

Romke van Dijk & Loek Sangers

Portable RFID Bumping Device

Research Project 1

Introduction

- Radio-frequency identification
- Lot of applications
 - Identification / tracking of goods
 - Public transportation
 - OV-chipkaart
 - Access control
 - Deloitte
 - UvA

Bumping vs Cloning

- Bumping
 - Short interaction with the tag
- Cloning
 - Gathering enough data to create a copy of the tag
- Bumping implies card / tag only attacks

MIFARE Classic

- Multiple size (1K, 2K and 4K)
- Memory split into sectors
 - □ Two keys: Key A and Key B
- Authentication + secure transmission
 - □ Proprietary stream cipher (Crypto1)
- Error codes
 - Parity correct or incorrect
- Weak pseudo random number generator
 - Same "random" number every second

MIFARE Classic EV1

- Fixed weaknesses
- Weakness in cipher
- "Hard" nested authentication attack
 - □ Source: (Meijer et al., 2015)
- Requires offline calculation

Research questions

- Is it possible to clone a RFID tag within five minutes with a mobile device?
 - Maximal distance
 - Amount of cards
 - Attack vectors
 - Attack time

Proxmark3

- Costs: \$299,-
- Programmable radio-frequency reader
- Eavesdrop
- OpenSource

Source: http://www.proxmark.org/

Antenna

- Costs: €5,-
- Simple USB Hirose cable
- Design by Proxmark community
- Range of 6-8

Maximal distance

- According to specifications -> 10cm
- In practice -> 3-5 cm
- Theoretical maximum -> 30 centimetres
 - □ Source: (NXP, 2008)
- Practical maximum -> 27 centimetres
 - Source: (Hancke et al., 2011)

Setup bumping device

Amount of cards

- Proxmark firmware: 1 Card
- Extended firmware: 3 Cards consistently
- Implemented Binary Tree Working Algorithm

Get UIDS "bump uids"

Attack vectors

- Experiment
- Random key A to sector n
 - □ Repeated 100 times
 - Amount of keys is increased
- Calculate the time per step

Attack vectors

- Nested authentication
 - □ Total of 2006 random keys
 - □ 1628 successfully recovered (81%)
 - Timing issues

Attack vectors

- Hard nested authentication
 - Limit "sum property" or 10.000 encrypted nonces
 - □ Minimum: 49 seconds
 - □ Maximum: ~3 minutes

Leftover keyspace

Number of possible keys

Attack vectors

- 2^{36} -> within one hour (CPU)
 - Blapost's solver
- 2⁴⁸ (full space) with 5 nonces
 - □ 14 hours (GPU).
 - □ Estimated 36 minutes (Dedicated hardware (budget 20,000)) Source: (Ming-Yang Chih et al., 2010)

Demo

■ Live

Conclusion

- Able to clone MIFARE Classic 1K
 - Mobile device
 - Multiple cards
 - □ With a range of 6-8 centimetres
 - Small budget
 - □ Within 5 minutes (<= 10 non default keys)</p>

Conclusion

- Able to clone MIFARE Classic 1K EV1
 - □ Within ~5 minutes (<=2 non default keys)</p>
 - Second interaction required

Any questions?

- About?
 - Maximal distance
 - □ Amount of cards
 - □ Attack framework
 - □ Attack time