
Improving the Performance of an
IP-over-P2P Overlay for Nested Cloud

Environments
Research Project 2

Dragos Barosan
dragos.barosan@os3.nl

Supervisors:
Ana Oprescu
Kaveh Razavi
Kyuho Jeong

Renato Figueiredo

August 19, 2015

Abstract

IPOP is a relatively new open source software that allows users to define
their own private virtual networks, leveraging social network connections.
Achieved throughput over IPOP links is bellow what is measured over phys-
ical links. Analysis shows that a main source of overhead is the encryption
provided by IPOP. Traffic is encrypted by default over all IPOP connections,
with no granularity in enabling or disabling it. This research proposes and
implements the feature of selective security, in which only a few users will
be affected by the encryption overhead. The investigation produced detailed
measurements in order to profile the application and help on improving the
performance. Code analysis shows that the current IPOP version suffers from
implementation issues in the code handling packet forwarding. Solutions are
proposed, implemented and tested, with discovered issues being discussed.

i

Contents

Abstract i

1 Introduction 2

2 Research questions 3

3 IPOP Overview 4

4 Setup 7

5 Security Functionality 9

6 Profiling IPOP’s code 14

7 Optimizing IPOP’s code 17
7.1 Serialization . 18
7.2 Asynchronous Writes . 19

8 Conclusions and Future Work 21

9 Appendices 24
9.1 Appendix A . 24
9.2 Appendix B . 24

1

1 Introduction

Cloud computing has become a ubiquitous way of assuring an affordable infrastructure
for today’s new or developing companies. Even tough technology has matured in recent
years, there are still requirements that cannot be fulfilled by providers. This comes
either from economical or technological limitations. Academic research focused on these
issues and, by leveraging open-source software, aims to create architectures that can
interoperate with cloud providers and deliver more flexibility to the users.

One such initiative is Kangaroo, developed as a joint international project between
VU University Amsterdam, University of Florida and Universite de Rennes [1]. It was
developed as a solution to three issues currently present in the cloud providers services:
No fine granularity in selection of virtual machine (VM) types, limited or no control
over VM placement, lack of standardized API. The project proposes a tenant-centric
architecture on top of resources of different clouds by employing nested virtualization.
Kangaroo promotes vertical scaling: End-to-end network performance is much better
between co-located nested VMs and larger VMs are often more cost-efficient. The main
technologies used are Openstack [2] for managing the nested VMs, Skippy [1] for pro-
viding an abstract API for users regardless of the underlying cloud provider and IPOP
for end-to-end connectivity. Once resource limits are reached within a VM, nested VMs
have to communicate with their counterparts on different VMs. IPOP is used to manage
this connections by creating an overlay over the network that connects the underlying
VMs.

IPOP is an ongoing project that aims to provide a secure, cheap and simple to configure
end-to-end connection between users [3]. IPOP’s architecture, inspired by Software-
Defined Networking(SDN), allows for flexibility and straightforward implementation of
new extensions. Virtual links are created and managed by IPOP-tincan module. Links
are created between users that are identified as peers, using XMPP [4] as a peer discovery
protocol. In order to assure connections even when the users are behind a Network
Address Translation(NAT) device, STUN [5] and TURN[6] protocols are used.

Preliminary tests have been done in order to verify the project setup, using a 1 Gbps
link between two servers running IPOP. We noticed that there is a difference between
network throughput when two users are communicating directly (i.e. 950 Mbps) and
when they are using IPOP (i.e. 550 Mbps and 160 Mbps when security is enabled).
While we expect a small performance overhead due to a level of indirection (i.e., up
to 10%), this initial measurements show around 6x degradation in performance with
security, and 42% degradation in performance without security. Once the causes of this
performance penalty are identified, we can improve IPOP’s performance substantially.
If IPOP proves to be an architecture that can support a performance close to what
is available on direct links, then a larger user adoption can follow and more use cases
become feasible.

2

2 Research questions

The aim of this investigation is to analyze the IPOP architecture, identify potential
performance bottlenecks and provide, if possible, solutions. The scope of this project
can be formulated as the following research questions:

• What are the sources of the performance problems?

• What are possible solutions for fixing the problems?

3

3 IPOP Overview

IPOP is an open source software that enables users to define and create their own virtual
private networks(VPN). In order to create VPN tunnels, an XMPP overlay is used. The
overlay enables IPOP nodes to discover each other and exchange endpoint information.
To do this, they connect to an online social server(OSN) that is XMPP compliant. This
server has relationships defined between users that enables them to connect. An example
of a social network with this support enabled is Google Talk[7].

In the IPOP network, nodes are identified by their UID (User Identifier). A 40 bytes
IPOP header is added to outgoing packets, containing 20 bytes destination UID and 20
bytes source UID. Using this information and a table mapping the IP of the peer to
the UID, packet forwarding is achieved. After the IPOP header is attached, all packets
that are to be transmitted over IPOP tunnels, regardless if they are TCP or UDP
datagrams, are encapsulated with a new UDP and IP header, as shown in Figure 1, and
transported over physical links as UDP datagrams. This is done using libjingle[8], a
Google implementation of Jingle[9], as a signaling and forwarding protocol.

Figure 1: IPOP encapsulation process

4

Because of IPv4 address space exhaustion, it is important for users to be able to use
IPOP when they are behind a NAT device. For this purpose NAT traversal functionality
is implemented. Session Traversal Utilities for NAT(STUN) is used in order for peers
to discover their public IP. In cases where a symmetric NAT is implemented, Traversal
Using Relays around NAT(TURN) is used. The selection of the two tunneling protocols
is done automatically by IPOP and it is transparent to applications running on the host.

Being based on SDN principles, the architecture separates the control plane and the
data plane into multiple modules.

Figure 2: IPOP Architecture [3] 1

As it can be seen in Figure 2, there are 3 main modules that provide the functionality
of IPOP:

• IPOP Controller is responsible for setting up the policy of creating and destroy-
ing links between peers. It uses the Tincan API in order to control the behavior
of IPOP-Tincan and implement different policies (e.g. link creation criteria, IP
address allocation, network configuration scheme). If a UID is not mapped to
any IP then IPOP-Tincan sends the packet to the controller who must handle it,
usually by creating a new connection. At the time of this writing, there are two
controllers available: SocialVPN and GroupVPN. The former creates connections
to social peers such as each user has their own view of the network(each user has
its own subnet and IP address translation takes place). In GroupVPN connec-
tions are created among everyone who is defined as being part of a group on the

1image 3.1 from IP over P2P (IPOP) White Paper 07/18/2014

5

OSN server. Every node is in the same virtual address space, so no IP transla-
tion mechanism is enabled. There are also two approaches on creating the links:
On-Demand and Proactive. On-Demand mode creates a link only when a packet
needs forwarding towards a certain peer and the link is trimmed after a period of
inactivity. Proactive mode creates links immediately when a peer is detected as
online.

• IPOP-Tincan is the core component of the system. It leverages libjingle to
achieve three capabilities: XMPP support, encryption, connection establishment
and management between peers. It receives the packets from IPOP-Tap and for-
wards them to the appropriate connection based on the UID. Here is where the
table with UID-IP mappings is maintained. In a separate thread(i.e. Link Setup
Thread), it offers an JSON API to the controller and listens for any requests in or-
der to implement the IPOP policies. It also forwards to the controller any messages
coming from the XMPP overlay.

• IPOP-Tap is the lowest level module and is an interface between IPOP-Tincan
and the IPOP virtual network interface on the host. It has the role of interacting
directly with the host operating system. At startup, it creates and configures a
virtual network interface (VNIC) and assigns an IP address as specified by the
controller. The VNIC is created using the kernel tap module. It reads outgo-
ing packets from the VNIC and writes incoming packets to the VNIC. It is also
responsible for adding and removing the IPOP header from packets.

6

4 Setup

In order to perform performance test on the IPOP architecture, a setup had to be build.
It is represented in figure 3 and consists of the following hardware:

• An Ubuntu 14.04 x64 server with 8 GB of memory, two 1 Gbps Ethernet interfaces
and an Intel processor with eight cores running on a frequency of 1.8 Ghz. It acts
as an Online Social Network Server.

• Two Ubuntu 14.04 x64 servers with 16 GB of memory, 2 Gigabit Ethernet interfaces
and an Intel processor with eight cores running on a frequency of 2.5 Ghz. Their
role is that of IPOP nodes.

Figure 3: Test Setup

7

The OSN server is connected to both IPOP nodes and provides the services necessary
for the functionality of IPOP. In order to fulfill the role of an OSN, ejabberd[10] was
installed. This enables peers and group memberships to be defined and allows IPOP
nodes to communicate over XMPP with the OSN server in order to query status in-
formation about their peers. For the experiments, multiple users were registered with
ejabberd and configured to be part of the same group. Ejabberd also provides STUN
services, but it was not enabled since NAT was not used.

The IPOP nodes, besides being connected to the OSN server, are also directly con-
nected between them. This was done in order to accurately measure the network perfor-
mance on the link without the complexity of adding extra variables (e.g. intermediary
nodes, multiple routes). IPOP 15.01.01[11], the latest version at the start of the project,
was compiled from source on this servers and the GroupVPN controller[12] was used.
There is one configuration file, config.json, used by both the controller and IPOP-
Tincan. This must contain at least the IP address that will be used by IPOP tap
interface in the virtual network, the IP address of the OSN server and the xmpp user-
name and password of one of the users previously registered on the OSN server. A
sample configuration file is attached in appendix A.

8

5 Security Functionality

IPOP was initially developed under the principle that tunnel connections between peers
are build upon the Internet infrastructure, which is inherently insecure. In order to sat-
isfy the requirement of security that is desired by some users and because UDP tunnels
are used, IPOP makes use of the DTLS (Datagram Transport Layer Security) proto-
col[13]. DTLS is a derivation of TLS (Transport Layer Security). It is designed to
accomplish the same objectives as TLS (i.e. integrity, authentication and confidential-
ity), but for packets that use UDP as a transport protocol. Security is turned on by
default, but users have the possibility of turning it off by adding ”sec”: false as a
parameter in the IPOP configuration file.

Bandwidth measurements between the two IPOP nodes has been performed using
iperf. The performance was measured over the IPOP link in two cases: security disabled
and security enabled. TCP was specified as transport protocol for the iperf tests, so
in both cases we have the situation where TCP datagrams are transmitted over UDP
tunnels. The results are shown in the table bellow.

Table 1: Security bandwidth test results

Security Average (Mbps) Maximum (Mbps)

Enabled 161 186
Disabled 550 668

As it can be seen from table 1, the overhead of using DTLS introduces a performance
penalty of approximately 243%. At this moment, there is no possibility of selecting to
which peers a connection should be secured and to which it should not.

To motivate why a more granular approach for enabling security would be better,
an example use case is provided. One can think of a distributed virtual cluster where
an organization may have its infrastructure virtualized over multiple cloud providers.
In this case, virtual machines that belong to the same provider would communicate
securely. If IPOP is used in this scenario, the requirement for IPOP secure links would
be only between peers on different cloud provider networks because data would flow over
the public network.

In order to understand how the feature of selective security can be enabled, the process
of setting up the link between two peers must be explored.

The process of creating an IPOP connection is shown in figure 4 and described bellow
in seven steps.

9

Figure 4: Connection creation in IPOP

1. The controller, using the Tincan API function get state asks for status informa-
tion about its peers.

2. Upon receiving the call, Tincan queries the OSN server about the configured peers
and checks for which of them connections are created.

3. Tincan transmits the gathered information to the controller via notification mes-
sages, one for each peer.

4. The controller generates a connection request message and sends it to the other
peer using the XMPP overlay.

5. The receiving peer of the connection request calls the Tincan API function create link

to indicate that it is ready to start a connection. Some of the function arguments
are obtained from the configuration file, while others are results of local computa-
tions.

6. Tincan initiates the connection and also generates a connection response message
to the first peer.

7. Upon the receival of the connexion response, the controller of the first peer also
calls create link and a connexion is established.

10

It is important to mention that the parameter that enables or disables security is
obtained from the configuration file and used when create link is called, as it will
prove useful in the implementation of selective security.

As described in section 3, when IPOP starts, it creates a tap interface that is used to
capture traffic from the host. This interface has an allocated IP which is transmitted to
its peers and can be used to identify the IPOP node. Taking this into account, a first
approach for enabling selective security would be to list in the configuration file the IPs
of nodes that require secure communication. The controller is to be modified so in the
process of setting up the link, before calling create link, it will search the IP of the
current peer in the configuration file and enable security only if there is a match. This
approach has issues regarding the scalability of the method, it becomes tedious to add
peer IPs in the configuration file once their number grows significantly. Another issue
is the fact that not all peer IPs may be known in advance by the users who have to
add them in the configuration file. This requires extra communication between different
users so they settle on a consistent value and every time there is an IP change this has
to be communicated. These factors introduce unnecessary management overhead, so a
better solution would be required.

To resolve this management overhead, we should not rely on the IP addresses for
enforcing selective encryption. For this purpose, the notion of security group is defined
and works as follows.

1. Each IPOP node is part of one or more security groups, as specified in the config-
uration file.

2. The peers will communicate to each other the security groups they are member of.

3. Each peer will make an intersection of the set of locally defined groups with the
ones received from the peer.

4. If the result is a non-empty set, then security is enabled, otherwise communication
goes over an unencrypted link.

The challenge that presents itself with this solution is how to implement step two of
the process described above. Both peers have to transmit to each other the groups they
are part of. Looking at figure 4, it can be seen that there is an exchange of messages
between the peers (i.e. connection request and connection response) that could be used to
encode security group information. The connection request is created by the controller,
while the connection response is created by Tincan, so both IPOP modules have to be
modified.

Debugging the application and analyzing the code, the format of the two messages
was determined and it is presented in figures 5 and 6:

11

TYPE: con req DATA: Fingerprint UID

Figure 5: Connection request message

DATA: Fingerprint,
TYPE: con resp Connection Candidates UID

Figure 6: Connection response message

As it can be seen the format is similar. A good place to introduce the group information
is in the DATA section. Because the fingerprint is of fixed size and the length of
Connection Candidates can vary, in order for IPOP to parse correctly the messages, we
preserve this order and introduce the group data at the beginning of the field encoded
together with its length in the first position. The parser will read the group information
with the specified length, it will then parse the remaining of the message as before.

Figures 7 and 8 show the message format after the modification.

DATA: Group List Length,
TYPE: con req Group List, UID

Fingerprint

Figure 7: Connection request message with group information

DATA: Group List Length,
TYPE: con resp Group List, Fingerprint, UID

Connection Candidates

Figure 8: Connection response message with group information

12

The implementation has been completed and tests show that it is functional. Security
groups can now be defined and as a result selective security is enabled. Bandwidth
improvement up to three and a half times can now be achieved using this feature.

Using this method for enabling security scales well because only a few security groups
have to be defined in the IPOP configuration file. No individual information about IPOP
peers is required and multiple IPOP nodes can be part of one or more security groups.
The problem of management overhead is also solved. Now organizations can predefine
criteria on which IPOP nodes are members of a specific security group and as a result the
users will only have to consult this norms in order to choose the correct configuration.
This benefits come at the expense of an increased cost in the implementation of the
solution. The comparison of the two proposed solutions is presented in table 2.

Table 2: Comparison between IP based and Security Group based Selective Security

IP address based Security Group based

Implementation Complexity 3 7

Management Overhead 7 3

Scalability 7 3

13

6 Profiling IPOP’s code

For this project and future work, it is important to determine the runtime behavior of
IPOP. To accomplish this, multiple measurements have been performed. It is important
to mention that all results presented in this section are from tests where TCP was used
as transport protocol for outgoing packets.

Firstly it was measured at what point does a bottleneck occur. Bandwidth tests
were done over the IPOP link with various packet lengths. We started with a small
packet size (i.e. 50 bytes), measured the bandwidth achieved and moved on with an
increased packet size. It is apparent that the maximum average bandwidth (i.e. 550
Mbps) is achieved when the packet is of size 1000 bytes. When performing the same test
directly over the physical link, it was observed that for a packet size of 1000 bytes we
get the same average bandwidth as when transmitting over IPOP links. The bandwidth
results diverge once we increase the packet size over 1000 bytes. Increasing the packet
size continues to increase the achieved throughput over the physical link, towards the
channel limit of 1 Gbps. With IPOP links, for values higher than 1000 bytes, we get
approximately the same average as for packet sizes equal to 1000 bytes, but with a bigger
variation of bandwidth measured in the interval of a second. This shows that IPOP can
handle traffic with packet sizes under 1000 bytes, but problems appear once that limit
is reached.

In order to investigate if the application is CPU bound, a CPU load test was done.
Because IPOP is a multi-threaded application and it is important to measure each core
in part, mpstat [14] was used as measuring tool. During the execution of the program
it was observed that, on the sending side, no core went near 100% utilization, while on
the receiving side, one of the cores was most of the time at 100% or near that value.
Further investigation showed that the receiving thread of IPOP-Tap was responsible for
this intense activity, indicating that the receiver side may be a bottleneck.

To profile the code with more accuracy, specialized tools were used: OProfile[15] and
Zoom[16]. Both are statistical profiling tools that determine the amount of time spent on
certain functions by sampling the processor. In order to get meaningful results, symbol
information is required by the tools. For this purpose kernel and libc debug symbols
were installed and IPOP was compiled with debug information.

The tools were used in the following cases on both the receiver and the sender nodes:

• On iperf running over an IPOP connection

• On iperf running over a direct connection

• System wide profiling during an iperf test over an IPOP connection

• System wide profiling during an iperf test over a direct connection

• On IPOP-Tincan while iperf was running

14

In order to gather a significant number of samples, tests were run for the duration
of ten minutes and were repeated multiple times in order to eliminate any possible
error. The files containing the full results are available on Github in the link provided
in appendix B for everyone desiring to further work on improving the project.

One of the results shows how many more samples are captured in a system wide profile
test when running IPOP and when not. This is shown in table 3.

Table 3: System wide number of samples collected by OProfile

IPOP sender node IPOP receiver node

IPOP running IPOP not running IPOP running IPOP not running

15087703 797849 28793400 833717

It is important to notice that when IPOP is not running, the number of collected
samples is similar. When IPOP is running we see that the number of samples collected
from the sender is half of that on the receiver node. This further suggests that the
receiver is a possible bottleneck in the communication.

Another observation can be made about the difference in the number of samples col-
lected when IPOP is running and when it is not. The increased number of samples comes
from the underlying activity of IPOP, specifically IPOP-tincan module. Analyzing the
profiling results on the receiver side during the iperf test, without IPOP enabled, we
can see that the function copy user generic string is present with the most number of
samples. When the iperf bandwidth test is done over IPOP links, we can see that the
number of samples for copy user generic string in the context of iperf is approximately
the same, but extra copying takes place with functions such as copy user generic string
and memcpy sse2 unaligned that are being used by IPOP-tincan. The two func-
tions used by IPOP-tincan for copying introduce together in the results approximately
7.5 more samples than copy user generic string used by iperf. The same observation
can be done on the sender side where copy user nocache is the dominant function
in number of samples captured in the processor when iperf is running over physical
links. Once communication takes place over IPOP links, the dominant function be-
comes copy user generic string, used together with memcpy sse2 unaligned as copying
routines by IPOP-tincan. This extra copying takes place as a result of IPOPs architec-
ture inner-workings. When an user space application is ready to transmit data over the
network it calls kernel space functions which build the packet. If the packet is towards
an IPOP node, the IPOP tap interface captures the packet and it is brought back in user
space where it is processed by IPOP. After that the message is passed to kernel space
where the final packet is constructed and sent over the physical interface. The inverse

15

operations takes place at the receiver: the packet is received on the physical interface in
kernel space, passed to IPOP for processing in user space, sent in kernel space where it
is routed to the IPOP tap interface and it finally reaches the application in user space.
The process is exemplified in figure 9.

Figure 9: IPOP message transmission [3] 2

The process described above does introduce extra overhead due to the extra copying
and context switching and may affect the performance of IPOP, but not to the extent
described in section 1. If this was truly the cause then on both sides processors with load
of 100& should be observed since the overhead introduced by the extra copying on both
the sender and receiver is at the same magnitude, judging by the number of captured
samples.

In both nodes(i.e. receiver and sender) it is observed that the nf conntrack kernel
module[17] is one of the top symbols present in the results. This is used for connection
tracking and if disabled it could reduce the stress on the CPU.

Another symbol present in the results is pthread mutex lock, used for synchronizing
the receiving and sending queues of IPOP-Tincan and by libjingle. Investigating ways
to reduce dependency on mutexes would eliminate part of the overhead and possibly
improve performance.

2image 3.2 from IP over P2P (IPOP) White Paper 07/18/2014

16

7 Optimizing IPOP’s code

IPOP is still an young project, development starting in 2013, and work is done to
continuously improve the product. Since most of the time was spent on making the
software work, rather then on developing the most efficient implementation, it is clear
that it is room for improving the performance of the code.

Because we are interested in the bandwidth performance, it is important to explore
the part of the code that handles packet forwarding. As described in section 3, there are
two modules that handle packet forwarding: IPOP-Tincan and IPOP-Tap. The former
is the one that interacts with the physical interface and the process is mostly under the
responsibility of libjingle which, considering that was developed by Google, was assumed
to be scalable and was not investigated. IPOP-Tap interacts with the VNIC and the
libjingle receive and send queues. It was the primary investigation target.

As it can be seen from figure 2, IPOP-Tap is implemented with two threads. The
implementation of the threads is found in the packetio.c source file. In order to get
a better understanding of the packet forwarding workflow, the process of receiving and
sending packets with IPOP is illustrated in figures 11 and 10. The sending and the
receiving thread are components of IPOP-TAP.

Figure 10: Sending a packet in IPOP

17

Figure 11: Receiving a packet in IPOP

The sending thread reads packets that are generated locally from the tap interface
and encapsulates them with the IPOP header and optionally performs IP translation.
After encapsulation, it adds the packet to the sending queue for processing by the packet
handling thread, part of IPOP-Tincan.

The receiving thread removes a packet from the incoming queue and optionally per-
forms IP translation. The Ethernet frame destination address is updated with the local
IPOP VNIC MAC address in order to be accepted by the operating system. The IPOP
header is removed and the packet is sent to tap interface.

7.1 Serialization

It is apparent that both the receiver and sending threads introduce serialization in the
packet forwarding process. There are three tasks that have to wait for each others
completion before a new packet can be handled. In order to better perceive how time is
distributed, code timing has been performed. This has been done using Linux function
clock gettime(), available in C in the time.h library [18]. It is the timing function with
one of the best precisions available, up to nanoseconds. The results are illustrated in
table 4.

Table 4: Code execution timing results

Sending Thread Receiving Thread

Read Process & Add Packet Receive from
Packet from VNIC to send queue Incoming Queue & Process Write to VNIC

2-4 µs 8-12 µs 2-4 µs 10-20 µs

As the table shows, there are sections in each thread that execute at a faster rate than

18

others. More specifically, the writing operations occupy the largest amount of time. The
times for reading and processing the packet have been merged because the measurements
show that the processing time for the packet is negligible.

A proposed solution for solving the serialization problem is implementing the Producer-
Consumer pattern in the discussed threads. Each thread is separated in two threads
labeled as Producer and Consumer as follows:

• In the receiver thread:

– The code responsible for receiving and processing packets from the incoming
queue will act as Producer.

– The code section that writes packets to the VNIC will act as Consumer.

• In the sending thread:

– The code responsible for reading packets from the VNIC will act as Producer.

– The code section that processes and adds packets to the send queue will act
as Consumer.

The pattern works because, as we saw in table 4, the Producer code executes at a
faster rate than the Consumer code. This observation assures us that the Consumer will
never have to wait for packets from the Producer and will continuously execute its code
routine.

The implementation has been done without mutexes, which is possible since there is
only one Consumer and only one Producer. The downside is that two cores will always
be used at 100% percent since the threads will continuously check if the buffer between
the Producer and Consumer is empty or full. A possible refinement is the use conditional
signals to announce the state of the buffer.

The results of the implementation have been measured and have shown to average at
approximately 500 Mbps. Although improvements were expected, results show a slight
decrease in average throughput. Timing measurements for the two threads were done
and in order to identify the problem. It is apparent that the execution time of the
Producer has increased on average. As a result there are multiple instances where the
Consumer has to wait for packets to process. This is the probable cause of no gain
in performance. It is not clear why the Consumer execution time is so high and the
causes are to be investigated. Possible explanations are the use of extra structures and
indirection in accessing memory and also the use of volatile variables, which are not
saved in caches.

7.2 Asynchronous Writes

Another issue with the process shown in figure 11 is that of synchronous writes. Writing
to the tap interface is the biggest bottleneck and it is important to improve on this
issue. A proposed solution for increasing efficiency when writing on the VNIC is to use
multiple asynchronous writes. This way the writes will be queued one after another

19

and will immediately start after one finishes, without waiting for the Producer in the
receiving thread to issue a new write.

In Linux there are two possibilities for executing asynchronous writes: libaio[19] and
POSIX AIO [20]. The former is not available on any other platform other than Linux and
it enqueues asynchronous reads and writes directly in the kernel, which should lead to
good performance. The main drawback is that it does not works on all file descriptors.
As discovered during testing, if used on socket file descriptors, libaio’s I/O functions
will fall back on synchronous behavior. For this reason, POSIX AIO was used. The
implementation is described:

• The Consumer thread launches a number of asynchronous write requests.

• When one of them completes it will callback a write completion handler.

• The handler has the role of synchronizing multiple write requests with the Producer
thread and also to create new write requests.

The results of this implementation were also tested and the throughput result was
approximately 250 Mbps. Debugging the code and searching how POSIX AIO is im-
plemented, the loss of throughput can be explained. The illusion of asynchronous AIO
is achieved by having multiple parallel threads that execute in parallel blocking AIO.
When a write is finished, a new thread is launched where the write completion han-
dler will run. The overhead of creating a new thread every time a new write request
is generated(i.e. whenever a packet is received) affects the performance of the code. A
better solution that is to be explored is implementing the principle of POSIX AIO, with
multiple threads in parallel, but without using a handler. This would reduce overhead
but could introduce new complexity in synchronizing the threads.

20

8 Conclusions and Future Work

The investigation determined that encryption, used by default in IPOP, is a big source
of performance overhead that decreases significantly the achievable throughput. As
a solution, we implemented the feature of selective security, which effectively triples
the communication bandwidth for connections that do not require encryption, while
maintaining the security over links that do require it. This was done by leveraging
the existing protocol messages and the changes are backward compatible with previous
versions of IPOP.

Complete measurements have been done in order to determine the behavior of IPOP.
Using multiple tools and methods, a profile of the code was achieved. This results are
shared and can be used to further research the software and improve upon it.

Based on profiling results and code analysis, it was determined that there are issues
with code that handles packet forwarding in IPOP. The identified problems are serial-
ization and blocking synchronous writes, most affected being the receiver.As solutions,
the Consumer-Producer pattern has been proposed for the former, while for the latter
asynchronous writes is suggested. We implemented this solutions and discovered issues
that reduce performance and offered possible resolutions.

This research focused mostly on IPOP code, without investigating in depth libjingle
code, which is part of the forwarding process. It is interesting in future work to search
for possible bottlenecks in this area and propose solutions. Future work also includes
bug checking and solving the issues of the implementations described in this paper.

21

References

[1] Genc Tato Kyuho Jeong Renato Figueiredo Guillaume Pierre Kaveh Razavi Ana
Ion and Thilo Kielmann. Kangaroo: A Tenant-Centric Software-Defined Cloud
Infrastructure. url: http://www.cs.vu.nl/~kaveh/pubs/pdf/ic2e15.pdf.

[2] Openstack.org. Home OpenStack Open Source Cloud Computing Software. 2015.
url: https://www.openstack.org/ (visited on 08/18/2015).

[3] Pierre St. Juste Kyuho Jeong Renato Figueiredo Youna Jung. IP over P2P (IPOP).
url: http : / / ipop - project . org / wp - content / uploads / 2014 / 07 / IPOP -

WhitePaper-1407.pdf.

[4] Xmpp.org. The XMPP Standards Foundation. 2015. url: http://xmpp.org/

(visited on 08/18/2015).

[5] Tools.ietf.org. RFC 5389 - Session Traversal Utilities for NAT (STUN). 2015. url:
https://tools.ietf.org/html/rfc5389 (visited on 08/18/2015).

[6] Tools.ietf.org. RFC 5766 - Traversal Using Relays around NAT (TURN): Relay
Extensions to Session Traversal Utilities for NAT (STUN). 2015. url: https:

//tools.ietf.org/html/rfc5766 (visited on 08/18/2015).

[7] Google Developers. FAQ: Open Communications. 2015. url: https://developers.
google.com/talk/open_communications?csw=1 (visited on 08/18/2015).

[8] Google Developers. Introduction to libjingle. 2015. url: https://developers.
google.com/talk/libjingle/developer_guide.

[9] Xmpp.org. XEP-0166: Jingle. 2015. url: http://xmpp.org/extensions/xep-
0166.html.

[10] Ejabberd.im. ejabberd — robust, massively scalable and extensible XMPP server.
2015. url: https://www.ejabberd.im/.

[11] GitHub. ipop-project/ipop-tincan. 2015. url: https://github.com/ipop-project/
ipop-tincan.

[12] GitHub. ipop-project/documentation. 2015. url: https://github.com/ipop-

project/documentation/wiki/Running-GroupVPN-on-Linux.

[13] Tools.ietf.org. RFC 6347 - Datagram Transport Layer Security Version 1.2. 2015.
url: https://tools.ietf.org/html/rfc6347.

[14] Linux.die.net. mpstat(1): Report processors related statistics - Linux man page.
2015. url: http://linux.die.net/man/1/mpstat.

[15] Wikipedia. OProfile. 2015. url: https://en.wikipedia.org/wiki/OProfile.

[16] Rotateright.com. Zoom. 2015. url: http://www.rotateright.com/zoom/.

[17] Kernel.org. 2015. url: https://www.kernel.org/doc/Documentation/networking/
nf_conntrack-sysctl.txt.

[18] Linux.die.net. clockgettime(3) : clock/timefunctions−Linuxmanpage. 2015. url:
http://linux.die.net/man/3/clock_gettime.

22

http://www.cs.vu.nl/~kaveh/pubs/pdf/ic2e15.pdf
https://www.openstack.org/
http://ipop-project.org/wp-content/uploads/2014/07/IPOP-WhitePaper-1407.pdf
http://ipop-project.org/wp-content/uploads/2014/07/IPOP-WhitePaper-1407.pdf
http://xmpp.org/
https://tools.ietf.org/html/rfc5389
https://tools.ietf.org/html/rfc5766
https://tools.ietf.org/html/rfc5766
https://developers.google.com/talk/open_communications?csw=1
https://developers.google.com/talk/open_communications?csw=1
https://developers.google.com/talk/libjingle/developer_guide
https://developers.google.com/talk/libjingle/developer_guide
http://xmpp.org/extensions/xep-0166.html
http://xmpp.org/extensions/xep-0166.html
https://www.ejabberd.im/
https://github.com/ipop-project/ipop-tincan
https://github.com/ipop-project/ipop-tincan
https://github.com/ipop-project/documentation/wiki/Running-GroupVPN-on-Linux
https://github.com/ipop-project/documentation/wiki/Running-GroupVPN-on-Linux
https://tools.ietf.org/html/rfc6347
http://linux.die.net/man/1/mpstat
https://en.wikipedia.org/wiki/OProfile
http://www.rotateright.com/zoom/
https://www.kernel.org/doc/Documentation/networking/nf_conntrack-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/nf_conntrack-sysctl.txt
http://linux.die.net/man/3/clock_gettime

[19] Fsl.cs.sunysb.edu. 2015. url: http://www.fsl.cs.sunysb.edu/~vass/linux-
aio.txt.

[20] Ibm.com. Boost application performance using asynchronous I/O. 2015. url: http:
//www.ibm.com/developerworks/library/l-async/.

23

http://www.fsl.cs.sunysb.edu/~vass/linux-aio.txt
http://www.fsl.cs.sunysb.edu/~vass/linux-aio.txt
http://www.ibm.com/developerworks/library/l-async/
http://www.ibm.com/developerworks/library/l-async/

9 Appendices

9.1 Appendix A

An example of the IPOP configuration file used for testing:

config.json

{

"ip4_mask": 24,

"xmpp_password": "09qqik46hpm0qhf3ivakmvfdvwd4k9",

"xmpp_host": "145.100.105.193",

"xmpp_username": "RP2_1@ejabberd",

"sec": false ,

"tincan_logging": 0,

"ip4": "172.31.0.1",

"on-demand_connection": false ,

"controller_logging": "DEBUG",

"stat_report": false ,

"switchmode": 1,

"group": "test"

}

9.2 Appendix B

The profiling results and source code of the implementations described in the paper can
be found at the following link:
https://github.com/dragosb91/Research-Project-2

24

https://github.com/dragosb91/Research-Project-2

	Abstract
	Introduction
	Research questions
	IPOP Overview
	Setup
	Security Functionality
	Profiling IPOP's code
	Optimizing IPOP's code
	Serialization
	Asynchronous Writes

	Conclusions and Future Work
	Appendices
	Appendix A
	Appendix B

