
The use of workflow topology observables in
a Security Autonomous Response Network

Master of Science Research Project

Adriaan Dens
adriaan.dens@os3.nl

Supervisors: Prof. dr. R.J. Meijer and Ir. M.X. Makkes

July 25, 2015

1

Abstract

With the trend of ever increasing data, applications and networks, there is a need for
autonomous control by the network. In this thesis, we look at workflow topologies which
process data and how these topologies can be dynamically monitored and adapted by
a control loop. This control loop can be used to monitor for - and respond to security
incidents, thereby implementing a security autonomous response network. This thesis
presents a solution of estimating the observables of workflow topologies and comparing
them to the actual topology, as an implementation of the control loop. To test the
estimations, a simulator was developed as a proof of concept. This proof of concept
shows good results for the estimations once the topology has become a free-flow network.
However, more testing should be done to show that these estimations perform equally
well on a physical network.

2

Contents

1 Introduction 4
1.1 Research Questions . 5
1.2 Related Work . 5
1.3 Scope . 6

2 Background 7
2.1 Control loops . 7
2.2 Workflow topologies . 8
2.3 Scaling of the workflow topology . 8
2.4 Observables of workflow topologies . 9

2.4.1 Node activity observable . 9
2.4.2 Link load observable . 10

2.5 Security autonomous response networks 10

3 Methodology 11
3.1 Estimating the observables . 13

3.1.1 Node activity parameter estimation 13
3.1.2 Link load estimation . 14
3.1.3 Topology calculation . 14

3.2 Proof of Concept . 16

4 Results 18
4.1 Improvements to estimations . 18
4.2 Results of estimations on example topology 19

4.2.1 Creating a security issue . 24

5 Discussion and future work 26

6 Conclusion 27

7 Appendix A: Codebase 28

3

1 Introduction

In the last few years, a development towards programmable networks has been seen [1].
Programmable networks allow network engineers to completely control their networks
in software. This allows, for instance, the changing of network routes using application
programming interfaces (APIs) of the network devices rather than having to manually
configure these devices.

Applications, possibly forming a complex distributed application, are deployed on top
of this software controlled infrastructure. This thesis looks at distributed applications,
which form workflow topologies. An example of a workflow topology is shown in Figure
1.

Because of the programmability of the network, a software control loop can be written
to dynamically alter the behaviour and performance of the workflow topology. For
example, the control loop can perform scaling up actions for the application if an increase
in traffic is seen.

Figure 1: Logical workflow topologies consist out of functions and relations between those
functions. Changes in this topology are the result of the control loop.

An example of the scaling of a workflow topology can be seen in Figure 2, which is a
scaled out version of the logical topology of Figure 1. The control loop can even become
autonomous, resolving issues without human interaction. This concept of autonomous
control is becoming more and more relevant because of the increase in the size of
applications and the amount of data flowing through.

Marc Makkes 1 from the SNE2 Research Group at the University of Amsterdam recently
discovered that patterns are generated by the synergy between the control loop, workflow
topology and data flowing through.[2] To assess the potential of these patterns, this
thesis will investigate if (and how) these can be used for anomaly detection. For example,
changes in the observables, resulting in an unknown pattern, can indicate a cyber-attack
against the workflow topology.

1https://staff.fnwi.uva.nl/m.x.makkes
2System and Network Engineering

4

https://staff.fnwi.uva.nl/m.x.makkes

Figure 2: Shows how the logical topology of Figure 1 has converged under the influence of
the control loop and data.

1.1 Research Questions

How can observables of software controlled workflow topologies be used in Security Au-
tonomous Response networks?

For instance, how can changes in the workflow topology be used to detect security
issues and how can one respond automatically to these issues.

Related to the research question, the following sub questions are posed:

• What are the characteristic observables as a result of control loops modifying the
workflow?

• What influences the sensitivity of the observables?

• What kind of attacks can be detected by observing changes in workflow observables
and what countermeasures can be taken?

1.2 Related Work

Auto-scaling the workflow topology is part of this research project. Lorido-Botrán et al.
[3] describe five major techniques to perform auto scaling of resources. Namely threshold
rules, Q-learning, queuing theory, control theory and time-series analysis. During this
project, the threshold rules algorithm was used to decide whether or not functions in
the topology should be scaled. This algorithm was chosen for its simplicity and ease of
implementation.

Kaur et al. [4] describe the use of mininet3 as a framework to create Software Defined
Networks for research purposes. As described in Section 3.2, our experience with mininet
for the creation of a workflow topology was less successful. However, it showed essential
insights that were used in the proof of concept.

Dimitrov [5] describes the notion of Security Autonomous Response networks as a
“network that adjusts itself in order [to] take care of security threats”. How a network

3http://www.mininet.org

5

http://www.mininet.org

can autonomously defend itself against attacks is part of this thesis project.

1.3 Scope

To our knowledge, the subject of workflow topology observables and their relation to
the control loop and data has not yet been investigated. As such, it is necessary to
begin with the basics and explore this field step by step. Therefore, the research only
looked into three workflow topology observables. Namely, the topology itself, the node
activity and the link load. Although the original goal of the project was to inves-
tigate patterns of the workflow topology and use them in a security context, it was
soon realised that a step should be taken back and that a look should be taken into
the nodes with functions and the links between functions. Finding discrepancies at
those two observables might allow for a more sophisticated correlation at the topology
level and as such find deviations in the pattern of a workflow topology. Due to the
short period in which this investigation was performed, no investigation was done into
the correlation of the discrepancies, found at the node and link level, at the topology level.

In Section 3, machine learning is mentioned as a solution to learn characteristics of the
topologies. However, no time was allocated in this project to research which algorithms
could be used.

6

2 Background

This section explains essential concepts that are used in this thesis. Starting with the
concept of control loops, followed by an overview of workflow topologies, its observables
and scaling, and finishing with security autonomous response networks.

2.1 Control loops

Figure 3: A security control loop and a service control loop observe and adapt the network
[Image: Robert Meijer].

As mentioned in the introduction section, programmable networks give the opportunity to
dynamically alter the network. To continuously monitor and adapt workflow topologies,
the concept of a control loop is introduced. This control loop monitors the topology
and adapts the topology to handle the current situation. Given congestion in a node,
it can decide to deploy a node with similar functionality and update the topology to
incorporate this new node.

The control loop can consist of multiple modules, each performing monitoring. Figure 3
shows a network with two such control loops; one is responsible for adapting the network,
such as scaling up or down, and the other is responsible for responding to security issues,
such as detecting different patterns of the topology.

Figure 4: An example workflow topology with a scaled up JPG parser.

7

2.2 Workflow topologies

Workflow topologies consist of functions f0 to fn and links, which form relations between
certain functions. Workflows consist of creating a flow through these functions using
the links. Figure 4 shows an example topology that parses email attachments. The
kindOfAttachment function determines which parser is selected and thus which function
is subsequently selected. The different parsers each signify a parser for a certain type of file.

The goal of workflow topologies is to process data. Data is split up into data items,
which are logical units of data. An example is a Twitter4 stream where each tweet is
a coherent data item. Furthermore, in this thesis, an assumption is made that there is
a finite number of distinct data types under which the data items can be categorized.
Figure 5 shows the resulting workflow generated by a JPG data item.

Figure 5: Sending a JPG data item through the topology creates a characteristic workflow.

2.3 Scaling of the workflow topology

The influx of data might be more than the topology can handle, resulting in the queuing
of data items and the overloading of nodes. To resolve these issues and create a topology
where data items can be immediately processed, a so-called free-flow network, the topol-
ogy has to be scalable. When a node is overloaded with work from data items that go
through the function, a scale up can be done by the control loop. This can either be the
allocation of more resources or the creation of a new node with the same function such
that data items get spread out over multiple nodes. Similarly, a scale down can be done
when the node has no processing to do.

In this thesis, workflow topologies are scaled by adding or removing nodes. When a
node in a workflow topology has to be scaled up, a new node is created with the same
function as the original node. Then, the links of the original node are copied to the new
node. An example is shown in Figure 6b, where the relation of f2 to f4 and f4 to f6
are copied. When a node is scaled down, these relations are removed and the node is
destroyed.

4https://www.twitter.com

8

https://www.twitter.com

(a) The logical topology. (b) The node with function f4
is scaled up and relations
are copied.

Figure 6

2.4 Observables of workflow topologies

Observables of workflow topologies are properties of the topology that can be observed by
the control loop. The topology itself is an observable of a workflow topology; when data
flows through the network, the topology changes in such a way that is characteristic for
the data that is flowing through. Namely, every type of data generates workflows on the
topology that are characteristic for that type of data, giving the topology a pattern that
is related to the data, which flowed through. This change can be observed by the control
loop. Furthermore, we can say that the data generates fingerprints of the topology. These
fingerprints can be stored and used as a whitelist of possible topologies.

Because workflow topologies might consist out of thousands of nodes with hundreds
of functions, an abstract way of looking at a topology is needed. This can be done by
looking at the relations between the functions. For example, in Figure 6a, f4 expects
data from f2 and sends data to f6. These relations can also be observed by the control
loop. In a security context, connections between nodes that do not originally have a
relation can indicate a compromised node trying to exploit other nodes in the topology.

Since a topology consists of nodes with functions and links which properties change
when data flows through the topology, these are observables of the workflow topology as
well.

2.4.1 Node activity observable

When workflows pass through nodes, they increase the activity on those nodes. A data
item that hits a node might spawn a new process, allocate some extra memory and require
some processing time on the CPU (Central Processing Unit). These are called node activ-
ity parameters. Furthermore, one might also look at the changes that a data item brings
to files, (memory) page writes, etc. However, this information must be exposed to the con-
trol loop. This can be done on the application level or by using standard monitoring tools
like SNMP (Simple Network Management Protocol) making the application agnostic to
the control loop. This thesis will only look at the CPU load as the node activity parameter.

9

Discrepancies between the observed node activity and the estimated activity can
indicate problems with the node. For example, there might be data items that perform
bad on the implementation of the function resulting in a discrepancy. The control loop
can pick up such discrepancies. In a security context, these discrepancies can indicate a
compromised node.

Figure 7: A JPG data item generates a certain load on the nodes of the functions it hits.

2.4.2 Link load observable

When data items are sent through links, they increase the load on those links. These links
can be physical connections between servers or logical links between two nodes which run
on virtual machines, possibly in different datacenters. Depending on the situation, the
link load can be retrieved from network equipment such as switches and routers or on the
nodes itself, in the case of tunnels. In this thesis, an assumption is made that these connec-
tions are dedicated to the workflow topology and that other network traffic, such as ARP
(Address Resolution Protocol), is negligible in load or takes up a fixed amount of load
and thus can be subtracted from the link load to get the load generated by the data items.

As with the node activity observable, discrepancies in the observed load and estimated
load can indicate other usage of the link or a so-called amplification attack on the topology.
Amplification attacks are described by the US-CERT [6] as “a single packet [which]
can generate tens or hundreds of times the bandwidth in its response”. In a workflow
topology this is a data item which generates an amplification of the data which is greater
than expected.

2.5 Security autonomous response networks

Software Defined Networks and Network Function Virtualisation [7] allow one to control
and adapt the network in software. As such, it is possible to dynamically change the
network when events occur. Security autonomous response networks take this one step
further; not only is the network controlled by software but when security events occur,
the network resolves them without human interaction. The network has thus become
autonomous. This behaviour is implemented in the control loop as explained in Section
2.1. The control loop is used to detect deviations from the topology which are expected

10

from the data that resides in the topology.

When given a security violation, the network can respond in a number of different
ways. Further investigation of the violation can be done by more closely monitoring the
node or link. The network can decide to change the flow through the network so all data
flows through monitor nodes such as intrusion detection systems. Sandboxing the node
is another option.

When a node in the workflow topology is compromised, the network can respond by
removing the node from the topology and creating a node with the same function as
the compromised node. Less drastically, the network can reprovision the node, using an
orchestration tool such as Puppet5. The node can also be converted into a honeypot;
the network sends fake data through the compromised node and monitors how the node
responds.

Unusual bandwidth usage on the links in the topology can be resolved by altering
the flows in the flow table of the Software Defined Networking equipment, explicitly
disallowing (blacklisting) the traffic responsible for the high load or only allowing known
traffic (whitelisting).

Which response is chosen by the control loop depends on the severity of the issue and
the cost to fix the issue. Tearing down part of network, resulting in a partial downtime
of the topology is more expensive than sandboxing the compromised node. A chain of
decisions can also be taken; for example, sandboxing the node and distributing all data
items to other nodes, after which the malicious node is taken down.

3 Methodology

In this section, the approach taken to use workflow topology observables to detect possible
security issues with the topology, is explained. The proof of concept used to test the
assumptions, is also described.

In order to detect anomalies in the observables, the control loop needs to know the
difference between normal and abnormal behaviour. If the control loop has no information
about the topology, then the control loop cannot distinguish good from bad behaviour.
This implies a learning phase of the control loop in which it learns the difference.

This learning phase can be implemented as a machine learning algorithm or as a manual
benchmarking/observation phase. The goal of this phase is to learn the characteristics
of the different types of data that can go through the topology. These characteristics
are then used to estimate the observables. An example of such a characteristic is the
fraction of data items of a given data type that hits a function.

5https://puppetlabs.com/

11

https://puppetlabs.com/

Figure 8: Knowing which data items are inside the topology can be calculated by taking
the difference of the data items which have gone into the topology for processing
and the data items that have finished processing.

Knowing which data items are inside the workflow topology is an important part of
the estimation. For this reason, controller nodes are placed in the topology that are used
to log where the data has passed. As the name suggests, controller nodes are nodes in
the topology that are controlled by the control loop and perform functions on behalf of
the control loop. Dedicated controller nodes are chosen above altering the distributed
application itself with extra logging capabilities to make the topology as agnostic as
possible for the control loop. The start and end function of Figure 8 are two examples of
such controller nodes. These controller nodes can also be implemented as tap devices
that get their data from passive sniffing on the network.

If two controller nodes are placed respectively before the data items reach the topology
and one after the topology then a comparison can be made between both sets to get the
data items which are still being processed by the workflow topology. This initial research
does not take into account functions that multiply or demultiply data items; if five data
items are inserted in the topology for processing, then five data items are expected to
arrive at the end of the topology.

Equation 1 shows this law of conservation.

I = S − E (1)

where S is the set of data items which entered the topology and E is the set of data
items which have finished processing. I thus contains everything which is being processed.

Because the performance of the control loop might suffer given a big topology with
many data items, one can choose to place intermediate controller nodes. These controller
nodes can be placed in the topology such that calculations can be done on a subset of
the data items in the network, thereby decreasing the amount of work each controller
node has to do. Placing intermediate controller nodes also allows for more accurately
estimating the location of the data items in the topology.

12

3.1 Estimating the observables

Knowing certain characteristics of types of data, estimations can be made of the ob-
servables. These can then be compared to the actual values observed. Large differences
between the estimation and the observed value can indicate a problem in the network.
To differentiate between abnormalities and normal behaviour, an interval is made around
the estimated load. Observed loads that fall outside of this interval are considered to be
discrepancies. The interval is defined as [e−α, e+α] where α is the discrepancy limit. If
the estimated load is, for example, 50% and the discrepancy limit α is 20% then observed
loads between 30% and 70% are not considered to be a problem for the network.

An estimation was made for the node activity, link load and topology observables
which were discussed in Section 3.

3.1.1 Node activity parameter estimation

To explain how the estimation was derived, the simple case of the topology in Figure 12
with the data items shown in Figure 8 are used as an example.

As discussed in the background (Section 2.2), data items follow a certain path through
the topology. This workflow generates activity on the nodes which it hits. When all data
items residing in the topology are known, an estimation of the activity on a function can
be made by taking the data items that reside in the network and go through that function
and multiply it by the load these data items generate on the node. More generally put, a
fraction of certain data item types go through certain functions. This fraction is given by
the learning phase. For example, the JPG data item type never (0:1) goes through the
document parser but always (1:1) goes through the JPG parser.

In the previous paragraph, the assumption was made that a data item goes through a
function. However, data items go through nodes with functions, not through functions
itself. As such, the estimation only holds when there is only one node with that function.
If there are multiple nodes with a function, only a fraction of the data goes through the
node for which the estimation is made. This depends on the load balancing technique
used in the workflow topology. Figure 12 shows two JPG parsers, if the assumption is
made that the application uses round-robin load balancing, then one in two data items
go through the node for which the estimated load is calculated.

Until now, another assumption was made. Namely, we assumed that when observing
the current activity in a node, all data items that can be processed by a node, are
currently being processed. This might not be the case, however, certain data items might
be in another node when we observe the node activity. This aspect of time has to be
taken into account. As shown in Figure 9, given a chain of functions where one function
takes up 90 percent of the time; when a sample is made, a fraction of nine out of ten
data items will be in that node when an observation of the observables is made.

The three fractions above are used to estimate what data items are in the node when
the load is estimated. Each data item is multiplied by the load it generates on the node.

13

Equation 2 gives the resulting formula.

estimated load =
N∑
i=0

F(datai hits function) × F(datai hits node with function)×

F(datai in node when sampling) × L(datai) (2)

where N is the number of data items in the topology and L(datai) is the load generated
by data item i and is measured during the learning phase.

Figure 9: shows a chain topology.

3.1.2 Link load estimation

The link load can be estimated as follows:

estimated load =
N∑
i=0

F(datai hits link between functions) × F(datai hits this link)

× F(datai on link when sampling) × L(datai) (3)

The link load estimation is similar to the estimation of the node activity parameter.
The first fraction returns the fraction of data items of a type traversing a link between
two functions. The second fraction returns the fraction of data items of a type traversing
the link for which the load is being estimated. As with the node activity estimation,
this fraction is dependent on the load balancing behaviour. The third fraction takes into
account the time aspect of the topology.

3.1.3 Topology calculation

To detect abnormal behaviour of the topology observable, the maximum number of
nodes each function can have, is calculated. Considering that the data items which
reside in the network are known, a calculation can be made to find the highest possible
amount of nodes per function to process the data items. If the observed amount of nodes
of a certain function is greater than this upper bound, then something is amiss in the
nodes. This calculation is different from the node activity observable estimation because it

14

combines the scaling algorithm with the data from the learning phase to detect anomalies.

The calculation of the upper bound is dependent on the implementation of the scaling
algorithm because a calculation is made of the worst possible scaling up. If the scaling
algorithm scales based upon the memory and CPU load of a node, then this calculation
must include those two parameters.

Assuming the scaling only considers the CPU load and the algorithm used is the
threshold rules algorithm, the pseudocode in Listing 1 calculates the upper bound.

Listing 1: This pseudocode calculates the maximum number of nodes a function can have.

1 Input:

2 The function for which the upper bound is calculated

3 The minimum threshold of the scaling algorithm

4 A workflow topology which contains data items

5 Output:

6 The upper bound of the number of nodes a function can have

7 Algorithm (function , minthresh , topology):

8 totalload <-- 0

9 minload <-- minimumLoadPassingThroughFunction(function)

10 if minload < minthresh:

11 minload <-- minthresh

12 endif

13 for all dataitems in topology:

14 if dataitem hits function:

15 totalload <-- totalload + loadOnFunctionByDataItem(function , dataitem)

16 endif

17 endfor

18 numberofnodes <-- totalload / minload

19 if numberofnodes < 1:

20 numberofnodes <-- 1

21 endif

22 return numberofnodes

The minimumLoadPassingThroughFunction subroutine returns the minimal load a
data item generates on that function. For example, a function fi can process two types
of data items, respectively generating a load of 7% and 10%. Then this subroutine would
return that the minimal load a data item gives, is 7%. The loadOnFunctionByDataItem
subroutine returns the load that the data item generates on that function.

The pseudocode of Listing 1 calculates this upper bound by dividing the total load
on a function by the minimal load that a function can have, as can be seen on line
18 of the code. The numerator, the total load, is a simplification of the node activity
formula, given in Equation 2. The aspect of time and the fraction of the data items
passing through a node is discarded. If there is a non-negligible chance of the data
item hitting the function then the assumption is made that the data item hits the
node at the time the control loop retrieves the actual observables. This will give an
upper bound for the total load for a certain function. In other words, it calculates the
load on the function if all data items which can hit the function are currently in the
function. The denominator uses the minimal threshold as the minimal load to keep a
node alive unless all data items which go through the function have a higher load than
the minimum threshold. For example, a JPG data item increases the load on the CPU
by 10% for the JPG parser, which is higher than the minimal threshold of 5%. Since

15

this is the only type of data going through this function, every node that is alive must
have at least one JPG processing to stay above this threshold. Thus the denominator
is 10% instead of the minimal threshold of 5%, giving a lower but still correct upper bound.

Apart from the upper bound calculation, one can look at the relations between the
functions. The logical topology of a workflow topology gives these relations. A comparison
can be made between the current topology and the logical topology to see if these relations
still hold.

3.2 Proof of Concept

To test the estimations of Section 3.1, a proof of concept was developed. The proof of
concept was written in Python and implements the workflow topology network, control
loop and security capabilities as explained before.

Originally mininet was chosen to provide the underlying network for the distributed
applications that form the workflow topology. However, after the implementation of
the network using mininet and primary testing, the proof of concept often became
unresponsive. Furthermore, mininet does not allow the dynamic creation of nodes during
runtime [8]. Alas, the creation of a pool of nodes that can be used and reused was needed.
For these two reasons, a full simulator, which simulates the nodes and the links between
them, was developed. Topologies and their learning phase are read from configuration
files after which the topology is generated by the simulator and data can be send through.
This simulator was further used to test the estimation formulas of Section 3.1. One of the
advantages of the simulator is that logical time units can be used which can be artificially
speed up; allowing to test the same topologies and estimations in a shorter time than in
real time.

The first proof of concept was based upon the implementation with mininet and
implements a multi-threaded environment to simulate communication between nodes.
The processing time of data items was implemented by suspending the thread. However,
to give the simulator deterministic behaviour, a second proof of concept was implemented
without threading but with logical clock ticks to simulate time. This second proof of
concept was used to test the estimation formulas and generate the graphs in this thesis.

To allow users to perform actions on the control loop and topology, an API was exposed
using Spyne6. The proof of concept used this API to create a web interface, as can
be seen in Figure 10. This web interface allows to control the amount of data being
send through the workflow topology as well as creating a malicious node, leading to a
discrepancy in the topology. Furthermore, the control loop can be tweaked. The interval
at which the control loop runs, can be modified. The settings of the scaling algorithm
can also be tweaked.

6http://spyne.io/

16

http://spyne.io/

Figure 10: The web interface of the Proof of Concept. For the visual representation of the
topology, D3.js7was used. The form on the right allows the user to manipulate
the control loop and topology.

As the node activity parameter, the CPU load was chosen. For the scaling, the static
threshold rules algorithm, as defined by Lorido [3], was implemented. A default minimum
threshold of 5% and a maximum threshold of 95% for scaling decisions was chosen. These
threshold values correspond to the CPU load on the node itself. A CPU load greater
than the maximum threshold will result in a scale up of that node. Similarly, a scale
down will be performed when the node is lower than the minimum threshold, as defined
in Section 2.3.

More information about the code that was developed during this project can be found
in Appendix A.

Figure 11: In the threshold rules algorithm, a scale down is performed when the (CPU)
load on the node is lower than the minimum threshold and a scale up is
performed when the (CPU) load on the node is higher than the maximum
threshold.

7http://d3js.org/

17

http://d3js.org/

4 Results

This section discusses the improvements made to the estimation formulas and results of
how correct the estimations are.

4.1 Improvements to estimations

In early test runs of the proof of concept the estimation formulas, as explained in Section
3.1, gave several false positives related to previous data streams on the topology. One
example of such a problem is calculating the upper bound of the topology. When there
was previously a significantly higher load, the control loop will have scaled up the topology.
Consider the case of a high load on the network and a scale out being performed by the
control loop. If subsequently the load drops and no more data items are processed; when
an estimation of the maximum number of nodes is made, it takes into account the data
items that reside in the network, which is none and thus an underestimation is made of
the maximum number of nodes in the network. Thus, we must consider the timings of
the scaling algorithm such that the topology has scaled down from previous loads before
estimations of the upper bound are made.

To decrease the number of false positives for all observables, a shift register was
implemented which contains previous discrepancies. This shift register contains entries
for the last runs of the control loop. Whether or not a discrepancy is found between the
estimated value and the observed value, is stored in the shift register. Only when all
entries in the register show a discrepancy between the estimated load and the real load,
is the autonomous response by the control loop triggered. When the shift register has
been filled, a new run of the control loop will delete the oldest entry in the register and
insert the new value.

The size of this register for the node activity and link load observable is dependent
on the total time a data item spends in the topology and the speed of the control loop.
This is necessary so that the data items can traverse the whole topology before an
autonomous response is triggered. If we consider a chain of functions, as in Figure 9, and
a burst of data going through this chain then the data will hit the last function after a
certain amount of time. If the control loop executes when the data has not yet reached
this function then the estimation will overestimate the real load, which is zero, leading
to an alert. Multiple measurements will filter this false positive out. This register is
implemented for every node and link, and the size can differ between different nodes
because the total time inside the topology might differ greatly. However, the proof of
concept uses one size, namely the division between the longest time a data item can be
processed divided by the interval of the control loop. In the case of the proof of concept,
the maximum time a data item is processed is 7 time units and the control loop interval
is 5 time units, giving the register a size of two.

To at least compensate for minor fluctuations in the observables in respect to the
learning phase, the minimal size of the array in the proof of concept was chosen to be
three. This is only of importance in small topologies where the total time needed for data
items to traverse the topology is marginally bigger (or even smaller) than the control

18

loop interval, resulting in an array of size one or two. Using this minimal size, these
small topologies can have the advantage of not triggering on sudden discrepancies.

4.2 Results of estimations on example topology

The topology used to check if the estimation formulas can be used to estimate the real
loads was already mentioned in Section 2.2 and consists of functions to parse email
attachments. It is a simple example to show the workings of the estimation formulas and
has the additional advantage of not being as abstract as a topology with functions f0 to
fn.

Figure 12: The topology consists of a router function (kindOfAttachment), several parser
functions (JpgParser, DocParser, ExcelParser and BmpParser) and two con-
troller nodes (start and end).

Every type of data corresponds to a parser in the topology and has 1:1 fraction of
going through that parser. The kindOfAttachment function takes 2 time units to process
a data item and every data item gives a load of 2% of the total CPU capacity on said
function. The discrepancy limit has been set to 20%, meaning that only if the estimated
load differs by more than 20%, a discrepancy is noted in the register of that observable.

Table 1 shows the learned metadata about the topology. The topology handles four
data types: JPG, DOC, XLS and BMP. Each data item has a corresponding predicted
CPU load on the corresponding parser function and a certain amount of time needed to
process the data item.

Data type Predicted CPU load Time to process

JPG 10 % 5 time units

DOC 10 % 5 time units

XLS 15 % 5 time units

BMP 10 % 5 time units

Table 1: For each data type there is a predicted CPU load and time needed to process the
data item on the corresponding parser.

19

Through this topology, a continuous load of eight JPGs, three documents (DOC) and
two excel (XLS) documents are distributed at each logical time tick. This distribution of
data items follows a push technique. Every function pushes data to the next function.
The interval between subsequent runs of the control loop, including the auto-scaling, was
set at 5 time units.

Figure 13 shows the estimation of the node activity in comparison with the actual
loads of the nodes. Several scale ups are performed by the topology to handle the load,
these coincide with the runs of the control loop, each 5 time units. To get a better view
of the estimations made by the control loop, the estimations were executed every clock
tick. The nodes have been given a load of zero in the graph for the time units in which
they do not exist.

Figure 13: For each function, the estimation and real load are plotted. Each line represents
a node with that function. The graphs show the control loop scaling up the
function every five seconds until congestion is resolved.

20

The left top graph of Figure 13 shows the load on the nodes with the kindOfAttachment
function. The overestimation of the estimated load between t = 10 and t = 33 is the result
of congestion in other functions. This congestion in other functions results in more data
items in the topology and more specifically in those other functions. As such, the time
fraction of Equation 2 is an overestimation of the free flow time fraction. The total time
a data item spends in the topology, the denominator of the time fraction, is longer than
estimated due to congestion. After the congestion is resolved in the other functions and
a free-flow network is established, the estimation accuractely predicts the load in the node.

The right top graph shows the JPG parser function that has the most processing to
do. Only after five iterations of the control loop, resulting in ten additional nodes, does
the topology stabilize. After the topology stabilizes, the estimated load prediction falls
in between the actual loads seen on the nodes of the JPG parser. This difference in real
loads between nodes is caused by the undividability of the data items. One data item
generates a certain load on a function, due to the round-robin load balancing, some nodes
get one data item more than other JPG parsers. This is exactly what happens in the
graph as there are eleven JPG parser nodes but at each time tick only eight JPG data
items are distributed between those nodes.

The left bottom graph in figure 13 shows another accurate prediction of the load once
the function was scaled up to deal with congestion. Once the congestion is resolved,
there are 21 document data items in the topology which pass through the DOC parser.
Since the topology scaled up to three nodes, every node gets a fraction of one in three
DOC data items, each one generating a load of 10% of the total CPU load. Because of
the time aspect, only five out of seven data items will generally be in the parser as a
data item is processed for 5 time ticks in the function and the total time the data item
spends in the network is 7 time ticks. Multiplying all these elements (1 ∗ 1

3 ∗ 5
7 ∗ 10 ∗ 21)

gives us an estimated load of 50% on a document parser node. All other data items in
the workflow topology do not contribute to the estimated load of the nodes with this
function because they do not flow through this function.

The right bottom graph shows similar behaviour as the JPG parser function as two
data items are distributed over three nodes in a round-robin fashion. The observed loads,
after stabilisation, are either 45% or 60% and an oscillation between these two is seen
because of the round-robin load balancing. This difference of 15% is exactly the load
which one data item generates on the node.

All graphs of Figure 13 show that once the congestion in the workflow topology is
resolved, by scaling up the topology and arriving at a stable topology, the estimation
becomes more accurately, even to the point of being the same as the real load in the
case of the DOC parser and kindOfAttachment function. Of course, as this is done in
a simulator and not on a real network, the estimations are made in the best possible
environment. Real networks might have bigger differences between the estimated load
and the observed load.

21

(a) The logical topology.

(b) The topology after scaling.

Figure 14: The logical topology and the topology after convergence to handle the load
generated by the data. Green nodes signify JPG parsers, yellow nodes DOC
parsers, red nodes Excel parsers and blue nodes BMP parsers.

Figure 15: A load ordered round-robin distribution in the topology gives different loads and
estimations on the nodes than a normal round-robin load balancing technique.

22

Figure 14b shows the topology generated by the control loop and the data. The three
parsers that received data items have all been scaled up. The JPG parser scaled up to
eleven nodes, the DOC parser to three nodes and the Excel parser to three nodes.

Figure 15 shows the influence of using a different load balancing technique to push
data items, namely a load ordered round-robin. A load ordered round-robin performs
an ordering of its neighbours according to the current load they have and only then
sends the data items in a round-robin distribution. As such, when there are more nodes
than data items to distribute, this ordering will not give any data items to the most
overloaded nodes. This results in a lower load on these nodes because no new data items
were distributed to them. Compared to regular round-robin, this ordering allows for
faster convergence. This can be seen when comparing the JPG parser graphs of the two
load balancing techniques.

Figure 16: shows the maximum number of nodes per function, calculated by knowing the
data item which reside in the topology, and the observed number of nodes per
function.

23

Figure 16 shows the number of nodes that a function has in relation to the time.
The upper bound is also plotted as a function of time. The graph shows that all upper
bounds are indeed upper bounds for their observed counterpart in the workflow topology.
However, it also shows that there is a significant difference between the observed value
and the upper bound, leading one to think about its usefulness. The kindOfAttachment
upper bound is at least 36 times the actual value once the first data items have finished
processing (after t = 7). This overestimation is the result of all data types having
a non-zero fraction of passing through this function and the low load the data items
generate on the function. Once the congestion is resolved, there are 91 data items in
the topology. Given that the generated load on the processor per data item is 2% of
the total CPU capacity on the kindOfAttachment function, this would mean that in the
worst case, when all data items reside in the function, there would be a total load of
182%, enough to keep 36 (1825 , where the denominator is the minimum threshold) nodes
alive without the scaling algorithm pruning nodes.

There are no results for the link load observable because the implementation and
simulation of this observable was not finished during this project. As the link load
estimation is similar to the node activity estimation, the expectation is that it will show
similar results.

4.2.1 Creating a security issue

Figure 17: A sudden increase of the CPU load of a node can be seen in the right graph.
As the difference between the observed load and estimated load is bigger than
the discrepancy limit (20%), an alert in the control loop will be triggered.

As an example security violation, the node activity of one of the nodes was increased to
report a CPU load of 80%8. Figure 17 shows the sudden increase of load at time t = 28.

8https://www.youtube.com/watch?v=X5ohVjI70uQ contains a visual representation of the control loop
intercepting the malicious node.

24

https://www.youtube.com/watch?v=X5ohVjI70uQ

Figure 18 shows the response of the network in action. Because the discrepancy is larger
than the limit set by the network, 20%, the shift register will be filled with alerts. At
t = 45, all entries in the register show an alert and the network responds by creating a
new node and killing the malicious node. This can be seen in the graph by the decreasing
node at t = 45 and the increasing node at t = 45.

(a) When a node is killed, the node sends the
data items to the end of the topology (un-
finished).

(b) When a node is killed, the data items stay in
the topology, according to the control loop.

Figure 18: The malicious node (shown in red) gets killed by the control loop. At the same
time, a new node (shown in green) is spawned, which can take over the work
of the malicious node. The estimated load after the killing of the node depends
on the implementation of how data items that are being processed are dealt
with.

Figure 18 shows a node, which has abnormal behaviour, being killed by the control
loop. After killing the node, a new node with the same function is spawned to take the
place of the node with abnormal behaviour.

Figure 18a shows a decrease of data items in the topology at t0, shown by a drop in
the estimated load. This is the effect when the data items are cleaned up by the node
before destruction, thereby temporarely decreasing the amount of data in the topology.
In this case, the assumption is made that the clean up consists of sending unfinished
data items to the end function.

Figure 18b shows an increase in the estimated load, at t0, after the malicious node
was killed. This behaviour is the result of the data items, which were processed on the
node, getting killed together with the node. Although these data items are no longer in
the topology, the control loop considers them for the estimation as it has not yet seen
these data items at the end of the topology and thus makes the assumption that the data
items are still being processed, leading to an overestimation of the load.

25

Depending on how the malicious node is killed in the workflow topology, one of these
situations applies. In the case of the lost data items, a timeout can be implemented by
the control loop to discard data items that have been in the workflow topology for too
long, thereby making the estimation load more accurate again.

5 Discussion and future work

This section covers several points that were not yet fully discussed in this thesis and can
be considered as future work.

A first discussion point is the importance of the learning phase, discussed in Section
3. If the values in the learned phase do not apply to the topology, then the estimations
made, will be off and thus trigger more false positives. Because of the discrepancy limit,
the amount of false positives can be kept low for small differences between what is learned
and what is measured. Section 3 also mentions the relation between the amount of
data and the capabilities of the control loop. Thus instead of having a fixed value (e.g.
average) for the load on a node or link, as was the assumption in the proof of concept, one
can also learn the variance around that value, allowing the control loop to better predict
anomalous behaviour. How the estimations can be improved further is an interesting
point of investigation.

A second discussion point is the trust put into the actual values given by topology.
When a node is compromised, do we still trust the parameter values given? Do we trust
the actual CPU load, in the case of the proof of concept? What parts of the node do we
trust (operating system, firmware) and what not? A decision should be made on basis of
the types of attacks that are expected and what the likelihood of such an attack is. As
this is application dependent, this thesis has not looked into this discussion.

A third discussion point is the speed of sampling. This thesis has made the assumption,
as in Equation 1, that a difference can be taken between the start and the end of the
topology to get the data in between. In real life topologies, a time difference in the
sampling of the start and end node can occur, resulting in an inaccurate overview of
the data in the topology. Depending on the variability in the types of data and the
differences between those types, this can be an issue for the estimations. How big this
time difference can be and what the causes are, is another point for future investigation.

A final discussion point is the congestion of the nodes; the results show that the
estimations are more accurate when there is free flow in the network. It is thus important
that congestion is resolved as quickly as possible. This could be done by redistributing
queued data items after a scale up is performed by the control loop. Another possibility
is a more aggressive scale up to resolve the congestion faster. Other solutions and which
one performs better is considered future work.

26

6 Conclusion

This project focused on the use of workflow topology observables in security autonomous
response networks. To answer how these could be used, four sub questions were defined.

The first sub question asked what the characteristic observables are. Observables were
defined as properties of the topology that can be monitored by the control loop. The
topology itself, the loads on the link and the activity on the nodes as a result of data
flowing through the topology were discussed as observables of workflow topologies.

The second sub question looked at the sensitivity of observables. In other words, what
causes the observables to change? The proof of concept showed that the data sent through
the network changes all three observables discussed. The load balancing technique is also
important as it distributes the data items over nodes with the same function, thereby
influencing the workflow topology observables. The proof of concept showed that the
observables change when a different load balancing technique is used. Another element
that influences the observables is the scaling algorithm as it decides when to create and
delete nodes.

The third sub question posed the question of what kind of attacks can be detected
by looking at the observables and how one can respond. The control loop can detect
discrepancies in the load generated on links and on nodes, detecting unusual usage of
resources. Furthermore, the control loop checks the relations between functions such
that excessive communication between nodes that do not have a relation is detected. We
looked into the countermeasures which can be taken and discussed the use of respawning,
sandboxing, honeypotting and reprovisioning for the node activity observable and the
use of flow entries for the link load observable.

Using this research, we looked at how we could use the observables in a security context.
We used the data residing in the topology, which influences the observable, to estimate the
observables and compare it to the actual observables observed in the workflow topology.
To estimate the observables, we used data learned from a learning phase. The proof of
concept implemented a simulator which showed that the estimations predict the actual
observables. The next step, however, is to verify the estimations and their accuracy on
real networks.

References

[1] Greg Ferro, “Response: Customer Intent on SDN Adoption is Ac-
celerating with 85% Adoption by 2016.” http://etherealmind.com/

response-customer-intent-sdn-adoption-accelerating-85-adoption-2016/,
2014.

[2] M. X. Makkes, R. Cushing, A. Belloum, S. Olabarriaga, M. Baranowski, C. de Laat,
and R. Meijer, “Data Intrinsic networked computing,” 2015.

27

http://etherealmind.com/response-customer-intent-sdn-adoption-accelerating-85-adoption-2016/
http://etherealmind.com/response-customer-intent-sdn-adoption-accelerating-85-adoption-2016/

[3] Tania Lorido-Botrán, José Miguel-Alonso, José A. Lozano, “Auto-scaling Techniques
for Elastic Applications in Cloud Environments.” http://www8.cs.umu.se/kurser/

5DV153/HT14/literature/lorido2012autoscaling.pdf, 2012.

[4] Karamjeet Kaur, Japinder Singh and Navtej Singh Ghumman, “Mininet as Software
Defined Networking Testing Platform .” http://www.sbsstc.ac.in/icccs2014/

Papers/Paper29.pdf, 2014.

[5] Hristo Dimitrov, “Implementing Security Control Loops in Security Autonomous
Response Networks.” http://rp.delaat.net/2013-2014/p13/report.pdf, 2014.

[6] United States Computer Emergency Readiness Team (US-CERT), “Alert (TA14-017A)
UDP-based Amplification Attacks.” https://www.us-cert.gov/ncas/alerts/

TA14-017A, 2014.

[7] Chiosi et al., “Network Functions Virtualisation.” https://portal.etsi.org/NFV/

NFV_White_Paper.pdf, 2012.

[8] Jason Parraga, “Creating hosts dynamically in mininet.” https://groups.

google.com/a/openflowhub.org/forum/#\protect\kern-.1667em\relaxtopic/

floodlight-dev/_RhkNz98Nc4, 2013.

7 Appendix A: Codebase

For the proof of concept, code was written to get a visual representation of the workflow
topologies and to test the estimations. Because of the size of the codebase, the codebase,
including the version control, was given to the System and Network Engineering Master
at the University of Amsterdam.

To create the graphs shown in this paper, the following commits were used:

Figure Branch Commit ID CLI Topology

Figure 13 goingsequential 6d10d5fff5 python main.py overview code/topology5.yaml

Figure 15 goingsequential d78713614b python main.py overview code/topology5.yaml

Figure 16 goingsequential 6d10d5fff5 python main.py overview code/topology5.yaml

Figure 17a goingsequential 6d10d5fff5 python main.py overview code/topology5.yaml

Figure 17b goingsequential 6d10d5fff5 python main.py malicious code/topology5.yaml

Figure 18a goingsequential 6d10d5fff5 python main.py malicious code/topology5.yaml

Figure 18b goingsequential 2a5e942166 python main.py malicious code/topology5.yaml

28

http://www8.cs.umu.se/kurser/5DV153/HT14/literature/lorido2012autoscaling.pdf
http://www8.cs.umu.se/kurser/5DV153/HT14/literature/lorido2012autoscaling.pdf
http://www.sbsstc.ac.in/icccs2014/Papers/Paper29.pdf
http://www.sbsstc.ac.in/icccs2014/Papers/Paper29.pdf
http://rp.delaat.net/2013-2014/p13/report.pdf
https://www.us-cert.gov/ncas/alerts/TA14-017A
https://www.us-cert.gov/ncas/alerts/TA14-017A
https://portal.etsi.org/NFV/NFV_White_Paper.pdf
https://portal.etsi.org/NFV/NFV_White_Paper.pdf
https://groups.google.com/a/openflowhub.org/forum/#\protect \kern -.1667em\relax topic/floodlight-dev/_RhkNz98Nc4
https://groups.google.com/a/openflowhub.org/forum/#\protect \kern -.1667em\relax topic/floodlight-dev/_RhkNz98Nc4
https://groups.google.com/a/openflowhub.org/forum/#\protect \kern -.1667em\relax topic/floodlight-dev/_RhkNz98Nc4

	Introduction
	Research Questions
	Related Work
	Scope

	Background
	Control loops
	Workflow topologies
	Scaling of the workflow topology
	Observables of workflow topologies
	Node activity observable
	Link load observable

	Security autonomous response networks

	Methodology
	Estimating the observables
	Node activity parameter estimation
	Link load estimation
	Topology calculation

	Proof of Concept

	Results
	Improvements to estimations
	Results of estimations on example topology
	Creating a security issue

	Discussion and future work
	Conclusion
	Appendix A: Codebase

