UNIVERSITY OF AMSTERDAM

SYSTEM AND NETWORK ENGINEERING MASTER

RESEARCH PROJECT

Performance measurement and
tuning of remote acquisition

Author: Supervisor:
Fukasz MAKOWSKI Ir. Ruud SCHRAMP
lukasz.makowski@os3.nl

Thursday 14" April, 2016

Abstract

The paper introduces the concept of forensic triage and the novel
method of its application — the acquisition of iSCSI attached storage over
Wide Area Network (WAN) link. Next, in the created lab environment, it
tests the potential methods of I/O performance improvement (prefetching,
parallelism). The gathered metrics show that for the links with Round-
Trip Time (RTT) introduced, performance degraded. Finally, the author
discusses flaws in the established method and argues about the future work
in this area.

1 Introduction

Digital forensics is a field focusing on the several aspects leading to providing
the evidence of criminal activities on the basis of analysed digital media. Palmer
[1] extends this term, dividing it into the methods handling preservation, col-
lection, validation, identification, analysis, interpretation, documentation and
presentation of digital evidence.

1.1 Acquisition

The acquisition in the means of digital forensics is creating a data image that is
unambiguously equivalent to the original one. Often this includes the checksums
creation; if required these can be used to cross-validate the authenticity of
created copy. Next, the acquired image is handed to an investigator who analyses
it for potential evidence. This stage utilises various tools and methodologies
depending on data. However, it can be generalised that all of those aim to
help in accessing and extracting potentially relevant information. The examples
can be the deleted files, internet browsing history or the data hidden in an
unallocated media structures. By its means, the forensic analysis is a creative
and non-trivial process requiring well-trained and experienced staff. This has
already been identified as a serious bottleneck in the digital forensics process
chain.

1.2 Forensic triage

One of the remedies to that problem is implanting the concept of triage into
the forensics domain. As specified by Garfinkel [2], the triage is a method of
prioritising work based on the assignment, rather than its content. In digital
forensics, this means that before starting the actual analysis, the acquired images
should be assessed and assigned with priority. Taking into account that the size
and electronic data devices equipped with integrated storage drastically increases
[3], the triage could quickly assess large groups of data, pointing to the most
interesting object which should be examined in detail. To realize this idea, a

forensic triage concept assumes the development of tools that can quickly report
data the media handles e.g. image files, credit card numbers. Next, based on
that information, further prioritisation can be performed.

1.3 Challenges of a remote acquisition

In the age of widespread Internet connections, it is often necessary to correlate
evidence gathered in several geographically spread locations occurs. With
the defined approach, the investigator needs either to visit every location of
analysed data, or all the evidence must be delivered to him. However, it would
be more efficient if the data could be assessed remotely (with triage). This
could help not only with prioritising the investigation, but it gives a notion
whether a particular image is a perspective for a current case. Perhaps the
simplest solution is transferring the images over WAN links to the central
location handling the analysis. However, when including the factors like WAN
bandwidth limitations and storage size often exceeding terabytes, this can be
seen as inefficient. Especially where getting acquainted with a remote hard drive
is urgent, it is not possible to acquire all data in a reasonable period.

1.4 Remote triage concept

One of the possible solutions is creating Internet Small Computer Systems
Interface (iISCSI) connections from the distributed images to a central location
where an investigator resides. This allows the investigator to interact with the
data as it would be locally attached. This technique has its disadvantages;
iSCSI protocol performance degrades significantly when the link experiences
packet loss or large RTT. As iSCSI uses Transport Control Protocol (TCP) for
data transmission, tuning both TCP and iSCSI stacks parameters can probably
help to improve on the achieved throughput. The usage of Input/Output (I/0)
optimisation methods such as caching, parallelism or scheduling might enhance
the performance as well.

Assuming the goal is to gain as efficient data transfer rate as possible, the
research will focus on determining whether it is possible to apply I/O optimiz-
ation techniques to the previously defined pattern and what the effect of link
delay between the iSCSI initiator and server will be on the triage process read
performance.

2 Related work

Garfinkel [2] describes the concept of triage and proposes applying it to forensics.
The introduced approach is a block level data analysis, where the file system
metadata is ignored. Instead, the focus is put on the sequential parsing of

raw disk data, searching for matching patterns (e.g. email addresses credit
card numbers). The author describes the design of his proof of concept tool -
bulk_extractor, simultaneously characterising and benchmarking the multi-
core processing. Finally to showcase the concept usefulness, two real world cases
are presented. Bulk_extractor could provide meaningful results after a few
hours of execution, unambiguously indicating the information stored on the
analysed media.

Roussev [4] discusses the current processing performance of acquisition tools.
He argues that the developers could have taken a more significant effort to
utilise that processing of the available hardware. His paper defines universal
objectives which should be the objectives during the development process. These
are briefly: parallelism, acquisition and processing phases concurrency and the
immediate presentation of partial results. Later, the so-called Low Latency (LL)
requirement for the triage is formulated. Minimisation of the time between
the query and response is pointed as a crucial requirement for any forensic
tools. The paper aims to quantitatively characterise commonly used acquisition
techniques, further introducing a concept of latency-optimized target acquisition
(LOTA). The author claims such a framework has the capability to fully utilise
any analysed disk throughput.

VanDeBogart et al. [5] propose a new approach to the application-directed access.
The solution enables an application to submit prefetch requests to the filesystem
layer, placing the data in the cache beforehand. The research introduces an
aggressive fetching scheme, where the data is read from a disk subsystem until
the system’s memory is not significantly utilised.

In the paper by Cao et al. [6] the design of the Application-Controlled File
System (ACFS) is explained. It discusses techniques that can lead to better
disk performance. Apart from the application-directed access, it is proposed
to use prefetching combined with caching and disk scheduling. The authors
emphasize that, in the single process case, the disk scheduling has point only
for an asynchronous I/O or when the prefetching requests (not the data access
itself) are reordered, whereas in a multiprocess scenario, the choice and tuning
of the kernel I/0O allocation policy has the most significance.

Research papers of Zhang et al. [7] and Oguchi et al. [8] focus on the improvement
of sequential write performance to the iSCSI block device. Both papers provide
detailed tuning information on the TCP protocol, open-iSCSI initiator, and
iSCSI Enterprise Target (IET) software. The tests are performed for the links
with emulated network delay. Although partially overlapping, the papers provide
unique tuning advice that leads to an overall performance gain.

Yamaguchi et al. [9] analyse the model of iSCSI Short Block Access, as real-world
examples of such I/O, file or database access patterns are given. Researchers
compare several iSCSI implementations presenting their read performance for 1
and 8KB blocks. The conclusion states that for iSCSI software, knowledge about
underlying layers characteristics (TCP, Ethernet) is crucial to reach optimal

throughput.

3 Method

3.1 Lab environment setup

The goal was to simulate WAN link characteristics between two endpoints. For
this purpose, these units were defined and setup (Figure 1):

e iSCSI client

e iSCSI server

¢ WAN emulating bridge
o sample data image

e = a

4GB EXT4 image

iSCSl client WAN emulating bridge iSCSl server

Figure 1: Topology scheme

Next, iSCSI software has been deployed and configured so the test sample image
was provided by the server and remotely available at the client side.

3.1.1 Hardware

The lab environment has been built out of the three components: iSCSI client,
server, and network emulator. Each was implemented on a separate Dell Precision
Tower 5810 workstation, equipped with the Intel Xeon E5-1650 CPU (6 cores, 2
threads each) and 32GB of RAM.

3.1.1.1 Storage

Each workstation had a 512GB Solid State Drive (SSD) drive. These were used
for the purpose of Operating System (OS) installation. Additionally, in case
of WAN emulating bridge also as a storage holding dumped network traffic.
Moreover, a 3TB conventional Hard Disk Drive (HDD) was installed on the
iSCSI server, which is where the sample data image was placed. The motivation

Component Software

iSCSI client Open-iSCSI client [11]
iSCSI server iSCSI Enterprise Target (IET) [12]
WAN emulating bridge netem [13]

Table 1: Core component software

to use a HDD for this purpose was that in the author’s opinion, this technology
is still dominating in large storage setups. The sample acquired data was 4GB
EXT4 Linux filesystem image, originally being the part of Lansing Information
Systems Security Association [10] 2013 forensic challenge.

3.1.1.2 Network

The workstations were using its standard GigaEthernet (GE) interfaces. However,
the WAN emulating bridge has been installed with an additional one. Next,
using Linux brctl utility, a software bridge interconnecting iSCSI client and
server was created.

3.1.2 Software

The operating system used was Ubuntu Server 14.04 LTS. The iSCSI and WAN
emulating software used in the research (Table 1) was determined based on the
selected iSCSI related papers [7] [8].

3.2 1I/0 optimisation - methods of choice
3.2.1 Prefetching

The technique of prefetching is commonly used by OS to improve the storage
devices performance from the user/application point of view. From the high-level
perspective it can be described as a solution converting multiple read operations
into a single, substantial one. The internals of this solution can be observed based
on the Linux OS example (Figure 2). On the kernel level, a small read request
(red) is being intercepted and converted to a single sequential and asynchronous
read-ahead reads (grey). As it populates the OS page cache (green), this enables
any future reads hitting within this space to be served significantly faster.

The research uses two prefetching based approaches — read-ahead and read-
behind. The difference between these two is how the prefetching offset is
determined. The first one prefetches the data following application requested
block, whereas the latter aims to populate the cache with blocks placed behind
it (Figure 3).

read buffer l

T read (4KB) user space
o te [LT TTTTTLT] et e
readahead (16KB)

disk file

Figure 2: Read-ahead in Linux [14]

N-1
read E,—---> RB
block N | ; .
‘> RA
N+1
Application Cache Storage

Figure 3: Read-ahead (RA) and read-behind (RB) comparison

3.2.1.1 Fusecoraw

To test the behaviour of applications using read-ahead and read-before methods,
fusecoraw [15] proof of concept tool has been employed. It implements the client
side read and write caching scheme over the Linux File System in User Space
(FUSE). Modifications were made to include simplified implementation of read-
ahead and read-behind operations. These are pread64() calls following initial
read request inside single upper-level FUSE implementable read() function.
The usage of FUSE allowed the seamless integration of prefetching with the
test triage application. The acquisition process was performed on the fusecoraw
provided pseudo-device instead of the raw iSCSI disk.

3.2.2 Parallelism

In the times when the workloads tend to be scaled rather horizontally than ver-
tically, introducing the concurrency to an application seems almost indispensable.
Figure 4 presents the typical area when the performance improvement may be

P1 wait time P1 wait time

P1 compute P1 compute
time time
CLIENT SERVER CLIENT SERVER
(a) Single process (b) Second process
workload introduced

Figure 4: Benefits of concurrency

achieved. Assuming the process is synchronous, after submitting a request to the
server it will be passively waiting for a response (Figure 4a). As the figure 4b
shows, this waiting period may be utilised by another process.

Although the advantages of presented pattern are straightforward, it can not be
universally used for every workload. For example, it is practically infeasible to
try to blindly saturate a single resource (i.e. iISCSI disk) with tens of processes.
However, a carefully picked number of concurrent workers may have the potential
to deliver beneficial results.

3.2.2.1 Triage.py

The decision to create a tool trying to mimic the behaviour of the triage system
has been made. The assumed requirements were the adjustable worker threads
number and a file-based scanning approach, as defined by [2]. It was essential
to read a block device’s content with no modification to its data. The solution
used by The SleuthKit (TSK) to cope with this problem is the filesystem driver
implementation with the overall omission of write operations. Ultimately, in
the research developed triage.py [16] script, TSK tools (fls, icat) were
parallelised using the Python programming language.

As depicted in figure 5, triage.py runs two types of threads, which communicate
through a global queue. The scanning worker traverses the directory and returns
its content as (filename, inode) tuples. The file worker dequeues this information,
and if the name matches a predefined regular expression, it attempts to gather
the actual file.

scanning
worker

scanning
worker

file fetching
worker

- /" \\‘\\
. ,,"' if filename .

. “unatches regex -’

file fetching
worker

Figure 5: triage.py architecture overview

3.3 Tests scenarios

3.3.1 Prefetching

read-behind [B]
0 | 8192 | 65536
read-ahead [B]

0 X X X
8192 X X -
65536 X - X

Table 2: Chosen read-ahead and read-behind values

The prefetching test set (Table 2) parameters were selected as the multiplicity
of fusecoraw default block size — 8192 bytes.

3.3.2 Parallelism

Triage.py can theoretically use any chosen value determining the workers count.
For the parallelism test it has been limited, as specified in Table 3.

file

fetcher
directory 1124

scanner

Table 3: triage.py workers setup

3.3.3 Combining I/O optimisation and RTT WAN parameters

One of the crucial objectives of this research was to test the techniques defined
in sections 3.2.1, 3.2.2 over the WAN link. A simplified model was introduced,
where only the link RTT was emulated.

Given the I/O optimisation methods defined, each tests specified in tables 2, 3
was conducted for three network RTT parameters (Table 4). The delay was added
to the native link RTT between the iSCSI client and server, which, considering
this research, was assumed negligible.

test type
prefetching | parallelism | repetitions
RTT [ms]
0 X X
10 X X
20 X X 3

Table 4: Test sets summary

3.3.4 Pre-test procedure

To assure the correctness and repeatability of measurements, the procedure
(Table 5) was implemented before every test.

Step Description

The iSCSI initiator process was restarted
The OS block device read-ahead size was set to 0
The OS pagecache (including cached dentries and inodes) was flushed

[

The fusecoraw mountpoint was recreated and its cache flushed (prefetching test only)

Table 5: Pre-test procedure

3.4 Metrics

To depict the acquisition process performance, two separate metrics were
gathered.

3.4.1 Average throughput

First, the interest was in how the TCP connection used by the iSCSI process will
behave under different loads. One of the most straightforward characteristics
was chosen - an average throughput. The tool used to analyse dumped packet
capture (PCAP) files was tcptrace [17], which was one of its standard metric
presents throughput parameter. In its essence, as per the tool’s manual [18] it
is the total bytes of data sent excluding retransmitted bytes and any bytes sent
doing window probing, divided by the time difference between the first and last
packet of the analysed connection.

3.4.2 Elapsed time

The second measured metric was the execution time of triage.py tool. GNU
time command provided elapsed time metric was chosen as the one accurately
representing the time spent by the CPU to execute user space, and kernel level
code runtime. Effectively, the elapsed time presents the time period the user
must wait to acquire a final triage process results.

4 Results

4.1 Prefetching
4.1.1 Throughput

The conducted measurements present that, despite the prefetching setting used
(Table 2), with the increase of link delay an average connection throughput
decreases (Figure 6).

With RTT 0, it can be seen that all variants of 8192 byte block performed
slightly better than the reference test. However, RT'T 10 and 20 acquisition with
prefetching disabled outperforms the rest.

4.1.2 Execution time
Figure 7 depicts that the delay growth combined with any tested prefetching

setting leads to the total execution time being longer than with no optimisation
applied.

10

o
=
a)
§ § s v||RTT [ms]
) i . » * 0
. * « 10
:Q X mean
28
E‘g—)(
22| x x >
o o b ¢
= X
=) ¢
I
X
S w D
S Pt
s
(=) T T T T T T T
0N o o Y] w w o Y]
- | | =] (] (2] | (=]
o @ ~ m M o
M o W m o o
[¥e] | @ O - |
n o | | @ o
© [T s3]
2] —
Lo -]
[Ts]
7]

read-ahead_read-behind size [B]

Figure 6: Prefetching, average throughput (higher is better)

x | RTT [ms]
8 - L X <0
>'< x « 10
3 + 20
?'_ % mean
AL o]
o T b ¢ h. ¢
E Xy p 4
8 X X
(=)
=g
(=T | | i | » »
@ T T T T T T T
(=) (=) o [de) [de) (=) o
| | =] [32) [32] | =]
o [da] — [Te] Yol (oY} —
o [s0) [T9) [T9) (2] [s0)
[Te] | [3e] [Te] — |
[Ty] =] | | [=o] o
[4s] [=] (4] [=7]
o —
[Te] =]
[Te)
w

read-ahead_read-behind size [B]

Figure 7: Prefetching, elapsed time (lower is better)

11

For the experiments with the RTT introduced the prefetching lead to the
degradation of execution time comparing to RTT 0 case. In the RTT 0 example,
read-ahead equal to 8192 and 65536 bytes resulted in a shorter acquisition process
completion.

4.2 Parallelism
4.2.1 Throughput

The results (Figure 8) show that in the RTT 0 case, two and four workers setting
achieved an average throughput higher than the reference single process run.

RTT [ms]

35000000

i * 10
« 20
- X mean

throughput [B/s]
20000000

[=]

Sh x x

§/|(>\< T)I/ T T T ,Ij
1 2 3 4 5 6 7 8

workers count

Figure 8: Parallelism, average throughput (higher is better)

A score of eight working threads showed a meaningful drop. For the relative
delay equal to 10 and 20 milliseconds, the higher the number of processes, the
higher the average relative throughput reached.

4.2.2 Execution time
The elapsed time graph (Figure 9) depicts that the eight threads test was the
fastest in all the cases.

In the behaviour of the RTT 0 scenario, despite having the worst average
bandwidth, eight workers could still do the job faster than other acquisition
runs.

12

LD ¢ RTT [ms]

* 10
= 20
* mean

5000

elapsed time [s]
3000

1000

0

workers count

Figure 9: Parallelism, elapsed time (lower is better)

5 Discussion

5.1 Prefetching

In the first case, the approach used influenced the process in a negative way.
When the delay was introduced to the connection, none of the chosen read-ahead
and read-before parameters brought any benefits.

The used technique degraded the performance noticeably. The simplified im-
plementation of prefetching (Section 3.2.1.1) definitely increased the overall
response time of the FUSE provided block device. Moreover, the chosen test
scenario covered only the small area of possible size settings.

5.2 Parallelism

The outcome of the parallelism test appears to prove the usefulness of spreading
the workload between multiple workers. Figure 9 illustrates that more workers
resulted in a lower elapsed time score. The factor that was expected to enable
observed improvement was an increase of throughput. However, figure 8 does
not confirm it. Although the average throughput was improved for a reference
test, the RTT 10 and 20 cases do not show any observable difference.

Even though the test procedure was designed with the cache awareness in mind,
it assumed the lack of client-side read cache for a block device. The blktrace

13

tool log created as the part of the post-mortem analysis appears to confirm this
factor as the potential flaw in the taken method.

6 Future work

Similarly to Yamaguchi et al. [9] it would be beneficial to investigate specific
iSCSI implementation subtleties against the model of Short Block Access intro-
duced by the authors. Potential research could also attempt to extend defined
high latency (one way delay of 4ms) to the higher values.

Furthermore, one may apply conclusions from the papers focusing on the practical
side of delayed iSCSI I/O tuning [7] [8] to triage domain. Specifically, to extend
the scope of conducted tests to random reads, which were not examined in this
research.

ATA over Ethernet (AoE) protocol is an interesting alternative to the iSCSIL
However, as it runs directly on top of Network Layer 2 — it is not routable.
Research discovering the possibilities of spanning AoE over multiple network
domains while still becoming performance advantageous could shed new light on
the remote acquisition problem.

The delay of a network link is one factor decreasing remote triage perform-
ance. Offloading the triage workload to be computed on the remote endpoint
and concurrently streaming the results back could partly cancel link latency
implications.

References

[1] Gary Palmer. A Road Map for Digital Forensic Research. Tech. rep.
DFRWS, 2001.

[2] Simson L. Garfinkel. ‘Digital media triage with bulk data analysis and
bulk_extractor’. In: Computers € Security 32 (2013), pp. 56-72. ISSN:
0167-4048. DOL: http://dx.doi.org/10.1016 /j.cose.2012.09.011. URL:
http://www.sciencedirect.com/science/article/pii/S0167404812001472.

[3] Matthew Komorowski. A history of storage cost. 2009. URL: http://www.
mkomo.com/cost-per-gigabyte.

[4] Vassil Roussev, Candice Quates and Robert Martell. ‘Real-time Digital
Forensics and Triage’. In: Digit. Investig. 10.2 (Sept. 2013), pp. 158-167.
1SSN: 1742-2876. DOL: 10.1016/.diin.2013.02.001. URL: http://dx.doi.org/
10.1016/j.diin.2013.02.001.

14

http://dx.doi.org/http://dx.doi.org/10.1016/j.cose.2012.09.011
http://www.sciencedirect.com/science/article/pii/S0167404812001472
http://www.mkomo.com/cost-per-gigabyte
http://www.mkomo.com/cost-per-gigabyte
http://dx.doi.org/10.1016/j.diin.2013.02.001
http://dx.doi.org/10.1016/j.diin.2013.02.001
http://dx.doi.org/10.1016/j.diin.2013.02.001

Steve VanDeBogart, Christopher Frost and Eddie Kohler. ‘Reducing Seek
Overhead with Application-directed Prefetching’. In: Proceedings of the
2009 Conference on USENIX Annual Technical Conference. USENIX’09.
San Diego, California: USENIX Association, 2009, pp. 24-24. URL: http:
//dl.acm.org/citation.cfm?id=1855807.1855831.

Pei Cao et al. ‘Implementation and Performance of Integrated Application-
controlled File Caching, Prefetching, and Disk Scheduling’. In: ACM Trans.
Comput. Syst. 14.4 (Nov. 1996), pp. 311-343. 1SSN: 0734-2071. por: 10.
1145/235543.235544. URL: http://doi.acm.org/10.1145/235543.235544.

Y. Zhang and M.H. MacGregor. ‘Tuning Open-iSCSI for Operation over
WAN Links’. In: Communication Networks and Services Research Con-
ference (CNSR), 2011 Ninth Annual. May 2011, pp. 85-92. po1: 10.1109/
CNSR.2011.21.

Masato Oguchi et al. ‘Performance Improvement of iSCSI Remote Storage
Access through Optimization of Multiple Layers.” In: JSW 8.3 (2013),
pp. 538-546. URL: http://dblp.uni-trier.de/db/journals/jsw/jsw8. html#
OguchiHMOY13.

S. Yamaguchi, M. Oguchi and M. Kitsuregawa. ‘Analysis of iSCSI short
blocks access’. In: Digital Information Management, 2007. ICDIM 07.
2nd International Conference on. Vol. 2. Oct. 2007, pp. 574-576. DOI:
10.1109/ICDIM.2007.4444285.

Lansing chapter of ISSA. URL: http://lansingmi.issa.org/ (visited on
10/04/2016).

Open-iSCSI project information. URL: http://linux-iscsi.org/wiki/Open-
iSCSTI (visited on 10/04/2016).

The iSCSI Enterprise Target project. URL: http://iscsitarget.sourceforge.
net/ (visited on 10/04,/2016).

netem wtility information. URL: http:/ / www . linuxfoundation . org /
collaborate/workgroups/networking /netem (visited on 10/04/2016).

Fengguang Wu. ‘Sequential file prefetching in Linux’. In: Advanced Op-
erating Systems and Kernel Applications: Techniques and Technologies:
Techniques and Technologies (2009), p. 218.

Eric van den Haak. Remote data acquisition on block devices in large
environments. A study into copy-on-read and copy-on-write methods. Tech.
rep. University of Amsterdam, 2014.

Lukasz Makowski. triage.py source code. 2015. URL: https://github.com/
maq123/triage/blob/master /triage.py.

Shawn Ostermann. teptrace - Official Homepage. 2015. URL: http:/ /teptrace.
org.

Manikantan Ramadas. TCPTRACE Manual. 2003. URL: http://www.
teptrace.org/teptrace-manual /manual /index. html.

15

http://dl.acm.org/citation.cfm?id=1855807.1855831
http://dl.acm.org/citation.cfm?id=1855807.1855831
http://dx.doi.org/10.1145/235543.235544
http://dx.doi.org/10.1145/235543.235544
http://doi.acm.org/10.1145/235543.235544
http://dx.doi.org/10.1109/CNSR.2011.21
http://dx.doi.org/10.1109/CNSR.2011.21
http://dblp.uni-trier.de/db/journals/jsw/jsw8.html#OguchiHMOY13
http://dblp.uni-trier.de/db/journals/jsw/jsw8.html#OguchiHMOY13
http://dx.doi.org/10.1109/ICDIM.2007.4444285
http://lansingmi.issa.org/
http://linux-iscsi.org/wiki/Open-iSCSI
http://linux-iscsi.org/wiki/Open-iSCSI
http://iscsitarget.sourceforge.net/
http://iscsitarget.sourceforge.net/
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
https://github.com/maq123/triage/blob/master/triage.py
https://github.com/maq123/triage/blob/master/triage.py
http://tcptrace.org
http://tcptrace.org
http://www.tcptrace.org/tcptrace-manual/manual/index.html
http://www.tcptrace.org/tcptrace-manual/manual/index.html

	Introduction
	Acquisition
	Forensic triage
	Challenges of a remote acquisition
	Remote triage concept

	Related work
	Method
	Lab environment setup
	Hardware
	Software

	I/O optimisation - methods of choice
	Prefetching
	Parallelism

	Tests scenarios
	Prefetching
	Parallelism
	Combining io optimisation and rttwan parameters
	Pre-test procedure

	Metrics
	Average throughput
	Elapsed time

	Results
	Prefetching
	Throughput
	Execution time

	Parallelism
	Throughput
	Execution time

	Discussion
	Prefetching
	Parallelism

	Future work
	References

