Graph500 in the public cloud

Master project Systems and Network EngineeringHarm DermoisSupervisor: Ana Lucia Varbanescu

What is Graph 500

- List of the best top 500 best graph processing machines
- Benchmark tailored to graph processing
- Other metrics

What is Graph 500

The Graph 500 List

No	vem	ber 2014					
No.	<u>Rank</u>	<u>Machine</u>	Installation Site	<u>Number</u> <u>of</u> <u>nodes</u>	<u>Number</u> of cores	<u>Problem</u> <u>scale</u>	<u>GTEPS</u>
1	1	DOE/NNSA/LLNL Sequoia (IBM - BlueGene/Q, Power BQC 16C 1.60 GHz)	Lawrence Livermore National Laboratory	98304	1572864	41	23751
2	2	K computer (Fujitsu - Custom supercomputer)	RIKEN Advanced Institute for Computational Science (AICS)	82944	663552	40	19585.2

What is Graph 500

93	93	DAS-4/VU (SuperMicro)	VU University	128	0	30	7.0867
172	172	Okorok (Dell - PowerEdge C1100)	Home	1	8	17	0.228
182	182	Scott Beamer's iPad (Apple - iPad 3)	UC Berkeley	1	2	14	0.0304

Getting on the list

Input : scale and edge factor

Create edge list

Make graph (timed)

For **64** random search **keys** do: Breadth First Search (timed) Validate (Skipped)

Report time

Edge list generation

- Tuple of start vertex to end vertex and a label
- Uses the scale and edge factor
- Randomize edge list

1	2	3	4	5	6	7	8	9	10	11	12	13	14
Α	Α	Α	В	С	С	D	Е	Е	Е	F	F	F	I
В	С	D	Е	F	G	G	Н	F	I	I	J	G	к
											1		(

н

Graph construction

- Change edge list to other data structure with more locality
- Compressed Row Storage

Edge label	1	2	3	4	5	6	7	8
col_index	2	3	4	1	5	1	6	7
row_pointer	1	4	6	9				

Breadth First Search

Why run Graph 500 on the cloud?

How good is the cloud at graph processing?

Advantage:

No need to own equipment.

Elastic for larger and larger graphs.

Disadvantage:

Performance might be really bad ...

... and it is cool to have your name in the list!

Research questions

Is it possible to **model** the **performance** of the Graph500 benchmark on a **public cloud** as a function of the used resources?

- What is the performance?
- What scale fits?
- What is the model?

Methodology & Scope

One implementation: graph500_mpi_simple Hardware:

DAS-4 (With and without InfiniBand) OpenNebula (On the DAS-4) Amazon Webservices EC2 Metric: TEPS

BFS performance = number of traversed edges per second (TEPS)

Hardware specifications

Where	# Nodes	Processor	CPUs	RAM	Price
DAS-4 VU	46(all)	2.40GHz	2*8	24 GB	
DAS-4 LU	16	2.40GHz	2*8	48 GB	
OpenNebula	8	2.00 GHz	24 (8 VCPU)	66 GB	
c3.large	"Unlimited"	2.80GHz	2 VCPU	4 GB	\$0.105 per Hour
r3.large	"Unlimited"	2.40GHz	2 VCPU	16 GB	\$0.175 per Hour

graph500_mpi_simple

- Distributes the vertices evenly over the nodes Works top-down, per level Each level => task queue Uses Non blocking communication Limitations
 - Needs the number of nodes to be a power of 2
 - Uses only 1 CPU for BFS

Results DAS-4 no InfiniBand

Mean TEPS

Nodes vs TEPS DAS-4 no Infiniband Scale VS TEPS DAS-4 no InfiniBand 4.50E+007 4.50E+007 4.00E+007 4.00F+007 3.50E+007 3.50E+007 Scale 9 3.00E+007 3.00E+007 Scale 12 2.50E+007 Nodes 2 Mean TEPS 2.50E+007 Scale 15 lodes 2.00F+007 Scale 18 2.00E+007 Nodes 8 Scale 21 1.50E+007 1.50E+007 Nodes 16 Scale 24 1.00F+007 1.00E+007 5.00E+006 5.00E+006 0.00E+000 0.00E+000 12 0 10 14 16 18 12 22 24 8 10 14 16 18 20 26 Tipping points Scale

- More nodes => more TEPS for scales 15 and larger
- TEPS is a linear function of the number of nodes

Results Amazon c3.large

Nodes vs TEPS c3.large Amazon 7.00E+007 7.00E+007 6.00F+007 6.00E+007 5.00F+007 Scale 9 5.00E+007 2 Nodes Scale 12 TEPS 4.00E+007 Nodes 4.00E+007 Mean TEPS Scale 15 8 Nodes 3.00E+007 Scale 18 16 Nodes 3.00E+007 Scale 21 32 Nodes 2.00E+007 Scale 24 2.00F+007 -H-Scale 27 1.00E+007 1.00E+007 0.00E+000 0.00E+000 8 10 12 14 16 18 20 22 24 26 28 15 0 5 10 20 25 30 35 Scale Number of nodes

Scale VS TEPS c3.large Amazon

- Same behavior as DAS-4 no InfiniBand at higher scales.
- Scale 15 and lower a different behavior
- Even less of a decline than the DAS-4 at higher scale.

Results Amazon r3.large

- Results almost identical to the c3.large
 - Can handle larger scales because it has more RAM

Comparison Amazon and DAS-4

10%-50% difference for large scale and number of nodes

Research questions

Is it possible to **model** the **performance** of the Graph500 benchmark on a **public cloud** as a function of the used resources?

- What is the model?
- What is the performance?
- What scale fits?

Conclusion

A model can be made:

- TEPS(scale) = { a*#nodes+b, #nodes <= T { slow decrease, #nodes > T
 - where Tipping point = T = f(scale, architecture)

a,b=f(scale?, architecture)

- Scale 30 is doable with 32 nodes r3.large
- Overall competitive, performance-wise, with the ranks 5-10 supercomputers.

Future work

- More nodes and larger scales.
- Multiple processes per node.
- Different cloud instances.
- Optimizations.

Prediction*

# Nodes	2048	8192	2097152
GTEPS	1.9891	7.9565	2036.8654
Cost per hour	\$245.76	\$983.04	\$251,316.48

With 8192 nodes => above the DAS-4. With 2097152 nodes => 6th place can be achieved

*Disclaimer: this is just a prediction

Performance = max(CPU Time, Comm time) / Traversed edges

- CPU time => function of number of nodes
- Comm time => function of scale, number of nodes, and message buffering

Technical difficulties

Does not work properly with MPI 1.4 OpenNebula cloud shutdown the day I started On demand instances limit

Results OpenNebula

- Lines cross more often.
- 8 times **less** TEPS compared to InfiniBand.

Results DAS-4 with InfiniBand

- After tipping point a harsh decline.
- Scales above 15 double in TEPS as Nodes double.

Intel MPI Benchmark

Size (bytes)	DAS-4 µsec	DAS-4 InfiniBand µsec	OpenNebula µsec	Amazon µsec
0	3.81	46.55	112.75	81.82
1024	4.93	56.97	130.76	91.40
2048	5.96	68.36	269.74	102.96

Output

SCALE:	21
edgefactor:	16
NBFS:	64
graph_generation:	3.52925
num_mpi_processes:	8
construction_time:	2.32684
min_time:	1.63176
firstquartile_time:	1.87955
median_time:	1.96341
thirdquartile_time:	2.01269
max_time:	2.1227
mean_time:	1.94503
stddev_time:	0.097596
min_nedge:	33554432
firstquartile_nedge:	33554432
median_nedge:	33554432
thirdquartile_nedge:	33554432
max_nedge:	33554432
mean_nedge:	33554432
stddev_nedge:	0
min_TEPS:	1.58074e+07
firstquartile_TEPS:	1.66714e+07
median_TEPS:	1.70898e+07
thirdquartile_TEPS:	1.78524e+07
max_TEPS:	2.05633e+07
harmonic_mean_TEPS:	1.72513e+07
harmonic_stddev_TEPS:	109058
Program time:	130.366

Related work

Suzumura, Toyotaro, et al. "Performance characteristics of Graph500 on large-scale distributed environment." *Workload Characterization (IISWC), 2011 IEEE International Symposium on*. IEEE, 2011.

Angel, Jordan B., et al. *Graph 500 performance on a distributed-memory cluster*. Tech. Rep. HPCF–2012–11, UMBC High Performance Computing Facility, University of Maryland, Baltimore County, 2012.

Edge list and graph creation

	Α	В	С	D	E	F	G	Η	I	J
Α	0	1	1	1	0	0	0	0	0	0
В	1	0	0	0	1	0	0	0	0	0
С	1	0	0	0	0	1	1	0	0	0
D	1	0	1	1	0	1	0	0	0	0
Е	0	1	0	0	0	1	0	1	1	0
F	0	0	1	0	1	0	1	0	1	1
G	0	0	0	0	0	0	0	0	0	0
Н	0	0	0	0	1	0	0	0	0	0
I	0	0	0	0	1	1	0	0	0	1
J	0	0	0	0	0	1	0	0	1	0

# of non zeros	1	2	3	4	5	6	7	8
col_index	2	3	4	1	5	1	6	7
row_pointer	1	4	6	9				

Future work

- More nodes and larger scales.
- Multiple processes per node.
- Further investigate effect of the network on the performance for the DAS-4.
- Different cloud instances.
- Optimizations.