a carving template is developed to extract the headers from
a raw memory dump.

Because it is not unlikely that compressed blocks are stored in a different region then the
data originates from, the start and end addresses, and the compressed and uncompressed
lengths are stored. This way it is always possible to know the exact location of the
original data and create a map of which regions are extracted and which parts are
missing.

Before it is compressed, the input data is hashed using the SHA-256 algorithm, part
of the SHA-2 family, that acts as checksum during the decompression. This way the
forensic integrity can be maintained and be assured that the decompressed data is equal
to the original input data.

1 struct {

2 unsigned char marker[8] = "MEM\xf1\x88\x15\x08\x5c";

3 uint64_t start_address;

4 uint64_t end_address;

5 uint64_t compressed_length;

6 uint64_t uncompressed_length;

7 uint64_t skipped_length;

8 unsigned char checksum[32];

9 };

Listing 2: The definition of the header that is prepended before every compressed block
of data as struct definition.

21 http://www.sweetscape.com/010editor
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3.4.2 Effectiveness

The last step of this project is to determine the effectiveness of the proof of concept.
To test this, two criteria will be assessed. The first thing to check is how much of the
content of the RAM of a system can be recovered. This will be compared with the
existing methods. To do this, the memory of a virtual machine will be (manually) filled
with a known pattern. After extraction a script is used to determine how much of it can
be recovered. A virtual machine is used as it is very hard to fill the whole RAM of a
system and also to know for sure it is actually completely filled.

To test the second criterion, the proof of concept is tested on how much RAM is required
to boot the operating system to extract the compressed data. With this information, an
attempt is made to give guidelines for which systems this is a viable method while for
others it remains better to use the traditional methods.

While no conclusive data are found regarding the impact of the system firmware on the
amount of data that cannot be recovered from the RAM, further research regarding this
is left outside the scope of this project.
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4 Results

Here the results will be presented from the experiments described in the previous chap-
ter. The same order will be used, first the results of the memory scenarios and data
compression algorithm selection, then the results of the developed algorithm and proof
of concept.

Appendix C has an overview of the developed software components and where they can
be found.

4.1 RAM profiles

A total of twelve memory dumps have been examined as part of this project, with the
focus on the information density of the content. This is measured for the whole dump
and in blocks of four and sixteen kilobytes as this is relevant information regarding
compression algorithms that use block based compression. Table 3 shows the results for
each dump.

While this gives interesting information for the dump as a whole, a more detailed anal-
ysis is possible by visualising the data. Appendix A contains two different methods to
visualize the information density. The first method uses a graph where the entropy is
calculated by dividing the dump in 512 equal sized blocks which each representing a data
point. The second group of graphs show the entropy with much more detail. Colours
are used to indicate the information density and every pixel corresponds to a small block
(between 2048 and 65536 bytes per block, depending on the size of the dump) in the
image.

4.2 Compression Algorithms

The same memory dumps are used to gather the information regarding the data compres-
sion algorithms. Table 4 shows a summary consisting of the means for every algorithm
of the time it took to compress one gigabyte of data, the percentage of the gained space
by the compression and the memory usage during the compression. The results of the
memory usage are split out in the size of the application code, the usage of the stack and
the allocations on the heap. Appendix B contains the information for each individual
dump that was used for this summary.

Based on this information RLE, LZF and Rice are the most promising candidates to
use in the proof of concept. LZF is selected for the proof of concept because it is the
fastest of the three algorithms and because it has a much smaller compression size than
RLE. Rice is not selected because the algorithm has a major drawback. While it looks
great on first sight, it only works under certain conditions and otherwise it crashes or
the output size explodes to many times the size of the original input. If this happens,
the algorithm aborts, clears the output buffers and copies the input buffer to the output
buffer with a null byte prepended to indicate it is not compressed. However, in the
context of this project this is not possible as the original input is no longer there and
there would be no space to boot an operating system. In theory it is possible to revert
the compression so a different algorithm can be used, but this is not implemented and
has not been tested.

Huffman, Shannon-Fano, LZ4 and LZO still provide decent results, but do not perform
as well as LZF and have a higher memory usage and a comparable or significantly
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Entropy Entropy (4k blocks) Entropy (16k blocks)
Scenario (full dump) Min Max Mean σ <1.0 >7.0 Min Max Mean σ <1.0 >7.0

Windows XP 512 MiB (Desktop) 4.83 0.00 8.00 3.37 2.05 37.1% 5.1% 0.00 7.99 4.16 1.26 5.9% 0.3%
Windows 7 x86 2 GiB (Desktop) 5.03 0.00 8.00 3.63 2.65 208.5% 74.6% 0.00 7.99 4.39 1.59 24.3% 18.2%
Windows 7 x64 2 GiB (Desktop) 3.32 0.00 8.00 2.63 1.68 213.6% 0.7% 0.00 7.99 2.98 0.93 14.4% 0.2%
Windows 8.1 x64 4 GiB (Desktop w. FDE) 4.95 0.00 8.00 3.65 2.12 247.5% 93.9% 0.00 7.99 4.21 1.53 52.4% 58.8%
Windows 8.1 x64 8 GiB (Desktop, after couple hours of normal usage) 5.82 0.00 8.00 4.48 2.54 478.2% 666.3% 0.00 7.99 5.17 1.64 52.6% 403.9%
Ubuntu 14.04 x86 2 GiB 5.20 0.00 8.00 3.68 2.42 172.9% 71.3% 0.00 7.99 4.10 2.23 121.6% 56.2%
Ubuntu 14.04 x64 4 GiB (Desktop w. FDE) 4.83 0.00 8.00 3.37 2.17 279.9% 90.2% 0.00 8.00 3.65 1.99 190.0% 68.2%
Tails 1.4 2 GiB (Browsing w. Tor) 6.24 0.00 8.00 4.88 2.37 59.6% 212.2% 0.00 8.00 5.18 2.11 37.2% 195.4%
Tails 1.4 2 GiB (Encrypted folder w. images) 7.39 0.00 8.00 6.59 2.17 25.0% 542.7% 0.00 8.00 6.74 1.94 12.5% 536.5%
Debian x86 7.8 2 GiB (File server w. mixed content) 7.51 0.00 8.00 6.56 2.27 47.5% 543.6% 0.00 8.00 6.69 2.12 37.3% 542.7%
Debian 8.1 x64 4 GiB (Web server w. images) 7.86 0.00 7.97 7.51 1.42 22.0% 1470.2% 0.00 7.99 7.57 1.32 15.6% 1466.4%
OpenWRT 256 MiB 3.34 0.00 7.98 1.71 2.77 68.1% 10.0% 0.00 7.99 1.86 2.75 62.0% 10.1%

Table 3: The information density (Shannon entropy) of the memory dumps measured in bits per byte of data. The entropy is measured over the
whole image and in blocks of four and sixteen kilobytes.
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Memory usage
Failures22 Duration (1G) Gain Code Stack Heap Total

Algorithm Min Mean Max Min Mean Max Min Mean Max Min Mean Max Min Mean Max

RLE - 2.4s 6.3s 23.3s 3.1% 28.4% 73.3% 4.3 K 3.2 K 3.2 K 3.2 K 0 0 0 7.5 K 7.5 K 7.5 K
Huffman 1 / 12 11.6s 17.9s 25.8s 5.6% 39.5% 70.9% 6.4 K 16.8 K 16.8 K 16.9 K 0 0 0 23.2 K 23.2 K 23.3 K
Rice8 10 / 12 52.9s 57.0s 61.1s 16.0% 25.1% 34.3% 6.6 K 424 424 424 0 0 0 7.0 K 7.0 K 7.0 K
Rice16 10 / 12 32.8s 36.3s 39.8s 19.9% 29.2% 38.5% 6.6 K 424 424 424 0 0 0 7.0 K 7.0 K 7.0 K
Rice32 11 / 12 59.6s 59.6s 59.6s -0.0% -0.0% -0.0% 6.6 K 424 424 424 0 0 0 7.0 K 7.0 K 7.0 K
LZ77 12 / 12 n/a n/a n/a n/a n/a n/a 6.2 K n/a n/a n/a n/a n/a n/a n/a n/a n/a
Shannon-Fano - 13.2s 20.6s 31.6s 1.1% 28.6% 57.5% 5.8 K 4.7 K 4.9 K 4.9 K 0 0 0 10.6 K 10.7 K 10.8 K
RLE-LZ77-Huffman 12 / 12 n/a n/a n/a n/a n/a n/a 10.6 K n/a n/a n/a n/a n/a n/a n/a n/a n/a
BWT - 43.5s 131.0s 228.6s 6.8% 57.7% 92.1% 76.3 K 5.3 K 5.3 K 5.4 K 1.1 M 1.1 M 1.1 M 1.1 M 1.1 M 1.1 M
DEFLATE - 16.7s 29.3s 36.8s 6.9% 58.3% 91.5% 49.1 K 672 672 672 261.8 K 261.8 K 261.8 K 311.6 K 311.6 K 311.6 K
LZ4 - 0.6s 1.4s 2.0s 4.6% 51.9% 87.9% 52.6 K 16.4 K 16.6 K 17.1 K 0 0 0 69.0 K 69.2 K 69.6 K
LZF - 2.0s 4.1s 6.5s 3.2% 50.8% 84.7% 4.5 K 3.2 K 3.2 K 3.2 K 0 0 0 7.7 K 7.7 K 7.7 K
LZMA2 - 157.5s 334.3s 452.7s 7.6% 63.6% 94.8% 90.6 K 1.6 K 1.6 K 1.6 K 93.1 M 93.1 M 93.1 M 93.2 M 93.2 M 93.2 M
LZO1 - 2.0s 5.5s 10.3s 5.6% 50.8% 83.6% 5.5 K 376 396 416 64.0 K 64.0 K 64.0 K 69.9 K 69.9 K 69.9 K
LZO1X-1 - 0.6s 1.4s 2.1s 5.5% 51.2% 86.6% 5.2 K 408 408 408 16.0 K 16.0 K 16.0 K 21.6 K 21.6 K 21.6 K
LZOmini - 0.6s 2.1s 9.7s 5.5% 51.7% 86.9% 13.3 K 432 432 432 16.0 K 16.0 K 16.0 K 29.7 K 29.7 K 29.7 K
LZW9 1 / 12 13.8s 24.7s 36.3s 8.6% 45.3% 76.5% 7.6 K 464 464 464 128.3 M 2.5 G 4.0 G 128.3 M 2.5 G 4.0 G
LZW12 3 / 12 32.1s 63.5s 108.9s -4.7% 43.0% 76.5% 7.6 K 464 464 464 130.0 M 1.6 G 4.0 G 130.0 M 1.6 G 4.0 G
LZW15 3 / 12 37.9s 90.8s 156.8s -8.9% 41.0% 82.2% 7.6 K 464 464 464 144.0 M 2.0 G 4.0 G 144.0 M 2.0 G 4.0 G

Table 4: The (averaged) results of the compression tests for each tested algorithm. The duration is normalised to how long it took to compress one
gigabyte. The gain gives the percentage of how much the compression reduced the original size.

22 LZ77 (and also RLE-LZ77-Huffman) was removed because not a single test was finished within 3 hours. Huffman, Rice and LZW have unknown issues that result in the
corruption of the data with certain memory dumps. As most tests failed, Rice, LZ77 and RLE-LZ77-Huffman are removed from further testing.
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bigger compressed size. Only LZ4 compresses better, but at the cost of almost ten times
the memory usage of LZF.

Most of the tested (implementations of the) algorithms are not able to compress more
than four gigabytes of data in a single run. For this reason only the first four out of
eight gigabytes are used dump. Several of the tested algorithms (Huffman, LZ4, LZW,
Rice, Shannon-Fano) had even a slightly lower maximum input size. When an algorithm
wasn’t able to compress the full four gigabytes, those images were slightly reduced in
size (ten bytes) to make the compression possible.

4.3 Acquiring Algorithm

Based on the goals and operational conditions mentioned in the approach, a generic
acquiring algorithm has been developed that will be described now. The algorithm in
pseudo code can be found in Listing 2.

First, the memory map is retrieved from the system firmware. The region entries are
sorted based on their size, with the biggest first. The reason for this is that for the
first region a place must be found where the compressed output can be stored. While
on average this should not be an issue, if by accident the compression is started with a
small memory region with a (very) high entropy the compressed output could be larger
than the region itself.

Each of the regions is then compressed. Before the compression can start, the location
where the output can be stored must be determined. If there is space left in a previous
region that is already compressed, this is used. However, if this is not the case, for
example because this is the first region to compress, this region is checked if it is reserved
or contains (parts of) the application.

If the region is reserved (i.e. the region is readable but can’t be overwritten) or is within
the first megabyte of address space, the entry is put back to the end of the list of regions
that still have to be processed. If a region contains application code, a new region for
this part is created, marked as reserved and also added to the list. The idea of this is
that such regions are compressed to a different, already compressed region, to prevent
the overwriting of critical data like the compression module or interrupt vectors.

Because there is no space in an earlier compressed region to store the compressed output
of this region, there is no option left then to write the compressed data back to the
location of the input that has already been processed. The first thing to determine is
whether this region starts with data with a (very) high entropy. If this is the case, this
part is skipped and a separate region is created for it.

Which part of the memory to compress and where to store the compressed data has
now been determined. The data of the region to compress is divided in multiple blocks.
Each block is independently compressed and stored and contains up to one hundred
megabytes of input data. This way when the data is stored in a different region and this
region has no space left anymore, it can continue on a different location and if for some
reason a part of the data gets overwritten, not the full memory dump will get lost. The
limit of one hundred megabytes of data as input is arbitrarily chosen. However if the
blocks are too small the overhead (80 bytes per block) of the header and compression
algorithm starts to matter and if the blocks are too big more data than needed is lost
when a block cannot be recovered. When there is some practical experience with this
system, this parameter should be fine-tuned further.
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During the compression of a block the algorithm carefully monitors the current output
location. If the output is written to the same region as where the input is read from,
the algorithm will skip small parts (in the current implementation one hundred bytes
per occurrence) of the input and replace them with null bytes23 if continuing results in
writing output past the current read pointer. If the input or output pointer reaches the
end of the region or the maximum amount of data for a single block has been reached,
the block is finished by writing the header to the beginning of the block.

When all regions are compressed the remaining available space is determined. As the
minimal amount of available memory to boot the operating system is known, the system
has to decide what to do when this is not available. In the current design of the algorithm
“random”24 blocks are marked as available until the minimal amount is reached. Further
research is required to determine an optimal strategy, such as assigning a score to the
compressed blocks based on location, origin and entropy, to reduce the chance critical
information will be overwritten.

Then all data blocks are moved to the end of the region in which they reside, which
is usually the biggest “usable” region in the 32-bit address space. This is the easiest
solution to make space for the Linux kernel that must be loaded on a fixed address in the
default configuration. As the total amount of required memory for the kernel loader is
much less than the space that is required to fully boot the operating system, this should
guarantee a successful boot. Overwriting critical locations (e.g. application code) should
be prevented by forcing the compression of it to a different region as is done during one
of the earlier steps.

memregions ← GetMemoryMapFromFirmware()

SortByRegionSize(memregions)
ReverseOrder(memregions) /* start with the biggest region */

foreach memory region m in memregions do
if IsReadableRegion(m) then

CompressRegion(m) /* resulting in 1 or more compressed blocks */

end

end

if not HasEnoughSpaceToBootOperatingSystem() then
repeat

MarkRandomCompressedDataBlockAsAvailable()

until HasEnoughSpaceToBootOperatingSystem()

end

foreach compressed block b do /* without the blocks of prev step */
MoveCompressedBlockToEndOfRegion(b)

end

foreach compressed block b do
MarkCompressedBlockInFirmwareMemoryMapAsReserved(b)

end

BootOperatingSystem(memregions)

Listing 2: A high-level overview of the developed algorithm. The implementation of the
most important functions can be found on the next page.

23 If it is important that the analyst can recognize that data is skipped on a certain location, a repeating
known pattern (like “SKIPSKIPSKIP” etc.) could be used instead of null bytes.
24 Truly random is almost non-existing in computer systems. A PRNG could be used, seeded by reading
(a small part of) the data of a region.
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function CompressRegion(memory region m)

if not HasSpaceInAlreadyCompressedRegion() then
if IsReservedRegion(m) then /* retry this region later */

AddRegionToList(m)

return
else if RegionContainsApplicationCode(m) then

mNew, m ← SplitRegionAfterApplicationCode(m)

AddRegionToList(mNew)
end

if StartsWithHighEntropy(m) then
mNew, m ← SplitRegionAfterHighEntropy(m)

AddRegionToList(mNew)
end
// write output to the location of the processed input

outputAddress ← StartAddress(m)
else

outputAddress ← AddressOfFirstAvailableLocation()

end

sourceAddress ← StartAddress(m)

repeat
sourceAddress, outputAddress ← CompressBlock(sourceAddress, outputAddress)

if IsEndOfRegion(outputAddress) then
// started output in other region but no space is left

// continue output from the start of this region

outputAddress ← StartAddress(m)
end

until IsEndOfRegion(sourceAddress)

end

function CompressBlock(startAddress, outputAddress)
outputStartAddress ← outputAddress
p ← sizeHeader

repeat
if startAddress + p < outputAddress or IsDifferentRegion(outputAddress)
then

outputAddress ← Compress(ReadByte(startAddress + p), outputAddress)

p ++
else /* output reached input */

// compress null byte and skip input to prevent overwriting it

outputAddress ← Compress(0x00, outputAddress)

p ++
end

until p equals to the amount of bytes to compress per block or reached end of region

WriteHeader(outputStartAddress)

return startAddress + p, outputAddress
end
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BOOT_IMAGE=/openwrt/openwrt-ramfs.bzImage memmap=42156K$3102485K

memmap=1048576K$4194304K m3mcomp=43165831@3176945529 m3mraw=1073741824@4294967296,→

Listing 4: An example of how the compression module instructs the kernel how to handle
the acquired data. The memmap parameter is used to hide certain parts of
the address space. Two custom parameters, m3mcomp and m3mraw, are used
to instruct the script where the compressed blocks and uncompressed data
respectively can be found.

The last step is to hide the compressed data for the operating system. By adding the
location and length of the compressed data blocks as reserved space to the memory map
of the system, the Linux kernel will not use these parts and the memory content will
survive the start of the operating system. The acquisition script can now extract the
compressed blocks and store them to the preferred location on a attached hard drive
or to a mounted network volume. Listing 4 shows an example of a modified kernel
command line as is generated by the proof of concept.

4.4 Proof of Concept

The proof of concept, called memcompress, has been successfully implemented as Sys-
linux module, combined with a OpenWRT based operating system that is booted after
the compression phase and a Python script to extract the memory content.

Time limitations prevented the implementation of several of the proposed error handling
mechanisms of the algorithm. This will not impact the testing of the proof of concept
as they are used to handle failure conditions. The not implemented features are the
searching for a low entropy zone to start compressing instead of starting at the beginning
of the region (or a fixed offset in the case when the region starts at 0x100000 as this
is the location of the Syslinux code) and the dropping of compressed regions to make
enough space available for the operating system to boot.

Testing revealed that the used operating system, OpenWRT 15.05-rc1 with 64-bit kernel,
requires 82 megabytes of available memory as absolute minimum. Less than this amount
results in a kernel panic during the booting of the system. The reason for this is most
likely that the kernel tries to relocate itself as part of the boot procedure. At a certain
moment during the relocation it needs space for both the old and the new location which
is not available.

When the minimal amount of memory is available, the system boots successfully. At the
end of the initialisation of the kernel almost 30 megabytes of memory is released that is
no longer needed. This is the space that is available to run the scripts to acquire the
gathered data.

It is very likely that the memory usage of the kernel can be reduced even further. For
the proof of concept the default kernel configuration (besides the patches to remove the
restrictions from the /dev/mem device) of the OpenWRT project was used. Because
the kernel imposes the current minimum, removing the hardware support for the more
exotic systems and disabling the kernel features that are not used would lower it.

Because in the worst-case there is only 10-20 megabytes available for the script that
extracts the data, the decompression and validation steps are separated. This way
these steps can be executed from a different system. The decompression script will also
produce a memory map as can be seen in Listing 5. This memory map gives an overview
of what was successfully recovered and which parts are lost. The system is not able to
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[ 0] - [ 9F7FF] OK

[ 9F800] - [ FFFFF] MISSING

[ 100000] - [ FFFFFF] OK

[ 1000000] - [ 73FFFFF] OK

[ 7400000] - [ D7FFFFF] OK

[ D800000] - [ 13BFFFFF] OK

[ 13C00000] - [ 19FFFFFF] OK

[ 1A000000] - [ 1FEEFFFF] OK

[ 1FEF0000] - [ 1FEFEFFF] OK

[ 1FEFF000] - [ 1FEFFFFF] OK

[ 1FF00000] - [ 1FFFFFFF] OK

Listing 5: An overview of a reconstructed memory map (of a virtual machine with 512
megabytes of RAM), which was generated during the extraction of the com-
pressed data, based on the information in the headers of the compressed blocks.
It is expected that the region between 0x9F800 and 0xFFFFF is missing be-
cause this range is used for the EBDA25, video memory and ROM area on
BIOS based systems. When the decompressed data don’t match the check-
sum that was generated during the compression, the region will be marked
with “Checksum INVALID!” instead of “OK”.

detect what is lost as a result of loading the proof of concept itself, only what is lost
during or after the compression of the data which under normal circumstances should
be nothing.

4.4.1 Comparison with Existing Solutions

To assess the performance of the proof of concept, it is compared against msramdmp,
bios memimage and using OpenWRT with the extraction script, but without shielding
the memory from the kernel. This should cover most existing solutions that can be
used to retrieve the memory content of a system that must be rebooted to a different
operating system before it can be retrieved. The tests were conducted with a virtual
machine with 1024 megabytes of RAM filled with a known pattern. Table 5 shows the
results of the different tests, consisting of the amount of data that could be recovered
and the memory ranges that were not recoverable.

The initial idea was to use a generic virtualisation solution, for example VMWare Fusion
or VirtualBox, fill the memory with a known pattern and execute the test. However, this
was not successful. The memory was filled by pausing the virtual machine and directly
modifying the memory content that is stored to disk when a virtual machine is paused.
The moment the virtual machine was resumed, it crashed and the content was cleared
during the reboot.

Then, an attempt was made to create a Syslinux module that fills the RAM. This is
a very tricky approach as it is very easy to also overwrite the code of the module or
one of its dependencies such as a libc function. This was solved by carefully writing an
independent subroutine that could function as long as a region of around two hundred
bytes around the location of the code was preserved. However, the moment the first
megabyte of the RAM was overwritten, the virtual machine crashed.

This was traced back to the interrupt vectors that are installed by the firmware and
reside in the first megabyte of RAM. The crashes were solved by disabling interrupts
using the cli instruction. The consequence of this was that it was no longer possible

25Extended BIOS Data Area
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Method Recovered Not recoverable

msramdmp 1022.8 M 99.883% 1.2 M 0.117%
bios memimage 1022.7 M 99.872% 1.3 M 0.128%
Proof of Concept 1019.5 M 99.556% 4.5 M 0.444%
Unmodified OpenWRT x64 878.0 M 85.746% 146.0 M 14.254%

Table 5: An overview of how much of the data the existing solutions and the new devel-
oped proof of concept are able to retrieve.

to reboot the virtual machine and execute the test. The bare minimum that had to
be preserved to still be able to reboot the virtual machine was a total of around 350
kilobytes.

A solution was found in modifying the QEMU26 system emulator. The subsystem that
allocates the virtual machine memory was modified in such a way that instead of over-
writing the memory with null bytes, it writes the required pattern. This way the whole
memory of the virtual machine is filled the moment the firmware is loaded and the
execution starts.

At first sight, it appears the proof of concept requires significant more memory than,
for example, msrampdmp, that is also developed as Syslinux module. However, a major
part of this additional memory usage can be attributed to the newer Syslinux version.
Msramdmp was developed as Syslinux 4 module while the proof of concept was developed
using the latest version, Syslinux 6. The major difference is that the latest version uses
almost 2.7 megabytes on a location which was not used at all in Syslinux 4.

To find out what the components are that cause this significant increase in memory
usage, the memory layout of the binary as is generated by the linker during the building
of Syslinux is examined. There are two parts of Syslinux that contribute significantly
to this increased memory usage. First, the way modules are implemented has been
rewritten from DOS compatible COM executables (and an improved version of this
called COM32 for 32-bit executables) to an ELF based system that includes support
for shared dependencies and many other improvements. This new loader is much more
complex and its implementation is bigger. However, the biggest increase is caused by
file info. This is a globally allocated array of file info structs. It contains the

state of the file descriptors which are used to implement file support in Syslinux. Each
file descriptor has its own sixteen kilobytes buffer, resulting in a memory usage of two
megabytes because there is a maximum of 128 file descriptors. This array is part of the
global data and is actively cleared during the initialization of Syslinux, even when not
all file descriptors are used, which is usually the case. By lowering the maximum number
of file descriptors or dynamically allocating the corresponding struct when it is needed,
the memory usage could be reduced to 2.5 megabytes. Further reduction would require
the removal of unused functionality. However, any change to the code of Syslinux results
in a modified version which must be maintained.

4.4.2 Limitations

The proof of concept in its current state has several limitations. One of the limitations
is that because Syslinux is used, the code runs in 32-bit protected mode with linear
addressing. As such, it is not able to reach the memory with an address of 0x100000000
or higher. In practical terms this means that only the lower three gigabytes of RAM

26 http://www.qemu.org
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can be compressed. To be able to extract the memory above this limit, the extraction
script is signalled using the kernel command line which region it should dump as raw
data. However, this requires a 64-bit kernel.

While it should also work when PAE (Physical Address Extension) is used, during the
tests it consistently failed after 3.9 gigabytes of physical memory. While this means that
the PAE system must be used as only the first three gigabytes resided in the first four
gigabytes of the address space (and therefore the physical address is 4.9G instead of
3.9G), something prevented the kernel to modify the page tables in a way to make the
higher memory regions accessible. Most likely this is a side effect of hiding that part of
the memory from the kernel.

Another limitation of Syslinux is that there is no control over where the modules are
loaded. While the core of Syslinux is loaded on a fixed address, the modules are loaded on
the heap. The observed behaviour of the heap allocator used by Syslinux is that the first
region it uses is the last usable region with an address lower than 0x100000000. It starts
to allocate from the beginning of the region. It is observed27 that28 many29 machines
have a small usable region at the end of the first four gigabytes of the address space,
even when there is more than four gigabytes of RAM available. The firmware allocates
some space before this region for its own usage or to store the ACPI configuration. If the
compression module fits in this region, this is the location where it will be loaded.

If this small region is missing or above the first megabyte of address space only a single
usable region is found, the module is loaded directly after the Syslinux code. Because
the location of the Syslinux code is fixed, the modules are loaded starting from address
0x330000.

Syslinux is known to work on both BIOS and UEFI based systems. However, during
this project only BIOS based systems have extensively been tested. While the mod-
ule should work without modification on the UEFI build of Syslinux, this is yet to be
confirmed.

27 http://www.linuxquestions.org/questions/linux-kernel-70/bios-e820-memory-map-4175535958
28 http://blog.fpmurphy.com/2012/08/uefi-memory-v-e820-memory.html
29 https://communities.intel.com/thread/60382?start=15&tstart=0
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5 Discussion

The last step of this project is to analyse and discuss the results and their meaning.
For this a similar order as with the approach and results will be used, starting with
the results of the created memory dumps based on the scenarios that are given in the
approach.

A side effect of creating artificial scenarios and use them instead of collecting a memory
dump from many different machines is that there is no way of knowing if they are
representative. Because for a large part the content of the RAM of a system is influenced
by the applications that are started and the files that are opened, the scenarios can
only be used to give an impression of what can be found instead of data that can be
statistically analysed.

An interesting observation that can be made is that there doesn’t appear to be a relation
between the entropy and the size of the system memory. It is a very real possibility this
is an anomaly caused by having only a single 256 megabytes and 512 megabytes sample.
However, there is a possibility this can be explained by looking at the behaviour of the
memory management in operating systems.

When an operating system doesn’t use its full RAM for data and applications, the
system tries to use it for other purposes such as file caches. This explains why dumps
of scenarios with hard to compress data such as images or that use an encrypted file
system have many regions with a very high entropy. At the same time Windows systems
actively clear the content of small groups of pages [46] to ensure it can quickly respond
to the need for a new page by a process.

The dumps also support the initial assumption that even when there is a lot of hard
to compress data in the RAM, there are always certain locations that can be com-
pressed.

The question is if it is always possible to create enough space to safely boot an operating
system and what the best algorithm is to do this. Table 6 shows for each algorithm and
scenario if the operating system has enough space to boot after the compression.

LZF is chosen because it gives the best overall performance, but the LZO variant LZO1X-
1 is a close call. It has the downside that it uses the heap instead of the stack for its
memory requirements, but compresses significantly better (5.5% instead of 3.2% for the
webserver with images) in the worst-case scenario. While the heap allocations are most
likely easy to change to use the stack as it appears to be two fixed size buffers that are
allocated, the downside of the heap is that every allocation is equal to more data that
is overwritten while the stack size is determined on compile time of Syslinux and fixed
for all modules.

This worst-case scenario demonstrates the limit of what is possible with the current proof
of concept. With 3.2% gained space on a four gigabytes memory dump, there is around
131 megabytes available to boot the operating system. Testing revealed that the proof of
concept needs 82 megabytes as bare minimum. If the same compression gain is reached
on a two gigabytes system, booting the system will simply fail. Table 7 shows for each
algorithm and several RAM sizes if it would be able to compress the RAM under the
worst-case conditions sufficiently enough to be able to boot the operating system.

The proposed solution for the algorithm is to drop compressed blocks until the minimum
available space is reached. While this has not yet been implemented in the proof of
concept, there is also a different approach possible. If instead of only measuring the
entropy to find the starting point, the entropy of the whole memory is measured, a
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RLE Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø
Huffman Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø ✗ Ø
Shannon-Fano Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø ✗ Ø
BWT Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø
DEFLATE Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø
LZ4 Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø
LZF Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø
LZMA2 Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø
LZO1 Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø
LZO1X-1 Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø
LZOmini Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø
LZW9 Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø ✗ Ø
LZW12 Ø Ø Ø Ø Ø Ø Ø Ø ✗ ✗ ✗ Ø
LZW15 Ø Ø Ø Ø Ø Ø Ø Ø ✗ ✗ ✗ Ø

Table 6: An overview if the proof of concept would be able to acquire the data and
boot the operating system for each combination of compression algorithm and
scenario.

better compression algorithm could be used when the overall entropy is very high. For
example, LZMA2 has a significantly better compression, at the cost of a much slower
compression speed and a memory usage of more than 90 MiB. As this memory usage
is higher than the required memory to start the proof of concept, it is most likely not
worth the effort. The algorithm with the second best compression results, DEFLATE,
could be interesting to explore further as its memory usage is much lower (312 kilobytes)
compared to LZMA2.

While a prediction would be preferred of how likely it is this algorithm will be able
to recover the whole memory on a certain system, it is very hard to give one. Not
only are there way too few samples, the observed distribution of the gained compression
doesn’t follow one of the typical statistical distributions. It is possible to have a negative
compression, while at the same time the ability to compress data is limited by the
entropy, according to the theory of Shannon.

In advance it is (very) hard to predict how the content of the memory of a system will look
like. For this reason two examples are given with the minimum amount of RAM that the
system must have to be able to successfully compress it and boot the operating system.
In the worst-case scenario with a webserver filled with images, the system must have
almost 2700 megabytes of RAM. In the case of an encrypted volume on a system that
runs Tails the minimum amount of RAM would be almost 500 megabytes. In all other
scenarios it would work with even less as compression gains of up to 84.7% (Windows 7
64-bit desktop) have been observed. Looking at those numbers and computer systems
multiple gigabytes of RAM have become common, it is likely it will succeed.
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Algorithm 256.0 M 512.0 M 1.0 G 2.0 G 4.0 G 8.0 G

RLE ✗ ✗ ✗ ✗ Ø Ø
Huffman ✗ ✗ ✗ ✗ ✗ ✗
Shannon-Fano ✗ ✗ ✗ ✗ ✗ Ø
BWT ✗ ✗ ✗ Ø Ø Ø
DEFLATE ✗ ✗ ✗ Ø Ø Ø
LZ4 ✗ ✗ ✗ Ø Ø Ø
LZF ✗ ✗ ✗ ✗ Ø Ø
LZMA2 ✗ ✗ ✗ Ø Ø Ø
LZO1 ✗ ✗ ✗ Ø Ø Ø
LZO1X-1 ✗ ✗ ✗ Ø Ø Ø
LZOmini ✗ ✗ ✗ Ø Ø Ø
LZW9 ✗ ✗ ✗ ✗ ✗ ✗
LZW12 ✗ ✗ ✗ ✗ ✗ ✗
LZW15 ✗ ✗ ✗ ✗ ✗ ✗

Table 7: An overview that shows if an algorithm will be able to compress the data of a
system with a certain amount of RAM when the data has the same compression
ratio as the worst-case scenario.

It is very likely that the RAM usage of the used operating system can be further reduced.
While OpenWRT is chosen because it is a ready to use minimal Linux distribution, there
is still room for improvement. Currently the root file system is embedded in the kernel
binary for ease of use, that has to be decompressed during the boot phase. Also many
kernel features that are not used and many drivers for uncommon hardware are still
enabled.

The proof of concept has the same limitation that many of the existing solutions have,
which is the lack of support to acquire the memory content that is mapped above the
address 0x100000000. Because the content is compressed a normal 64-bit kernel can be
booted where the acquisition script was used to read the content above the 4G limit,
effectively circumventing the limitation. The reason for this is that Syslinux modules run
in 32-bit protected mode. An improvement would be if PAE could be used or a way to
run certain modules in 64-bit mode is implemented in Syslinux. This way the additional
space could be used to create more space for the kernel below the 4G limit.

It is important to remember that when a system has more than three gigabytes of RAM,
only thee gigabytes is mapped in the first four gigabytes of address space. Everything
more is mapped to higher addresses. The scenario with the worst compression gain that
has been observed in this project required 2700 megabytes of RAM to create enough
space to boot the kernel. If a situation occurs that is even slightly harder to compress,
not everything can be recovered.
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6 Conclusion

This research project introduced a new method to extract the content of the RAM of
a running system by rebooting it to a special operating system with a modified boot
loader. The boot loader compresses the RAM, hides the locations with the compressed
data and loads the operating system.

First, the question is answered how compressible the content of the RAM is. This is
done by measuring the Shannon entropy of memory dumps that have been created for
this project and each represents a realistic scenario. The Shannon entropy limits the
theoretical compressed size. None of the scenarios reached the theoretical maximum
and the entropy (measured over the full memory dump) is between 3.34 and 5.82 bits
per byte, except for scenarios with mostly encrypted or already compressed files such as
images. The highest entropy found was 7.86 bits per byte.

The same dumps have been used to select a suitable compression algorithm, based
primarily on the memory usage during the compression and secondarily the compression
time and gained space. Multiple suitable algorithms have been found, but the LZF
algorithm has been chosen to be used in the proof of concept.

The proof of concept has been implemented as Syslinux module. It executes a custom
developed acquisition algorithm, compresses the data and hides the compressed data
for the operating system by modifying the memory map as is provided by the system
firmware. Then the operating system is started, which is a slightly modified version
of OpenWRT. This way the operating system has no knowledge of the existence of
those parts of the memory. To extract the compressed data, a Python script has been
developed that uses a modified version of /dev/mem of which the (security) restrictions
are removed and has the ability to access memory addresses that do not exist according
to the kernel.

The forensic integrity is ensured by generating a cryptographic hash of the input before
the data is compressed that acts as checksum. This checksum is added to a custom
developed header that is prepend before every compressed block, together with meta
information about the origin of the data.

A comparative test with the existing solutions found that at the cost of an (slightly)
increased memory usage (4.5 megabytes instead of 1.2 - 1.3 megabytes), the memory can
be compressed and a Linux based operating system booted. How much of the memory
usage can be attributed to the system firmware could not be established, but existing
literature suggests that UEFI firmware could have a significant bigger overhead, however
testing this (especially on real system) is difficult.

Compared to booting a Linux based operating system without compressed memory
(resulting in 146 megabytes of overwritten data) a significant improvement has been
realised. Based on this the conclusion is that the developed technique is feasible and
working, and pre-boot memory compression is effective in reducing the amount of data
that will be overwritten by a booting system.
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7 Future Work

First and foremost extensive testing with the proof of concept should be conducted on
a representative set of real machines. Current tests have been limited to several virtual
machine solutions which will not cover the tricky corner cases found in real systems.
Specially machines with UEFI firmware should be tested. While Syslinux has specialized
versions for UEFI machines and the modules should work on every version, the proof of
concept manipulates the system on such low level that breaking compatibility is a real
risk.

Next, the proposed but not yet implemented features of the algorithm should be imple-
mented in the proof of conept. Currently, the proof of concept uses a fixed starting point,
but a dynamic method based on entropy measurement is proposed. Also the method of
last resort to drop compressed blocks to make space for the operating system to boot if
the minimum is not reached is not implemented.

The ability to acquire memory above the 4G address limit is implemented in the script
that extracts the compressed data instead of in the pre-boot compression module itself.
This limits the space gained by the compression. The implementation of PAE or a 64-bit
mode in Syslinux modules could solve this limitation.

Future research could be conducted to build a large database with memory samples from
different machines. This makes it possible with some statistical analysis to predict the
likelihood of success for a certain device that is used for a certain purpose.

Another interesting topic could be to find a better algorithm to drop compressed blocks
when not enough space is available based on the actual location of operating system
objects instead of simply selecting a random block. An example of this is to identify a
memory region that will never contain the crypto keys on the common operating systems
with the most used encryption solutions.

However, this could make anti-forensics easier by modifying an encryption solution and
force it to use exactly that location. When a heuristics based approach is used, it could
be circumvented by artificially creating a block in memory that (has a high chance to
be) matched by the algorithm and is dropped but in fact contains the critical informa-
tion.
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Appendices

A RAM Content Entropy Graphs

This appendix contains the graphs of the entropy for each of the memory dumps created
during this project. First, the entropy is plotted as function over the size of the image
(measured over 512 equally sized blocks). The second group of graphs is much more
detailed. Each pixel corresponds with a block of data with a size between 2 and 64
kilobytes, depending on the size of the memory dump. The pixels are grouped in vertical
rows, with each row corresponding to 1

1024 of the dump. The colours are used to indicate
the entropy (blue for (very) low, red for (very) high) on a certain location.

(a) Windows XP 512 MiB (Desktop) (b) Windows 7 x86 2 GiB (Desktop)

(c) Windows 7 x64 2 GiB (Desktop) (d) Windows 8.1 x64 4 GiB (Desktop w. FDE)
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(e) Windows 8.1 x64 8 GiB (Desktop,
after couple hours of normal usage)

(f) Ubuntu 14.04 x86 2 GiB

(g) Ubuntu 14.04 x64 4 GiB (Desktop w. FDE) (h) Tails 1.4 2 GiB (Browsing w. Tor)
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(i) Tails 1.4 2 GiB (Encrypted folder w. images) (j) Debian x86 7.8 2 GiB (File server)

(k) Debian 8.1 x64 4 GiB (Web server) (l) OpenWRT 256 MiB
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(a) Windows XP 512 MiB (Desktop)

(b) Windows 7 x86 2 GiB (Desktop)

(c) Windows 7 x64 2 GiB (Desktop)

(d) Windows 8.1 x64 4 GiB (Desktop w. FDE)

(e) Windows 8.1 x64 8 GiB (Desktop, after couple hours of normal usage)

(f) Ubuntu 14.04 x86 2 GiB

(g) Ubuntu 14.04 x64 4 GiB (Desktop w. FDE)
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(h) Tails 1.4 2 GiB (Browsing w. Tor)

(i) Tails 1.4 2 GiB (Encrypted folder w. images)

(j) Debian x86 7.8 2 GiB (File server)

(k) Debian 8.1 x64 4 GiB (Web server)

(l) OpenWRT 256 MiB
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B Detailed Compression Algorithm Benchmark Results
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RLE 1.6s 5.9s 5.5s 47.8s 11.4s 5.9s 93.3s 5.6s 5.0s 4.8s 59.7s 0.8s
Huffman 9.2s 37.0s 26.4s 61.3s 46.3s 38.1s 58.7s 44.2s 49.0s 51.7s n/a 3.3s
Rice8 30.5s n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 13.2s
Rice16 19.9s n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 8.2s
Rice32 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 14.9s
LZ77 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
Shannon-Fano 9.3s 38.5s 26.3s 76.1s 83.7s 39.3s 74.1s 43.4s 49.4s 51.7s 126.6s 3.5s
RLE-LZ77-Huffman n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
BWT 105.9s 249.6s 250.2s 514.9s 480.3s 225.4s 354.0s 233.2s 276.9s 267.6s 914.2s 10.9s
DEFLATE 15.8s 57.8s 33.4s 113.7s 117.0s 62.6s 121.9s 73.5s 70.1s 63.8s 134.2s 4.4s
LZ4 1.0s 3.6s 2.0s 7.3s 7.1s 3.6s 7.1s 3.8s 2.2s 1.7s 2.5s 0.2s
LZF 1.9s 7.6s 4.0s 14.5s 16.2s 7.8s 14.0s 9.3s 11.6s 11.1s 25.9s 0.6s
LZMA2 177.2s 628.5s 322.9s 1313.7s 1353.5s 639.2s 1497.6s 781.7s 845.4s 793.0s 1810.7s 39.4s
LZO1 2.1s 9.6s 4.0s 17.4s 23.0s 9.2s 15.4s 12.1s 17.6s 17.0s 41.1s 0.7s
LZO1X-1 1.0s 3.3s 1.9s 6.6s 8.5s 3.5s 7.2s 3.6s 2.0s 1.7s 2.2s 0.2s
LZOmini 1.0s 3.5s 2.0s 7.0s 38.7s 3.7s 7.4s 3.8s 2.1s 1.8s 2.4s 0.2s
LZW9 10.5s 44.9s 40.4s 96.1s 106.9s 43.9s 82.5s 57.2s 72.6s 71.7s n/a 3.5s
LZW12 23.6s 109.4s 65.2s n/a 263.8s 101.5s n/a 143.4s 217.8s 215.7s n/a 8.0s
LZW15 34.6s 167.3s 75.7s n/a 391.8s 147.4s n/a 210.3s 313.6s 300.3s n/a 10.7s

Table 8: The time in seconds to compress a memory dump with each of the algorithms.
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Algorithm CS G CS G CS G CS G CS G CS G CS G CS G CS G CS G CS G CS G

RLE 352.6 M 31.1% 1.3 G 36.7% 1.4 G 32.0% 2.9 G 27.8% 2.9 G 26.8% 1.3 G 33.8% 2.5 G 37.8% 1.6 G 20.5% 1.8 G 8.9% 1.8 G 9.2% 3.9 G 3.1% 68.3 M 73.3%
Huffman 310.6 M 39.3% 1.3 G 36.9% 864.1 M 57.8% 2.0 G 50.4% 1.2 G 70.9% 1.3 G 34.6% 1.9 G 51.8% 1.6 G 21.7% 1.9 G 7.1% 1.9 G 5.6% n/a n/a 107.0 M 58.2%
Rice8 430.1 M 16.0% n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 168.3 M 34.3%
Rice16 410.0 M 19.9% n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 157.4 M 38.5%
Rice32 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 256.0 M -0.0%
LZ77 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
Shannon-Fano 325.9 M 36.3% 1.3 G 32.8% 869.7 M 57.5% 2.6 G 34.1% 2.9 G 26.5% 1.4 G 31.8% 2.6 G 35.5% 1.6 G 21.4% 1.9 G 6.8% 1.9 G 4.5% 4.0 G 1.1% 115.6 M 54.9%
RLE-LZ77-Huffman n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
BWT 152.0 M 70.3% 744.9 M 63.6% 162.7 M 92.1% 1.1 G 72.1% 1.7 G 58.1% 656.7 M 67.9% 997.5 M 75.6% 959.6 M 53.1% 1.5 G 22.9% 1.5 G 26.6% 3.7 G 6.8% 42.1 M 83.5%
DEFLATE 144.1 M 71.9% 704.9 M 65.6% 174.1 M 91.5% 1.1 G 73.0% 1.6 G 60.0% 642.2 M 68.6% 1018.2 M 75.1% 950.9 M 53.6% 1.5 G 23.3% 1.5 G 26.4% 3.7 G 6.9% 42.9 M 83.2%
LZ4 196.4 M 61.6% 869.1 M 57.6% 247.7 M 87.9% 1.4 G 65.1% 1.8 G 53.5% 819.2 M 60.0% 1.3 G 66.2% 1.1 G 44.7% 1.6 G 18.9% 1.5 G 23.3% 3.8 G 4.6% 51.5 M 79.9%
LZF 195.8 M 61.8% 869.4 M 57.5% 313.3 M 84.7% 1.4 G 64.0% 1.9 G 52.8% 825.3 M 59.7% 1.4 G 66.0% 1.1 G 43.8% 1.7 G 17.3% 1.6 G 19.9% 3.9 G 3.2% 53.1 M 79.3%
LZMA2 103.6 M 79.8% 543.1 M 73.5% 107.1 M 94.8% 795.9 M 80.6% 1.3 G 67.4% 508.5 M 75.2% 757.2 M 81.5% 780.4 M 61.9% 1.5 G 26.2% 1.4 G 29.2% 3.7 G 7.6% 37.4 M 85.4%
LZO1 200.6 M 60.8% 881.8 M 56.9% 335.9 M 83.6% 1.5 G 63.0% 1.9 G 52.5% 837.4 M 59.1% 1.4 G 65.3% 1.1 G 43.7% 1.6 G 18.7% 1.6 G 21.3% 3.8 G 5.6% 53.1 M 79.3%
LZO1X-1 196.2 M 61.7% 892.6 M 56.4% 273.9 M 86.6% 1.5 G 63.7% 2.0 G 50.8% 849.1 M 58.5% 1.3 G 66.5% 1.1 G 43.6% 1.6 G 18.3% 1.6 G 22.1% 3.8 G 5.5% 51.2 M 80.0%
LZOmini 193.4 M 62.2% 878.8 M 57.1% 268.0 M 86.9% 1.4 G 64.5% 1.9 G 51.6% 833.5 M 59.3% 1.3 G 67.2% 1.1 G 44.3% 1.6 G 18.6% 1.6 G 22.4% 3.8 G 5.5% 50.5 M 80.3%
LZW9 217.0 M 57.6% 996.4 M 51.3% 842.7 M 58.9% 2.0 G 49.9% 2.4 G 39.9% 961.5 M 53.1% 1.7 G 58.1% 1.3 G 35.5% 1.8 G 8.6% 1.8 G 9.2% n/a n/a 60.2 M 76.5%
LZW12 207.0 M 59.6% 992.0 M 51.6% 511.6 M 75.0% n/a n/a 2.4 G 40.8% 905.8 M 55.8% n/a n/a 1.3 G 34.6% 2.1 G -4.7% 2.0 G -2.4% n/a n/a 60.0 M 76.5%
LZW15 225.7 M 55.9% 1.1 G 47.4% 365.1 M 82.2% n/a n/a 2.5 G 36.4% 964.4 M 52.9% n/a n/a 1.4 G 31.7% 2.2 G -8.9% 2.1 G -4.4% n/a n/a 61.4 M 76.0%

Table 9: This table shows the remaining size (or compressed size, CS) and how much space is gained (G) by the compression for every memory dump
with each of the tested compression algorithms.
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Algorithm Stack Heap Stack Heap Stack Heap Stack Heap Stack Heap Stack Heap Stack Heap Stack Heap Stack Heap Stack Heap Stack Heap Stack Heap

RLE 3.2 K 0 3.2 K 0 3.2 K 0 3.2 K 0 3.2 K 0 3.2 K 0 3.2 K 0 3.2 K 0 3.2 K 0 3.2 K 0 3.2 K 0 3.2 K 0
Huffman 16.8 K 0 16.8 K 0 16.9 K 0 16.9 K 0 16.8 K 0 16.8 K 0 16.8 K 0 16.9 K 0 16.8 K 0 16.8 K 0 n/a n/a 16.8 K 0
Rice8 424 0 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 424 0
Rice16 424 0 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 424 0
Rice32 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 424 0
LZ77 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
Shannon-Fano 4.9 K 0 4.9 K 0 4.8 K 0 4.9 K 0 4.9 K 0 4.9 K 0 4.7 K 0 4.9 K 0 4.9 K 0 4.9 K 0 4.9 K 0 4.9 K 0
RLE-LZ77-Huffman n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
BWT 5.3 K 1.1 M 5.3 K 1.1 M 5.3 K 1.1 M 5.3 K 1.1 M 5.3 K 1.1 M 5.3 K 1.1 M 5.3 K 1.1 M 5.3 K 1.1 M 5.3 K 1.1 M 5.3 K 1.1 M 5.4 K 1.1 M 5.3 K 1.1 M
DEFLATE 672 261.8 K 672 261.8 K 672 261.8 K 672 261.8 K 672 261.8 K 672 261.8 K 672 261.8 K 672 261.8 K 672 261.8 K 672 261.8 K 672 261.8 K 672 261.8 K
LZ4 16.4 K 0 16.4 K 0 16.4 K 0 16.4 K 0 16.4 K 0 16.4 K 0 17.1 K 0 16.4 K 0 16.4 K 0 17.1 K 0 17.1 K 0 17.1 K 0
LZF 3.2 K 0 3.2 K 0 3.2 K 0 3.2 K 0 3.2 K 0 3.2 K 0 3.2 K 0 3.2 K 0 3.2 K 0 3.2 K 0 3.2 K 0 3.2 K 0
LZMA2 1.6 K 93.1 M 1.6 K 93.1 M 1.6 K 93.1 M 1.6 K 93.1 M 1.6 K 93.1 M 1.6 K 93.1 M 1.6 K 93.1 M 1.6 K 93.1 M 1.6 K 93.1 M 1.6 K 93.1 M 1.6 K 93.1 M 1.6 K 93.1 M
LZO1 408 64.0 K 408 64.0 K 376 64.0 K 376 64.0 K 416 64.0 K 376 64.0 K 376 64.0 K 408 64.0 K 408 64.0 K 408 64.0 K 416 64.0 K 376 64.0 K
LZO1X-1 408 16.0 K 408 16.0 K 408 16.0 K 408 16.0 K 408 16.0 K 408 16.0 K 408 16.0 K 408 16.0 K 408 16.0 K 408 16.0 K 408 16.0 K 408 16.0 K
LZOmini 432 16.0 K 432 16.0 K 432 16.0 K 432 16.0 K 432 16.0 K 432 16.0 K 432 16.0 K 432 16.0 K 432 16.0 K 432 16.0 K 432 16.0 K 432 16.0 K
LZW9 464 512.3 M 464 2.0 G 464 2.0 G n/a n/a n/a n/a 464 2.0 G 464 4.0 G 464 4.0 G 464 4.0 G 464 4.0 G n/a n/a 464 128.3 M
LZW12 464 514.0 M 464 2.0 G 464 1.0 G 480 4.0 G n/a n/a 464 2.0 G 480 4.0 G 464 4.0 G n/a n/a n/a n/a n/a n/a 464 130.0 M
LZW15 464 528.0 M 464 4.0 G 464 1.0 G 480 4.0 G n/a n/a 464 2.0 G 480 4.0 G 464 4.0 G n/a n/a n/a n/a n/a n/a 464 144.0 M

Table 10: This last table shows the runtime memory usage (for both the stack and the heap) for each of the compression algorithms.

43



C Overview Source Code Components

Component Description Repository URL30

Compression Test Suite The developed tools to benchmark the compression algorithms. GitHub
Syslinux modules Contains the following Syslinux modules:

- meminfo: Prints the memory map of a system;
- memcompress: Compress the current RAM content and boot the Linux kernel;
- memchunkfinder: Locate compressed blocks in the RAM of the current system;
- memread: Read the content of the RAM, show how much of it is filled with a
known pattern and the memory ranges where it was (not) found;
- memwrite: Fill the RAM with a known pattern.

GitHub

Acquisition scripts The Python scripts that are used to extract and decompress the compressed blocks. GitHub
Kernel Patch The required modifications to remove the restrictions from /dev/mem. GitHub
MemCarve.bt Carve a memory dump for the block header marker, so it can be manually extracted and

decompressed.
GitHub

QEMU Patch The required modifications to fill the VM memory with a known pattern. GitHub

Table 11: An overview of the developed components and the URL to the repository where they can be found.

30Main project repository: https://github.com/MartijnB/memcompress
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