

Distributed VS Parallel
implementations of graph algorithms

Alexis SIRETA,Lazar PETROV

Outline

About graph computing

What is a graph ?

A graph is a set of
nodes connected to
each other by edges

node

edge

What kind of graphs ?

Edges can be :

Directed

Undirected
5

5

Unweighted weighted

Connected graph

A connected graph is a graph
in which there is a path

between every pair of nodes

How to represent a graph ?

Adjacency matrix

 Node1
Node2
Node3

1 2 3
0 7 9
7 0 8
9 8 0

9 1

 2

 37

8

How to represent a graph ?

Edge list

 Nodea Nodeb W
 Node1 Node2 7

 Node1 Node3 9
 Node2 Node3 8
 Node2 Node1 7

 Node3 Node1 9
 Node3 Node2 8

9 1

 2

7

8

 3

What are graphs used for ?
Data representation of a wide range
problems :

Finding shortest path from A to B

Representing database

Find related topics

...and plenty more !

Problem !
Graphs are getting VERY big :

Example :
 Directed network of hyper links between the articles of
the Chinese online encyclopedia Baidu.

 17 643 697 edges

source : http://konect.uni-koblenz.de/networks/zhishi-baidu-internallink

Solution !

 Use Parallel or Distributed systems

Distributed and Parallel systems

Parallel System

cache

cache

cache

 Main memory

Distributed System

cache

 Main memory

cache

 Main memory

cache

 Main memory

Network

Our Research Project

Goal and Questions

Compare the performances of parallel and distributed
implementations of a graph algorithm

Questions:
Can we really compare algorithms running on different

architectures ?
How do the algorithms scale ?

How do they adapt to other architectures ?

Hypothesis

Hypothesis: Distributed will run slower than parallel for small
graphs because of communication latency but will run faster
for big graphs because of memory access time

Procedure

Choose two implementations of one graph algorithm
Build a theoretical model of the execution time
Run the algorithms on the Uva cluster
Explain the results and adapt the theoretical model if
needed

Minimum Spanning Tree

What is it ?

9 1

 2

7

8

 3

 41

3

 4

 1 3

 2

1 3

7

Is relevant for connected undirected graphs

Which algorithm choose ?

Several classical algorithms : Prim, Kruskal, Boruvka

Boruvka : This is the most used for parallel and distributed
implementations, therefore this is the one we chose

Parallel implementation : Bor-el, described in the paper “
Fast shared-memory algorithms for computing the minimum
spanning forest of sparse graphs” by David A. Bader and
Guojing Cong
Distributed implementation : GHS, described in “A
distributed algorithm for minimum weight spanning
trees” by R. G. Gallager, P. A. Humblet
and P. M. Spira

Sequential algorithm

Example Graph

 A
 B

 D

 F

 E

 C

 G

7 11

5
1094

6

15

8
12

13

Initialize components

 A
 B

 D

 F

 E

 C

 G

7 11

5
1094

6

15

8
12

13

Finding MWOE

 A
 B

 D

 F

 E

 C

 G

7 11

5
1094

6

15

8
12

13

Creating new components

 A
 B

 D

 F

 E

 C

 G

7 11

5
1094

6

15

8
12

13

Finding MWOE

 A
 B

 D

 F

 E

 C

 G

7 11

5
1094

6

15

8
12

13

Creating new component

 A
 B

 D

 F

 E

 C

 G

7 11

5
1094

6

15

8
12

13

Here is the Minimum spanning tree

 A
 B

 D

 F

 E

 C

 G

7

5
104

6
8

Bor-el algorithm (Parallel)

Example Graph

 A
 B

 D

 F

 E

 C

 G

7 11

5
1094

6

15

8
12

13

Edge list representation

A B 7
A D 4
B A 7
B C 11
B D 9
B E 10
C B 11
C E 5
D A 4

D B 9
D E 15
D F 6
E B 10
E C 5
E D 15
E F 12
E G 8
F D 6

F E 12
F G 13
G E 8
G F 13

MST

Select MWOE

A B 7
A D 4
B A 7
B C 11
B D 9
B E 10
C B 11
C E 5
D A 4

D B 9
D E 15
D F 6
E B 10
E C 5
E D 15
E F 12
E G 8
F D 6

F E 12
F G 13
G E 8
G F 13

A D 4
B A 7
C E 5
D A 4
E C 5
F D 6

MST

These are the edges we selected

 A
 B

 D

 F

 E

 C

 G

7

54

6
8

These are the edges we selected

 A
 B

 D

 F

 E

 C

 G

7

54

6
8

root

 C

root

Pointer jumping example

 E

 D

 C

 B

 A

 E

 D

 C

 B

 A

 E

 D

 C

 B

 A

Pointer jumping

 A
 B

 D

 F

 E

 C

 G

7

54

6
8

 C

Pointer jumping

 A
 B

 D

 F

 E

 C

 G

7

54

6
8

 C

Pointer jumping

 A
 B

 D

 F

 E

 C

 G

7

54

6
8

 C

Create supervertex

 A
 A

 A

 A

 C

 C

 C

7

54

6
8

 C

In the edge list

A B 7
A D 4
B A 7
B C 11
B D 9
B E 10
C B 11
C E 5
D A 4

D B 9
D E 15
D F 6
E B 10
E C 5
E D 15
E F 12
E G 8
F D 6

F E 12
F G 13
G E 8
G F 13

A D 4
B A 7
C E 5
D A 4
E C 5
F D 6

MST

In the edge list

A A 7
A A 4
A A 7
A C 11
A A 9
A C 10
C A 11
C C 5
A A 4

A A 9
A C 15
A A 6
C A 10
C C 5
C A 15
C A 12
C C 8
A A 6

A C 12
A C 13
C C 8
C A 13

A D 4
B A 7
C E 5
D A 4
E C 5
F D 6

MST

Compact

A C 11
A C 10
C A 11

A C 15
C A 10
C A 15
C A 12

A C 12
A C 13
C A 13

A D 4
B A 7
C E 5
D A 4
E C 5
F D 6

MST

Find Mwoe

A C 11
A C 10
C A 11

A C 15
C A 10
C A 15
C A 12

A C 12
A C 13
C A 13

A D 4
B A 7
C E 5
D A 4
E C 5
F D 6
B E 10

MST

Found Spanning tree

A D 4
B A 7
C E 5
D A 4
E C 5
F D 6
B E 10

Theoretical analysis of Bor-el

 Size of graph in memory

2 times each edge
2 nodes id per edge

Number of edges N : number of nodes
log(N) size of one node in

memory

Number of processors

Size of weights in memory

Average number of edges

E decreases of at least N/2 each
iteration. Lets say E = kN

Memory access time

cache1

 Main memory

cache2

cache1

cache1

cache2

cache2

1 CC 10 CC

100 CC

Memory access time

Size of graph in memory

Size of cache 1
Size of cache 2

Memory access time

N

CC
200

k=N
s1=16 kb
s2 = 4 Mb

p=2

Number of memory accesses

N

C is an unknown constant : using their experimental results
we fount it is around 3.21

Formula given by the paper on bor-el

Computation complexity

N

Formula given by the paper on bor-el

Plot execution time

S

k=N
s1=16 kb
s2 = 4 Mb
p=2-10

N

Plot execution time

N

p=2

p=10
N

S

Analysis

Plot does not vary with p because time highly dominated by

memory access for very big graphs

GHS algorithm (Distributed)

Example graph

 A
 B

 D

 F

 E

 C

 G

7 11

5
1094

6

15

8
12

13

State of each edge

Branch edges are those that have already been
determined to be part of the MST.

Rejected edges are those that have already been
determined not to be part of the MST.

Basic edges are neither branch edges nor rejected
edges.

State of each edge
Each processor stores:

The state of any of its incident edges, which can
be either of {basic, branch, reject}

Identity of its fragment (the weigth of a core edge
– for single-node fragments, the proc. id)

Local MWOE
MWOE for each branching-out edge
Parent channel (route towards the root)
MWOE channel (route towards the MWOE of its

appended subfragment)

Type of messages
New fragment(identity): coordination message sent by
the root at the end of a phase
Test(identity): for checking the status of a basic edge
Reject, Accept: response to Test
Report(weight): for reporting to the parent node the
MWOE of the appended subfragment
Merge: sent by the root to the node incident to the
MWOE to activate union of fragments
Connect(My Id): sent by the node incident to the
 MWOE to perform the union

Phase 0 : Every node is a fragment

 A
 B

 D

 F

 E

 C

 G

7 11

5
1094

6

15

8
12

13

...And every node is the root of its fragment

Phase 1 : Find MWOE

 A
 B

 D

 F

 E

 C

 G

7 11

5
1094

6

15

8
12

13

Phase 1 : select new root

 A
 B

 D

 F

 E

 C

 G

7 11

5
1094

6

15

8
12

13

Phase 1 : root broadcast new
identity

 4
 4

 4

 4

 5

 5

 5

7
11

5
1094

6
15

8
12

13new_fragment(4)

Phase 1 : root broadcast new
identitynew_fragment(4)

new_fragment(5)

new_fragment(5)

Phase 1 : Find MWOE

 4
 4

 4

 4

 5

 5

 5

7
11

5
1094

6
15

8
12

13

test

acceptreject

test

Phase 1 : Find MWOE

 4
 4

 4

 4

 5

 5

 5

7
11

5
1094

6
15

8
12

13

Phase 1 : Report to root

 4
 4

 4

 4

 5

 5

 5

7
11

5
1094

6
15

8
12

13

10

12

12

Phase 1 :Send connect

 4
 4

 4

 4

 5

 5

 5

7
11

5
1094

6
15

8
12

13

Phase 1 :New root

 4
 4

 4

 4

 5

 5

 5

7
11

5
1094

6
15

8
12

13

Phase 1 :Broadcast ID

 5
 5

 5

 5

 5

 5

 5

7
11

5
1094

6
15

8
12

13

Phase 1 :MST !

 5
 5

 5

 5

 5

 5

 5

7
11

5
1094

6
15

8
12

13

Theoretical analysis of GHS

Theoretical execution time

(2E + 5N(log(N) -1) + 3N)/NNumber of messages sent per
node:

Max size of messages sent: log(E)+log(8N)

Speed of connection: 1 Gb/s

Plot

Analysis

Theoretically the distributed algorithm is ALWAYS way faster

than the parallel one
This is true with our hypothesis of a network without latencies

and one host per node

Experiments

The Uva cluster

18 nodes with 16 cores each

Max graph size = 82656
edges

Ghs implementation : Python

Initially chose a python implementation : Did
not run properly on the cluster

Ran N times (in parallel) the whole algorithm

Ghs implementation : C with MPI

Then chose a C implementation using MPI
(Message Passing Interface) to communicate
between processes

Did not run the algorithm until the end

Making it work

The C algorithm worked for a specific type of
graphs

0 1 2 3
1 0 4 5
2 4 0 6
3 5 6 0

Results

Reasons for such different results

Very badly written algorithm

Message queues

Communication latency

Check if algorithm does not send
too many messages

Number of
nodes

Theoretical value
(msg sent)

Experimental
value (msg sent)

224

128

64

32

110410

37100

10250

2710

216712

56717

8200

1573

Check if not a queuing problem

Number of
nodes

Number of
cores

Time (s)

2

8

16

4

3.153

3.583

Communication latency

Add a latency every time a process sends a message

Theoretical latency needed :
0.1 s

Empirical latency found :
 0.025 s

Don't forget that the
implementation sends twice the

theoretical amount of
messages !

Communication latency

Add a latency every time a process sends a message

Theoretical latency needed :
0.1 s

Empirical latency found
(between two nodes) :

 0.025 s

Don't forget that the
implementation sends twice the

theoretical amount of
messages !

Communication latency

There is no latency if we run the algorithm on one node

Possibly if we run the algorithm on a N core node we
match the theoretical speed

Further work

Investigate the other factors that caused the bad performance

Investigate the best architectures to run the distributed algorithm

Conclusion

Parallel algorithm way faster than the distributed one

Causes of bad performances of GHS is communication latency
caused by MPI and bad implementation of the algorithm

Uva cluster is not optimized for algorithms that require a lot of
communication

Nevertheless it is possible to find implementations and
architectures that will make GHS outperform bor-el

and this should be investigated

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 12
	Slide 15
	Slide 16
	Slide 19
	Slide 22
	Slide 23
	Slide 30
	Slide 46
	Slide 47
	Slide 57
	Slide 58
	Slide 73
	Slide 74
	Slide 77
	Slide 78

