Distributed VS Parallel
implementations of graph algorithms

Alexis SIRETA.Lazar PETROV

Outline

About graph computing

AJ\\

5" Y
/‘ ‘ “ "\'

/4___;_"{ \\ '\\‘ ; NS
‘wm; 4~ N «s»’.«/

4 /41 _4_5\. 4@“ "&’
>

i'..r‘-- % ‘ '_
K ReA
. b0
\’&\jf; ‘
‘ }

]

X

‘\

~a V)"\\

/3

b
/3

What is a graph 7

edge
y
A graph is a set of i\““\%ﬁ‘
nodes connected fo | ‘Ahw.“;,
each other by edges \ A '
\ »Y
XA

What kind of graphs 7

Fdges can be : Unweighted weighted

O

Directed ‘_>. ._>‘
O

Undirected .—. ‘—.

Connected graph

A connected graph is a grapn
in which there is a path
between every pair of nodes

How to represent a graph 7

Adjacency matrix

1 2 3 Q
Nodel |0 7 O
Node2 |7 O 8 !
Noded |9 8 O 3

How to represent a graph 7

Edge list

Nodea Nodeb W
odel Node?
ode] oded

ode? oded

ode? Nodel

ode]
ode?

oded

L L L L L L

Ll L L L L
G O ~] ©© O
~J

oded

What are graphs used for 7

Data representafion of a wide range
problems :

® Finding shortest path from A to B HHE
® Representing dafabase @

® Find related topics @g@

...ahd plenty more |

Propblem |

Graphs are getting VERY big :
Example :
Directed network of hyper links between the articles of
the Chinese online encyclopedia Baidu.

17 643 697 edges

source : http://konect.uni-koblenz.de/networks/zhishi-baidu-internallink

Solufion |

Use Parallel or Distributed systems

Distributed and Parallel systems

=
-
=

Parallel System

Distributed System

Our Research Project

Goal and Questions

Compare the performances of parallel and distributed
implementations of a graph algorithm

Questions:
Can we really compare algorithms running on different
architectures 7
How do the algorithms scale 7
How do they adapft fo other architectures 7

p (3

Hypothesis

Hypothesis: Distributed will run slower than parallel for small
graphs because of communication latency but will run faster
for big graphs because of memory access fime

p (3

Procedure

Choose two implementations of one graph algorithm
Build a theoretical model of the execution fime

Run the algorithms on the Uva cluster

—xplain the results and adapt the theoretical model if

needed
’h/

Minimum Spanning Iree

What is it ?

/
3
Q
E—
y
¥

8 e

Is relevant for connected undirected graphs (_\i:

Which algorithm choose 7

Several classical algorithms : Prim, Kruskal, Boruvka

Boruvka : This is the most used for parallel and distributed
implementations, therefore this is the one we chose

Parallel implementation : Bor-el, described in the paper *

Fast shared-memory algorithms for computing the minimum

spanning forest of sparse graphs” by David A. Bader and
Guojing Cong

Distributed implementation : GHS, described in “A

distributed algorithm for minimum weight spanning
trees” by R. G. Gallager, P. A. Humblet i

and P. M. Spira

Sequential algorithm

-

—xample Graph

Initialize components

—inding MWOE

Creating new component

Here is the Minimum spanning free

Bor-el algorithm (Parallel)

-

—xample Graph

~dge list representation

AB7 DB 9 FE 12
MST AD4 D E 15 FG 13

B A 7 D F 6 G E 8

B3 C 11 - B 10 G F 13

3D 9 FC 5

B E 10 =D 15

CB 1T FF 12

CE5 -G 8

D A 4 =D 6

MST

Select MWO

ADA4
BA/
CED
DAA4
ECDS
FDO

AB 7/
ADA4
BA/
B3 C 11
B D 9
B3 E 10
CB 11T
CED
DAA4

e Ud

n rm m mMm m mMm O O O
O G Mmoo N ®

O e

_ _\O_\
I\)O"IO-IO @O

FE 12
FG 13
G ES
GF 13

hese are the edges we selected
/
PN e
4 e‘/ 5
?\ ;
O
©

5]

hese are the edges we selected

roof

roof

Poinfer jumping example

Create supervertex

MST

In the edge list

ADA4
BAY7
CED
DAA4
ECDS
FDO

AB 7/
AD A4
B8 A/
B3 C 11
B D 9
B3 E 10
CB 11T
CED
DAA4

n rm oo
O
Ol

\O\
O—IO

N rm m m m m O O T
@)

O ¢ o 0O ™
N

O o

FE 12

FG 13

G ES

GF 13

MST

In the edge list

ADA4
BAY7
CED
DAA4
ECDS
FDO

AA T
A A4
AA T
ACITT
AAG
AC 10
CAIT
CCDO
A A4

AAGQ
ACITD
AAO
CA10
CCDO
C A 10
CAIl2
C C38
AAO

AC T2
AC 13
C C3
CAI13

Compact

MST
AC 1T A= AC 12
NV CA10 ,
AC 10 , AC 13
oA CAITIT = Ae CAI13
CE5 CAI2
D A 4
EC5
FD6

MST

-ind Mwoe

ADA4
BA/
CED
DAA4
ECDS
FDO
BE 10

AC
AC

CA

AC 15 |
o A0 AC T2
e ACT3
= CAI3

-ound Spanning free

ADA4
BA7/
CED
DAA4
ECD
FDO
BE 10

heoretical analysis of Bor-el

Size of graph in memory

Number of edges N : number of nodes

log(N) size of one node in
\ / memory

4*E*log(N)+2*E*log(E)

P P
Y A

Number of processors

2 fimes each edge Size of weights in memory

2 nodes id per edge

Average number of edges

E decreases of af least N/2 each
iferation. Lefs say £ = kN

E=k- N—% (2-k+1)

Memory access time

Memory access fime

Size of cache 1

\ Size of cache 2

mml— 1+1 mm S? mm 1— 10+1 mml— 100-p)

N

Size of graph in memory

Memory access fime

-10 +00 +1200 +2000 +2800 +3000 +4400 +5200

Number of memory accesses

Formula given by the paper on bor-el

4EClog(2?E)

(8E+N+leog(N)+ -)log(N)

C is an unknown constant : using their experimental results
we fount it is around 3.21

Computaftion complexity

Formula given by the paper on bor-el

<§>1og<E>1og<N>

(I

b Plof execution fime

o k=N
e s]1=10 kb
o $2 =4 Mb
-? 0=2-10

N
+8000 H.ax10? +1.4x10* +1.7x10
3 3 I—I—I—I—I—I—I—I—I—I—I—L

40 Plof execufion fime

i i i I? N

+200 +400 +600 +800 +1000 +1200 +1400 +1600

Analysis

Plot does not vary with p because fime highly dominated by
memory access for very big graphs

GHS algorithm (Distributed)

-

graph

—Xample

State of each edge

® Branch edges are those that have already been
deftermined to be part of the MST.

® Rejected edges are those that have already been
deftermined not to be part of the MSI.

® Basic edges are neither branch edges nor rejected
edges.

State of each edge

Each processor stores:

® [he sfate of any of its incident edges, which can
be either of {basic, branch, reject}

® [denfity of ifs fragment (the weigth of a core edge
- for single-node fragments, the proc. id)

® | ocal MWOE

® MWOE for each branching-out edge

® Parent channel (route towards the root)

® MWOE channel (route towards the MWOE of |

appended subfragment)
oo 9 I:E'lj

ype of messages

® New fragment{identity): coordinafion message sent by
fhe roof at the end of a phase

® Test(idenfity): for checking the status of a basic edge

® Reject, Accept: response to Test

® Report(weight): for reporting to the parent node the
MWOE of the appended subfragment

® Merge: sent by the roof tfo the node incident fo the
MWOE to activate union of fragments

® Connect(My Id): senf by the node incident to the

MWOE to perform the union
=l

Phase O : Every node is a fragment

..And every node is the roof of its fragment

- Find MWO

1

Phase

select new rooft

Phase 1 :

Phase 1 : root broadcast new
new_fragment(4) Idem'ITy

\ /n dw_fragment(D)
‘ L 5

_fragment(5

3 ne
new_frax menr(él) 4 ‘ &

2/ [(5]

ase 1 : Find MWOEL

Phase 1 : Report fo roof

NN

s
2/ [(2]

Phase 1 :Send connect

‘Broadcast D

Phase

heoretical analysis of GHS

heorefical execufion fime

Number of messages senf per (of + 5N(log(N) -1) + 3N)/N

node:
Max size of messages sent: log(E)*+log(8N)
Speed of connection: 1 Gb/s

Plof

t(+{3.L'I'£J'

T +H0.09
T +0.09
T +0.08
T +H0.07
T +H0.07
T +0.06
T +H0.00
T +0.05
T +0.00
T +0.04
T +0.04
T +0.04
T +H0.03
T +0.03
T +0.02
T +0.01
r +0.01

AP +2 65x10° +4x10° +5.5%10° +7x10° +8.5x10°
3 3 3 | | % | 3 3 3 | % | | 3 3 3 I—L

Analysis

Theoretically the distributed algorithm is ALWAYS way faster

fhan the parallel one

This is frue with our hypothesis of a network without latencies

and one host per node

r

CXperiments

o O

he Uva cluster

18 nodes with 16 cores each

|

Max graph size = 32600
edges

Ghs implementation @ Python

Initially chose a python implementation @ Did
not run properly on the cluster

Ran N fimes (in parallel) the whole algorithm

o O

A\

Ghs implementation : C with MP|

Then chose a C implementation using MP|
(Message Passing Inferface) fo communicate
between processes

Did not run the algorithm until the end

Making it work

The C algorithm worked for a specific type of
graphs

w N — O
or N O —
O O N DO
O O O W

50

40

30

20

10

GHS execution time function of number of nodes

Resulfs

50

100

150

200

—— Col2
—— Col2 - fit

Reasons for such different resulfs

Very badly written algorithm

Message queues

Communication latency

Check if algorithm does not send
fOO many messages

Number of Theorefical value Experimental

nodes (Mmsg sent) value (msg sent)
224 110410 216712

123 3/100 o0 /17

04 10200 3200

o O

32 2710 1073 B

Check if nof a queuing problem

Number of Number of ,
Time (s)
nodes cOores
2 16 3.153
8 4 3.583

Communication latency

Add a lafency every time a process sends a message

Theoretical latency needed : Empirical latency found
0.1 s 0.020 s

Don't forget that the
implementation sends twice the
theoretical amount of
messages |

o O

A\

Communication latency

Add a lafency every time a process sends a message

Empirical latency found
Theorefical latency needed : MpiTiEar fatenty 1oun

(lbetween two nodes) :
0.1 s

0.020 s

Don't forget that the
implementation sends twice the
theoretical amount of 0O

messages | B

Communication latency

There is no latency if we run the algorithm on one node

Possibly if we run the algorithm on a N core node we
match the theoretical speed

—urther work

Investigafte the other factors that caused the bad performance

Investigate the best architectures to run the distributed algorithm

o O

A\

Conclusion

Parallel algorithm way faster than the distributed one

Causes of bad performances of GHS is communication lafency
caused by MPI and bad implementation of the algorithm

Uva cluster is not optimized for algorithms that require a lof of
communicafion

Nevertheless it is possible to find implementations and

architectures that will make GHS outperform bor-el %

and fhis should be investigated

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 12
	Slide 15
	Slide 16
	Slide 19
	Slide 22
	Slide 23
	Slide 30
	Slide 46
	Slide 47
	Slide 57
	Slide 58
	Slide 73
	Slide 74
	Slide 77
	Slide 78

