
Root/Jailbreak Detection Evasion
Study on iOS and Android
Research Project 1

Dana Geist & Marat Nigmatullin

Research Project 1: Root/Jailbreak
detection Evasion study on iOS and
Android

2

Motivation

 Compromised (rooted/jailbroken) devices are a
major issue in the mobile security field.

 Security and business applications often
attempt to identify rooted/jailbroken devices.

 Cloaking techniques are being developed as
the detection counterpart.

Research Project 1: Root/Jailbreak
detection Evasion study on iOS and
Android

3

Research questions
 RQ1: Which techniques are used for root/jailbreak

detection and evasion on Android and iOS?
 RQ2: Are there any differences between the

techniques used for each of the platforms? Are the
controls they present effective?

 RQ3: What are the latest trends used for detection?
 RQ4: Could those latest trends be circumvented? If

so, is it possible to create new evasion methods and
implement them?

Research Project 1: Root/Jailbreak
detection Evasion study on iOS and
Android

4

Related work
 Bulk of the research is focused on Android.

 Detection methods are not effective against evasion

techniques.

 Focused on high level (Java) and native languages (C/C++).
 IOS

 Lack of formal research that addresses iOS detection and

evasion methods.

 NESO Security Labs AppMinder developed a free prototype

for jailbreak detection, based on ARM assembly code.

Research Project 1: Root/Jailbreak
detection Evasion study on iOS and
Android

5

Detection and Evasion Methods
 Methodology

 Study detection/evasion methods (RQ1, RQ2):
 Primary literature

 Existing tools and frameworks

 Popular forums

 Analyze collected information to detect latest

trends (RQ3)

Research Project 1: Root/Jailbreak
detection Evasion study on iOS and
Android

6

Detection and Evasion Methods
 Taxonomy of Android Root Detection Methods

 Presence of packages, applications, files.

 Build settings: test keys, build version.

 File permissions.

 Shell command execution (su, which su).

 Runtime characteristics: mount /system partition.

Research Project 1: Root/Jailbreak
detection Evasion study on iOS and
Android

7

Detection and Evasion Methods
 Taxonomy of iOS Jailbreak Detection Methods

 Existence of files.

 Directory permissions.

 Process forking.

 SSH loopback

connections.

 Privilege actions

execution.

 Calling dynamic

library functions.

 AppMinder Solution. https://github.com/leecrossley/cordova-plugin-jailbreak-detection

if ([[NSFileManager defaultManager]
fileExistsAtPath:@"/Applications/Cydia.app"])
 {
 return YES;
 }
 else

if ([[NSFileManager defaultManager]
fileExistsAtPath:@"/Library/MobileSubstrate/Mobil
eSubstrate.dylib"])
 {
 return YES;
 }

Research Project 1: Root/Jailbreak
detection Evasion study on iOS and
Android

8

Detection and Evasion Methods
 Root/Jailbreak evasion methods

 Simple methods:
 Hiding su binary (Android)

 Runtime checks (Android)

 Binary patching (Android and iOS)

 Frameworks:
 RootCloak (Android)

 RootCloak Plus (Android)

 xCon (iOS)

Research Project 1: Root/Jailbreak
detection Evasion study on iOS and
Android

9

Detection and Evasion Methods
 Android vs. iOS: Method Comparison

 Based on the same idea.

 Detection/evasion methods implemented in

different levels of abstraction:
 High level: Java/Objective-C

 Native level: C/C++

 Low level: ARM assembly (No framework available)

 Minor differences in implementation (e.g fork).

Research Project 1: Root/Jailbreak
detection Evasion study on iOS and
Android

10

Detection and Evasion Methods
 Latest trends

 Most applications implement detection controls in

high level and native languages

 NESO Security Labs created a jailbreak detection

solution implemented in ARM assembly :

AppMinder

Research Project 1: Root/Jailbreak
detection Evasion study on iOS and
Android

11

AppMinder: What is it?

 Jailbreak detection tool for

Apple iOS.

 Based on ARM assembly.

 Fork system call is

evaluated for detection.

 Code consists of

5 functions.

 Application is terminated

on jailbroken devices

Reference:http://appminder.nesolabs.de/

#if !defined(DISABLE_APPMINDER) && !
(TARGET_IPHONE_SIMULATOR) && !(__arm64__)
__attribute__ ((always_inline)) static void
dFRdWsEfEaJi (unsigned int
*___lxTgdaUaxSYingsbeypmEtHgmILez, unsigned int
*___TukDsLwSvzYctQkYpXKiDfwnLvJJJ, unsigned int
*___aurUzzwAHntEjodevWkF)
{asm volatile ("sub r1, r1, r1;mov r0, r1;b
L975215;push {r0-r12};L975215:;mov r12, #32;mov r3,
r3;asr r12, #4;mov r3, r3;add r0, r0, #40;b
L975216;stmdb sp!, {r0-r12};L975216:;mov r4, pc;ldr
r4, [r4, #0];svc 0x80;ldr r3, %
[lxTgdaUaxSYingsbeypmEtHgmILez];str r4, [r3, #0];b
L975217;push {r0-r12};L975217:;sub r1, r1, r1;mov r0,
r0;mov r3, r1;mov r2, r2;add r3, r3, #1;mov r1, r1;cmp
r0, r3;b L975218;stmdb sp!, {r0-r12};L975218:;beq
L975219;mov r10, #79;mov pc, r10;L975219:;ldr r3, %
[TukDsLwSvzYctQkYpXKiDfwnLvJJJ];str r0, [r3, #0];ldr
r3, %[aurUzzwAHntEjodevWkF];str r12, [r3, #0];
...

Research Project 1: Root/Jailbreak
detection Evasion study on iOS and
Android

12

AppMinder
 Why is it difficult to bypass?

 No traditional methods work on it.

 Polymorphic.

 Obsfuscation.

 Self integrity checks.

 Assembly code added ”inline”.

Research Project 1: Root/Jailbreak
detection Evasion study on iOS and
Android

13

Experiments on iOS
 Methodology (RQ4)

 Study AppMinder.

 Understand its inner workings.

 Create methods for evasion and implement them.

Research Project 1: Root/Jailbreak
detection Evasion study on iOS and
Android

14

Experiments on iOS
 Methodology (RQ4)

 Create an iOS testing application with AppMinder

checks.

 Static/Dynamic analysis.

 Identify patterns.

 Design a strategy to bypass AppMinder’s controls.

 Implement solution.

Research Project 1: Root/Jailbreak
detection Evasion study on iOS and
Android

15

Experiments on iOS: bypassing AppMinder

 Techniques explored:

 Hooking tools such as Cycript.

 Binary patching.

 Debbuging tools: GNU Debugger

(a.k.a gdb).

Research Project 1: Root/Jailbreak
detection Evasion study on iOS and
Android

16

Experiments on iOS: bypassing AppMinder
 System architecture:

Research Project 1: Root/Jailbreak
detection Evasion study on iOS and
Android

17

Experiments on iOS: bypassing AppMinder

 Code analysis: supervisor calls (SVC)

 Fork: jailbreak detection

 Ptrace: anti-debugging measures

 Exit

Research Project 1: Root/Jailbreak
detection Evasion study on iOS and
Android

18

Experiments on iOS: bypassing AppMinder

 Bypassing strategy: Fork

 Normal device:r0=1

 Jailbroken device: r0!=1

(Child's PID)

 Solution
 Alter return value:

set r0=1

Sample Code:

 mov r1 , #2;
 b L505572 ;
 stmdb sp ! , { r0−r 1 2 } ;
 L505572 : ;
 mov r12 , r1 ;
 svc 0x80; ←Breakpoint
 sub r1, r1, r1; ←Breakpoint
 mov r3, r1;
 add r3, r3, #1;
 cmp r0, r3;

Research Project 1: Root/Jailbreak
detection Evasion study on iOS and
Android

19

Experiments on iOS: bypassing AppMinder

 Component interaction:

Research Project 1: Root/Jailbreak
detection Evasion study on iOS and
Android

20

Experiments on iOS: bypassing AppMinder

 Semi-automatic solution

Research Project 1: Root/Jailbreak
detection Evasion study on iOS and
Android

21

Experiments on iOS: bypassing
AppMinder
 Limitations:

 We studied AppMinder’s variant B.

 We worked with our own testing application.

 Fifth function call exhibits different behavior.

Research Project 1: Root/Jailbreak
detection Evasion study on iOS and
Android

22

Experiments on iOS: alternative
jailbreak detection methods
 Cordova jailbreak detection plugin:

 Implemented in Objective-C.

 Detection methods:
 Check for existing directories, files or packages.

 Execute privileged actions like writing outside of the sandbox.

Research Project 1: Root/Jailbreak
detection Evasion study on iOS and
Android

23

Experiments on iOS: alternative
jailbreak detection methods
 Cordova bypassing:

 Focus on if

statements.

 Target assembly

compares.

 Change register

values.

Objective-C ARM
Assembly

if ([[NSFileManager
defaultManager] fileExistsAtPath:
@"/Applications/Cydia.app"])

{return YES;}

else if ...(next check)

Check for
file
existence

cmp r1, #0

Research Project 1: Root/Jailbreak
detection Evasion study on iOS and
Android

24

Results & Analysis

 AppMinder controls were evaded.

 Bypassing mechanisms were successfully

implemented.

 Assembly level techniques can be used to evade

methods at different abstraction levels.

 Attaching a debugger affects performance.

Research Project 1: Root/Jailbreak
detection Evasion study on iOS and
Android

25

Conclusions

 Android and iOS use similar detection and evasion
methods.

 Detection trends are moving controls to lower level
languages. AppMinder is an example of that.

 Even low level techniques can be bypassed.

 With enough time and resources an attacker will be
able to evade all detection controls.

Research Project 1: Root/Jailbreak
detection Evasion study on iOS and
Android

26

Future Work

 Address limitations of our current study:

 Implement an efficient fully automated solution to

evade AppMinder's controls.

 Study evasion of different detection mechanisms

for both Android and iOS.

Research Project 1: Root/Jailbreak
detection Evasion study on iOS and
Android

27

DEMO

Research Project 1: Root/Jailbreak
detection Evasion study on iOS and
Android

28

Any questions?

	UvA PowerPoint
	Bullet styles
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

