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Motivation

 Compromised (rooted/jailbroken) devices are a 
major issue in the mobile security field.

 Security and business applications often 
attempt to identify rooted/jailbroken devices.

 Cloaking techniques are being developed as 
the detection counterpart.
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Research questions
 RQ1: Which techniques are used for root/jailbreak 

detection and evasion on Android and iOS?
 RQ2: Are there any differences between the 

techniques used for each of the platforms? Are the 
controls they present effective?

 RQ3: What are the latest trends used for detection?
 RQ4: Could those latest trends be circumvented? If 

so, is it possible to create new evasion methods and 
implement them?
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Related work
 Bulk of the research is focused on Android.

 Detection methods are not effective against evasion 

techniques.

 Focused on high level (Java) and native languages (C/C++).
 IOS

 Lack of formal research that addresses iOS detection and 

evasion methods.

 NESO Security Labs AppMinder developed a free prototype 

for jailbreak detection, based on ARM assembly code.
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Detection and Evasion Methods
 Methodology 

 Study detection/evasion methods (RQ1, RQ2):
 Primary literature

 Existing tools and frameworks

 Popular forums

 Analyze collected information to detect latest 

trends (RQ3)
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Detection and Evasion Methods
 Taxonomy of Android Root Detection Methods

 Presence of packages, applications, files.

 Build settings: test keys, build version.

 File permissions.

 Shell command execution (su, which su).

 Runtime characteristics: mount /system partition.
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Detection and Evasion Methods
 Taxonomy of iOS Jailbreak Detection Methods

 Existence of files. 

 Directory permissions.

 Process forking.

 SSH loopback 

connections.

 Privilege actions 

execution.

 Calling dynamic 

library functions.

 AppMinder  Solution. https://github.com/leecrossley/cordova-plugin-jailbreak-detection

if ([[NSFileManager defaultManager] 
fileExistsAtPath:@"/Applications/Cydia.app"])
    {
        return YES;
    }
    else 

if ([[NSFileManager defaultManager] 
fileExistsAtPath:@"/Library/MobileSubstrate/Mobil
eSubstrate.dylib"])
    {
        return YES;
    }
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Detection and Evasion Methods
 Root/Jailbreak evasion methods

 Simple methods:
 Hiding su binary (Android)

 Runtime checks (Android)

 Binary patching (Android and iOS)

 Frameworks:
 RootCloak (Android)

 RootCloak Plus (Android)

 xCon (iOS)
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Detection and Evasion Methods
 Android vs. iOS: Method Comparison

 Based on the same idea. 

 Detection/evasion methods implemented in 

different levels of abstraction:
 High level: Java/Objective-C

 Native level: C/C++

 Low level: ARM assembly (No framework available)

 Minor differences in implementation (e.g fork).
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Detection and Evasion Methods
 Latest trends

 Most applications implement detection controls in 

high level and native languages

 NESO Security Labs created a jailbreak detection 

solution implemented in ARM assembly : 

AppMinder
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AppMinder: What is it?

 Jailbreak detection tool for

Apple iOS.

 Based on ARM assembly.

 Fork system call is 

evaluated for detection.

 Code consists of

5 functions.

 Application is terminated

on jailbroken devices

Reference:http://appminder.nesolabs.de/

#if !defined(DISABLE_APPMINDER) && !
(TARGET_IPHONE_SIMULATOR) && !(__arm64__)
__attribute__ ((always_inline)) static void
dFRdWsEfEaJi (unsigned int 
*___lxTgdaUaxSYingsbeypmEtHgmILez, unsigned int 
*___TukDsLwSvzYctQkYpXKiDfwnLvJJJ, unsigned int 
*___aurUzzwAHntEjodevWkF)
{asm volatile ("sub r1, r1, r1;mov r0, r1;b 
L975215;push {r0-r12};L975215:;mov r12, #32;mov r3, 
r3;asr r12, #4;mov r3, r3;add r0, r0, #40;b 
L975216;stmdb sp!, {r0-r12};L975216:;mov r4, pc;ldr 
r4, [r4, #0];svc 0x80;ldr r3, %
[lxTgdaUaxSYingsbeypmEtHgmILez];str r4, [r3, #0];b 
L975217;push {r0-r12};L975217:;sub r1, r1, r1;mov r0, 
r0;mov r3, r1;mov r2, r2;add r3, r3, #1;mov r1, r1;cmp 
r0, r3;b L975218;stmdb sp!, {r0-r12};L975218:;beq 
L975219;mov r10, #79;mov pc, r10;L975219:;ldr r3, %
[TukDsLwSvzYctQkYpXKiDfwnLvJJJ];str r0, [r3, #0];ldr 
r3, %[aurUzzwAHntEjodevWkF];str r12, [r3, #0];
...
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AppMinder
 Why is it difficult to bypass?

 No traditional methods  work on it.

 Polymorphic.

 Obsfuscation.

 Self integrity checks.

 Assembly code added ”inline”.
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Experiments on iOS
 Methodology (RQ4)

 Study AppMinder.

 Understand its inner workings.

 Create methods for evasion and implement them.
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Experiments on iOS
 Methodology (RQ4)

 Create an iOS testing application with AppMinder 

checks.

 Static/Dynamic analysis.

 Identify patterns.

 Design a strategy to bypass AppMinder’s controls.

 Implement solution.
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Experiments on iOS: bypassing AppMinder

 Techniques explored:

 Hooking tools such as Cycript.

 Binary patching.

 Debbuging tools: GNU Debugger 

(a.k.a gdb).
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Experiments on iOS: bypassing AppMinder
 System architecture:
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Experiments on iOS: bypassing AppMinder

 Code analysis: supervisor calls (SVC)

 Fork: jailbreak detection

 Ptrace: anti-debugging measures

 Exit
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Experiments on iOS: bypassing AppMinder

 Bypassing strategy: Fork

 Normal device:r0=1

 Jailbroken device: r0!=1

(Child's PID)

 Solution
 Alter return value:

set r0=1

Sample Code:

   mov r1 , #2;
   b L505572 ;
   stmdb sp ! , { r0−r 1 2 } ;
   L505572 : ; 
   mov r12 , r1 ;
   svc 0x80;       ←Breakpoint
   sub r1, r1, r1; ←Breakpoint
   mov r3, r1;
   add r3, r3, #1;
   cmp r0, r3;
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Experiments on iOS: bypassing AppMinder

 Component interaction:
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Experiments on iOS: bypassing AppMinder

 Semi-automatic solution
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Experiments on iOS: bypassing 
AppMinder
 Limitations:

 We studied AppMinder’s variant B.

 We worked with our own testing application.

 Fifth function call exhibits different behavior.
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Experiments on iOS: alternative 
jailbreak detection methods
 Cordova jailbreak detection plugin:

 Implemented in Objective-C.

 Detection methods:
 Check for existing directories, files or packages.

 Execute privileged actions like writing outside of the sandbox.
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Experiments on iOS: alternative 
jailbreak detection methods
 Cordova bypassing:

 Focus on if 

statements.

 Target assembly 

compares.

 Change register 

values.

 

Objective-C ARM 
Assembly

if ([[NSFileManager 
defaultManager] fileExistsAtPath:
@"/Applications/Cydia.app"])

{return YES;}

else if ...(next check)

Check for 
file 
existence

cmp r1, #0
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Results & Analysis

 AppMinder controls were evaded.

 Bypassing mechanisms were successfully 

implemented.

 Assembly level techniques can be used to evade 

methods at different abstraction levels. 

 Attaching a debugger affects performance.
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Conclusions

 Android and iOS use similar detection and evasion 
methods.

 Detection trends are moving controls to lower level 
languages. AppMinder is an example of that.

 Even low level techniques can be bypassed.

 With enough time and resources an attacker will be 
able to evade all detection controls.
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Future Work

 Address limitations of our current study:

 Implement an efficient fully automated solution to 

evade AppMinder's controls.

 Study evasion of different detection mechanisms 

for both Android and iOS.
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DEMO
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Any questions?
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