
Penetration Testing Auditability

Alexandros Tsiridis, Stamatios Maritsas

Master of System and Network Engineering

The University of Amsterdam

January 2016

Abstract

The purpose of this project is to �gure out a method to improve penetration
testing auditability and collaboration through it. In order to achieve that,
we answered the research questions of what are the sources of auditability
data, what methods can be used to audit these sources, how to store e�-
ciently these data and how to enforce collaboration during the penetration
testing procedure. Using the answers from the research questions and the
knowledge obtained from the literature study, a framework was designed and
proposed to improve penetration testing auditability process and teamwork.
A prototype was implemented, based on the framework, that was later on
tested and proved that the framework achieved its goals.

Contents

1 Introduction 1
1.1 Problem Description . 1
1.2 Aims . 1
1.3 Objectives . 2

2 Literature Survey 3
2.1 Introduction . 3
2.2 Penetration Testing Procedure 3

2.2.1 De�nition . 3
2.2.2 Phases of penetration testing procedure 4
2.2.3 Manual and automated penetration testing 6
2.2.4 Standardized procedure or not? 7

2.3 Penetration Testing Auditability 7
2.3.1 Sources of auditability data 7
2.3.2 Current methods . 8
2.3.3 Problems . 8

2.4 Existing Work . 8
2.4.1 Command line capturing tools 8
2.4.2 Auditability data management tools 9
2.4.3 Manual notes . 10
2.4.4 Collaborative tools . 11

2.5 Conclusion . 12

3 Requirements 14
3.1 Introduction . 14
3.2 Methods of gathering requirements 14
3.3 Gathering and analysis of requirements 15
3.4 Functional Requirements . 15

3.4.1 Action Recording . 15
3.4.2 Planning . 16
3.4.3 Data Sharing / Storage 17
3.4.4 Chatting . 17
3.4.5 Collaborative Documenting 17

ii

3.5 Non Functional Requirements 18

4 Design 19
4.1 Introduction . 19
4.2 Framework . 19

4.2.1 Action Recording . 20
4.2.2 Planning . 20
4.2.3 Data Sharing / Storage 20
4.2.4 Chatting . 20
4.2.5 Collaborative Documenting 21

4.3 Prototype . 21
4.3.1 System Architecture 22

5 Implementation 24
5.1 Introduction . 24
5.2 Server . 24

5.2.1 XAMPP . 24
5.2.2 Back-end . 25
5.2.3 Middleware . 26
5.2.4 Front-end . 28

5.3 Pen tester's machine . 30
5.3.1 Action Recording . 30
5.3.2 Chatting . 32
5.3.3 Collaborative Documenting 32

6 Testing and Results 33
6.1 Introduction . 33
6.2 Testing Methods . 33
6.3 Results . 34

6.3.1 Questionnaire . 34
6.3.2 Script capture.py . 38

6.4 Analysis . 38

7 Conclusion and Further work 41
7.1 Introduction . 41
7.2 Overview of the project . 41
7.3 Answering the research questions 42
7.4 Contribution . 43
7.5 Further Work . 43

A Code 48
A.1 capture.py . 48
A.2 Home page . 49
A.3 register.php . 49

iii

A.4 thank-you-regd.html . 52
A.5 Plan page . 53
A.6 addtask.php . 61
A.7 color.php . 62
A.8 delete�le.php . 63
A.9 deletetask.php . 64
A.10 upload.php . 66
A.11 logout.php . 67
A.12 login.php . 68
A.13 login-home.php . 71
A.14 Jobs page . 72
A.15 moveArchived.php . 75
A.16 deleteFolder.php . 75
A.17 addcurent.php . 77
A.18 fg_membersite.php . 78
A.19 formvalidator.php . 90
A.20 membersite_con�g.php . 104
A.21 change-pwd.php . 105
A.22 changed-pwd.html . 107

B Screen shots 109
B.1 Home page . 109
B.2 Register page . 110
B.3 Login page . 110
B.4 Pro�le page . 111
B.5 Change password page . 111
B.6 Jobs page . 112
B.7 Plan page . 112
B.8 Using capture.py . 113
B.9 Output of capture.py . 114

iv

List of Figures

4.1 Proposed framework. 21
4.2 Prototype architecture. 22
4.3 Web application architecture. 23

5.1 File directory tree. 26

6.1 Question 1. 34
6.2 Question 2. 34
6.3 Question 3. 34
6.4 Question 4. 34
6.5 Question 5. 35
6.6 Question 6. 35
6.7 Question 7. 35
6.8 Question 8. 35
6.9 Question 9. 35
6.10 Question 10. 35
6.11 Question 11. 36
6.12 Question 12. 36
6.13 Question 13. 36
6.14 Question 14. 36
6.15 Question 15. 36
6.16 Question 16. 36
6.17 Question 17. 37
6.18 Question 18. 37
6.19 Question 19. 37

B.1 Home page. 109
B.2 Register page. 110
B.3 Login page. 110
B.4 Pro�le page. 111
B.5 Change password page. 111
B.6 Jobs page. 112
B.7 Plan page. 112
B.8 A simple example of capture.py script. 113

v

B.9 Output of capture.py script. 114

vi

Acknowledgements

We would like to thank our supervisors, Christopher Mills and Rick van
Galen, for their support, co-operation, help and providing us with all the
needed resources. We would also like to thank KPMG company for giving
us the opportunity to work on this research project as well as accepting us
in their building, in order to work close to the security team. We would also
like to thank the team of pen testers for letting us observe how they work,
give us time for interviews as well as helping us test the system and provide
feedback for it. Last but not least, we would like to thank the whole team
of SNE for guiding us during the whole procedure of our research project.

vii

Chapter 1

Introduction

1.1 Problem Description

By the term "penetration test", or just pen test is meant an e�ort to evaluate
the security of a IT infrastructure using several methods to detect and exploit
vulnerabilities. A penetration test can help determine the security pro�le of
a target, such as whether it is possible to gain unauthorised access to a
system[4]. Also, pen test reveals in what kind of attacks a system's defences
were su�cient, and which defences (if any) the test defeated. This process
is usually performed within teams of penetration testers[27]. Penetration
testing itself is unstructured, due to the mass volume of data and logging
that the pen testers need to have in order to track their steps. Pen testers
usually use numerous command line tools for that purpose as well as GUI
tools. Whilst there is a high level structure to a penetration test, as the
focus is on making systems work in situations, developers do not anticipate.
The process of �nding these unanticipated situations can be quite ad hoc,
and consequently di�cult to log consistently.

Due to the above mentioned problems we can clearly see that there is a
need for better penetration testing auditability. By the term "auditability"
is meant that we have to establish a way to track a pen tester's actions
in order to be able to show what triggered a �nding of a vulnerability or a
negative result such as impacting the availability of the targeted system (e.g.
crashing it). A proper auditability that is not intrusive to the pen tester will
lead not to forget steps of the penetration process that should be tracked.
It will also increase his productivity and will help in collaboration within a
team since a member of the team can see what another member did.

1.2 Aims

The aim of this project is the improvement of penetration testing auditability.
The following research questions had been established in order to guide us

1

to the solution of penetration testing auditability problem.

1. What are the sources of penetration testing auditability data?

2. What methods can be used to e�ectively audit these sources?

(a) What are the ways to capture command line streams?

(b) How to gather information from pen testing tools?

(c) How to capture manual actions?

3. What methods can be used to store these data e�ciently and practi-
cally?

4. How can penetration testing auditability enhance collaboration during
penetration testing procedure?

1.3 Objectives

In this section we are going to describe the several milestones that our re-
search project will be based on.

To begin with, a deep research was conducted using a variety of methods
such as reading articles, distributing questionnaires among the security team
and arranging short-time interviews with pen testers of the team.

Later on, we collected and analysed all the data that we obtained from
the research and moved on to the design of a framework that could solve the
problems that arise from previous analysis.

Finally, we implemented a prototype as a proof of concept. The prototype
was meant to show that the framework can solve the problems speci�ed
during the analysis.

2

Chapter 2

Literature Survey

2.1 Introduction

This chapter is dedicated to our actual conducted research, which will be
based on four major parts. First of all, we are going to describe and analyse
what we mean by penetration testing procedure and what are the phases
that a penetration test should be consisted of. Moreover, what types of
attacks can be deployed during a penetration test and also investigate if a
penetration testing procedure can actually be standardized or not. This part
of the research will show how the penetration testing is done, what data it
produces and this will lead on the second part of the literature survey.

Second of all, we are going to describe, based on the �ndings, how pene-
tration testing auditability should be performed. This includes the sources of
penetration testing data, the goals of auditability and lastly how to perform
this auditability procedure e�ciently and not intrusively to the pen tester.

In the third part, we will discuss about existing work and how they try
to solve those issues. Finally, the fourth part will introduce a better solution
based on the comparison of existing work and the knowledge obtained from
our general research.

2.2 Penetration Testing Procedure

2.2.1 De�nition

By the term "penetration test", or just pen test is meant an e�ort to evaluate
the security of a IT infrastructure using several methods to detect and exploit
vulnerabilities [4]. In other words, penetration testing should, therefore,
model the attack pro�les of potential threat sources in order to accurately
determine the level of success of a deployed attack [3]. In penetration testing,
both the actions of authorized user and the unauthorized perpetrator have
to be considered. Finally, penetration tests should be designed carefully to

3

evaluate the ways in which security �aws can be exploited [19].

2.2.2 Phases of penetration testing procedure

A penetration testing model consists, according to the articles [17, 3, 11], of
the following six phases:

1. Introductory Planning and Preparation

2. Discovery and Investigation

3. Assessment and Strategy

4. Exploitation / Invasion

5. Maintaining Access

6. Reporting / Documenting

Introductory Planning and Preparation

During this phase of the penetration testing procedure, a settlement on the
objectives and scope of the pen test is established between the client and the
pen testers. This has to be done by taking into consideration the criminal
and civil law. In other words, a contract is prepared and then signed by a
client, that speci�es what the pen testers are allowed to test and what they
are not [17].

In addition, during this phase, one of the following penetration testing
types is chosen:

1. Black box testing can replicate the scenario of an outside pen tester,
who has no knowledge of the system that he is trying to penetrate, but
only publicly available information about the target (e.g. IP addresses,
public information about the company, etc.) [5]. In other words, the
pen testers have no prior knowledge of the network that they are tar-
geting and any information that they obtain are through public sources
and investigation [11].

2. White box testing can replicate the scenario of an inside attacker,
who has inside knowledge of the system that he/she is trying to attack.
In other words, the pen testers are given near to full information about
the target and sometimes collaborate with the sta� of the company
[5, 11].

3. Grey box testing is a combination of the black and white box pen-
etration testing. The pen tester is given some information about the
targeted system. This type of testing is performed when time and
technology are limited [22].

4

Discovery and Investigation

According to this phase which is the start of actual testing, the main purpose
is the information gathering of the targeted system. That purpose is often
being succeeded using methods such as [23]:

• Network port and service identi�cation

• DNS interrogation

• Network sni�ng

• Searching the organization's web servers or directory servers

• etc.

Assessment and Strategy

Assessment and Strategy stage usually happens to be undetectable, as it
does not involve any contact with the targeted system. In this stage, the
above �ndings are assessed in order to determine any possible vulnerabilities.
Additionally, this phase is the sorting of the gathered data to piece together
an idea of what a pen tester is trying to penetrate. After this analysis of the
gathered data, a strategy is devised for the upcoming attack(s) [3].

Exploitation / Invasion

Once a pen tester had collected a reasonable amount of information about
the targeted system, it is then possible to begin Exploitation / Invasion phase
and perform the actual planned attacks [3]. This stage usually consists of
[23]:

• Gaining access

• Escalating privileges

• System browsing

• Installation of additional tools

Maintaining Access

In order for this stage to take place, success of previously deployed Ex-
ploitation / Invasion phase is taken for granted. During this phase, steps
are usually taken to make future accesses to compromised system easier to
deploy. Usual ways for conducting this stage are the following [3]:

• Installation of a back-door program

5

• Setting up a home base under a seldom-used account name

• Usage of a miscon�gured user account with suitable permissions

Reporting / Documenting

This is the last phase of penetration testing procedure, where the �nal report
is produced by the pen tester which documents the �ndings and it is delivered
to the client. This stage occurs simultaneously with the other �ve phases of
the pen test and should contain the following [17, 23]:

• Evaluation of vulnerabilities found in the form of potential risk

• Recommendations for eliminating found vulnerabilities

• Transparency of the process

2.2.3 Manual and automated penetration testing

Penetration testing consists of two forms [2]:

1. Manual penetration testing, which is performed without the aid
of automated tools. A pen tester will perform manual actions such
as typing commands to a command line or interacting with the envi-
ronment. Manual penetration testing is divided into the following two
categories:

(a) Exploratory manual penetration testing. In this category,
the pen tester performs actions based on his/her own experience
and instincts without the use of a test plan. An example of such
actions is testing the default username and password of routers
or other devices.

(b) Systematic manual penetration testing. In contrary to the
manual penetration testing, this category involves the following
of a prede�ned test plan. This is done in order to reduce time,
take advantage of repeated errors and experience of the whole pen
testers team and make the process more systematic, in order not
to forget any test cases.

2. Automated penetration testing is taking the form of automated
testing tools, that were created from pen testers in order to do repeated
tasks that appears to be usually common during the penetration test-
ing process. In addition, pen testing tools that are home made and
encapsulate the experience of their creators are not uncommon.

6

2.2.4 Standardized procedure or not?

According to the article [5], penetration testing is an art. This is based on the
reasoning that a scienti�c process depends on falsi�able hypotheses, where
penetration testing is impossible to have such feature. We cannot create an
known-to-be-complete list of vulnerabilities that a hypotheses can be built
upon them, therefore penetration testing is not science. Vulnerabilities are
closely coupled with the implementation of the targeted system and some-
times unique to itself. Penetration testers have to use their own creativity,
experience, knowledge and instincts to �nd and exploit security �aws.

2.3 Penetration Testing Auditability

By the term "penetration testing auditability" we mean the process of record-
ing the actions that a pen tester performed during the process of penetration
testing. The goal of auditability is to keep track of the actions performed
by a penetration tester in order to be documented properly and used as
evidence to an exploited security �aw of the system and how it can be re-
produced. During the penetration testing procedure, the system might be
a�ected making it unavailable, produce wrong results or even damaged. The
auditability has also the goal to prove if the actual pen testers are responsible
of damaging the system or if the damage has occurred due to other reasons.

2.3.1 Sources of auditability data

As mentioned at previous sections, penetration testing has two forms of
actions, manual and automated. The automated actions involve the use of
automated tools. Those tools can be command line based or have a graphical
user interface. In addition, they produce log �les and reports, which hold
the data needed for the auditability. Moreover, the initial settings and the
commands that where executed by the automated tools are also data that
can be used for auditability.

In the manual actions, we have two di�erent types of data sources. One
of them is the command line where a user can simply type commands. This
means that the command line streams is a source of the data needed to be
captured for auditability purposes. The second type of data that we need to
be captured, is when pen testers deploy actions using their environment such
as typing the default username and password of a router's page or navigating
through the browser in order to get access to restricted areas.

These lead us to the conclusion, that we have three types of sources, which
are needed to be captured. The �rst source is the command line streams that
can capture the command line manual actions as well as the command line
based automated tools. The second is the screen of the machine, that can
be used to audit GUI automated tools and manual actions of a pen tester

7

that uses his/her environment. The last source is the produced log �les and
reports of automated tools.

2.3.2 Current methods

In the case of manual actions we have two types of sources as we have
described above, which have di�erent methods of capturing. The command
line can be captured using two di�erent methods. The simplest of the two,
is just copy pasting the commands output from the terminal interface into
a di�erent �le. The second method is by using tools that can capture the
streams of the command line and store them into �les.

In the case of manual actions that pen testers use just their environment,
they can log their process using tools for screen shots and screen recording.

The third case, is when a pen tester uses automated tools. As mentioned
above, these tools are generating their own log �les and reports, which a pen
tester can simply copy and use.

The �nal method can actually log all of the above, but it is the most
intrusive and time consuming. This method involves the penetration tester
to take manual notes of what he/she did and when using text editing tools.

2.3.3 Problems

The penetration testing auditability process comes with three serious prob-
lems that need to be stated. The �rst problem is that it is highly intrusive to
the user, especially when it comes down to manual actions, as he/she needs
to stop after each action to document it.

The second problem is that it is time consuming. The reason of this
problem is that the user needs to take time to well document his/her actions
and that he/she will need some time to go back to the �aw of penetration
testing procedure.

The third and last problem is that due to the volume and variety of data
and actions that the pen tester needs to record, the process becomes chaotic.
All these data are di�cult to be well organized.

Due to the above problems, usually the pen testers do not perform this
process to the extent that they should. This leads to the problem that some
actions will be left to be recorded later on collectively, which contains the risk
that the pen tester might eventually forget to record some of those actions.

2.4 Existing Work

2.4.1 Command line capturing tools

In this subsection, we are going to talk about capturing one of the sources of
auditability data that we mentioned in previous sections. In the command

8

line session a pen tester can perform manual actions as well as automated
ones using command line tools (e.g. Nmap, Nessus, Metasploit, etc.). This
makes command line a valuable source of auditability data. In order to log
this source of data, we are going to describe some of the most used tools
such as script, scriptreplay and asciinema.

First of all, script helps a user to make a copy of a terminal session.
Speci�cally, what this tool does, is capturing the I/O of a command line
session and stores it into a �le. In order to use script a user can call it at
his/her command line session at the time that he/she wants to start the cap-
turing and stop it at any time using the exit command. The logged session
will be stored into a �le with the user's chosen name or the default name
typescript. In addition, script tool provides the parameter -t, which al-
lows the user to record the timing between each typed letter, command line
output and stores it into a separate �le or outputs it to the standard error
[14].

A relative tool of script, is scriptreplay. This tool take a captured
�le using the script tool and replays it using timing information. Note that
scriptreplay does not reproduce the commands by actually calling them,
but it only creates a video-like output of the script captured and shows it to
the user [15].

As a third tool for capturing the command line I/O, we have the asciinema.
This tool is inspired by script and scriptreplay. It consists of three com-
ponents, which are a command line session recorder, a website with an API
at asciinema.org and a javascript player. Asciinema can capture the com-
mand line session, store it into a �le or upload it to the website asciinema.org,
in order to use javascript player to play the recorded session like a video. It
can also play the recorded session as a video using the command line just
like scriptreplay [1].

To sum up, the above tools can capture the command line I/O, helping
the penetration tester to log his/her actions. They can capture both manual
actions and automated tools and place the results into a �le that pen testers
can use for further analysis. In addition, the user can selectively start and
stop the capture in order to record valuable actions. The only thing that
those tools do not do is add proper timestamps at the commands and tools
executed as well as to the results of those executions. As mentioned in
previous research, timestamps are valuable as they allow a client to correlate
the actions that pen testers did with the e�ect at their systems and also give
pen testers the capability of tracking their steps in chronological order.

2.4.2 Auditability data management tools

In this subsection, we are going to talk about tools that they were designed
and implemented for purposes of gathering and managing the data produced
by the penetration testing procedure, in order to allow the user to organize

9

them and analyse them.
One of these tools, is called MagicTree. It is designed to allow easy and

straightforward data consolidation, querying, external command execution
and report generation [8]. In addition, it can import data from XML �les
and query them using XPath. MagicTree stores its data into an XML for-
mat and presents them in a tree structured way. It does not collect those
data automatically and needs the penetration tester to input them manually,
either using XML �les or simply typing them [7].

The second tool that it is related to our topic is Kvasir, an open source
Cisco Systems product, which represents a complete vulnerability /pene-
tration testing data management system designed, especially, to improve
collaboration within penetration testing teams [10]. Kvasir does this by ho-
mogenizing data sources into a pre-de�ned database structure. Currently, it
supports many tools such as [9]:

• Rapid 7 NeXpose

• Metasploit / Metasploit Pro

• Tennable Nessus

• ShodanHQ

• Nmap

• THC-Hydra

• Medusa

• John The Ripper

The above discussed tools can manage and organize penetration testing
data produced by automated pen testing tools. This is also their disadvan-
tage. They do not provide any method of gathering and presenting any data
produced by manual actions of the pen testers. Additionally, as stated at
previous research, penetration testing was characterized as an art, meaning
that the pen testers might use their own created tools or tools that they are
not supported by those applications. Kvasir, for instance, uses add-ons, in
order to support well known tools, which makes it di�cult to maintain as
well as impossible to cover all the automated tools, leading the pen testers,
that use Kvasir, to limit their selves only to the supported tools.

2.4.3 Manual notes

Pen testers also need to keep notes of their performed actions during a pen-
etration test. Moreover, they might need to wirte down their thoughts,
explain discoveries or keep notes on what they want to do later on.

10

As a �rst way to accomplish this goal, we are going to discuss text editing
tools. Tools like Notepad++, gedit, sublime and etc. supply the user with
the capability to write down their own notes, thoughts and simultaneously
use various fonts and styles.

A second method is to use tools that are specialized on keeping notes
instead of documents. Tools like KeepNote and Evernote allow the user to
keep both their thoughts and �ndings, while performing a pen test, in a more
structured and organized way.

As a conclusion, the above tools provide the user with the freedom of
writing and organizing his/her actions exactly in the way that he/she wants.
Although this need seems to be very important, it can also be very intrusive,
in case that a pen tester uses it, in order to log all of his/her actions and
�ndings. We suggest the use of those tools to be limited on simply taking
notes and organizing their thoughts, instead of using them for logging their
actions.

2.4.4 Collaborative tools

The pen testing procedure is most often performed by a team of pen testers.
During this period, collaboration among the team is an essential part of the
procedure. With collaboration pen testers can achieve more in less time and
can even exchange ideas, share knowledge and increase their productivity.
There are a few tools that enforce collaboration and we are going to describe
them in this subsection.

One of such collaborative tools is the open source project called LAIR.
It uses the Mongo database, in order to normalize, centralize and manage
data from a number of automated pen testing tools such as Nmap, Nessus,
Nexpose and Burp. It also allows real-time updates of the database and
merges data from various tools for a host. Furthermore, it allows multiple
pen testers to use it at the same time by the use of accounts. Users can
create projects, which they have a unique identi�ers and later on they can
add pen testers as contributors to a project. LAIR makes use of �ve di�erent
colours, in order to identify if a host is under investigation by a contributor,
if it needs further testing or if it completed. As this tool uses Meteor, the
web browser becomes a database client, allowing the user to run Javascript
scripts to directly modify the data. Finally, it hosts a chatting environment
that pen testers can use to communicate [25].

The second tool that actually created to enhance collaboration among a
penetration testing team is so-called Collaborative Penetration-testing and
Analysis Toolkit (CPAT). The main two fundamental goals of this project are
the ease of collaboration and the real-time data management. It somewhat
has the same architecture as LAIR, which means it uses the Meteor frame-
work and Mongo database. Its features a centralized data storage which
uses parsers in order to extract data from automated tools reports and log

11

�les to import them into itself. This CPAT tool allows live data visualiza-
tion from the attached database as well as a chat application for providing
communication among the team. Finally, it provides a list of recent activity.
[22].

Both of the above tools cover almost all issues that collaborative work
may have. They remove data duplication and they provide a well organiza-
tion of data as well as query of the stored data inside their database. They
also designed to allow a method of communication (chatting) and cover most
of the common pen testing tools. The problem that arises with these tools,
is that they do not have a method of inserting data from manual actions
as well as uncommon and home made tools. LAIR has a functionality of
adding data manually, but only if they are related to a host. Furthermore,
none of the tools has a way of organizing the project into sub-tasks that
users might share. LAIR, for example, has a way to show that a certain host
or hosts are under investigation from someone, but not under which type of
investigation. In other words, those tools lack any functionality of planning
and task sharing.

2.5 Conclusion

This section will conclude the most valuable information that we obtained
through the Literature Survey. First of all, as we discussed, penetration
testing is an art, meaning that the pen testers are mostly dependent on their
creativity, experience and knowledge to exploit possible vulnerabilities and
security �aws. As those pen testers are characterized as artists, means that
a system that will help them at the auditability of their actions needs to
allow and not restrict their freedom. We need a system that will not limit
pen testers to speci�ed penetration testing tools and allow auditability of
manual actions.

As we discussed, we have two types of penetration testing actions, man-
ual and automated. From those actions we have various sources of data.
These sources are the command line, the log �les and reports from the au-
tomated tools and �nally the environment that a pen tester is using. The
command line can be logged using a tool that can capture the I/O along with
timestamps. The automated tools produced their own log �les and reports,
meaning that there is no actual need to audit them using another tool, but
it would be good to have a tool that manages their data. Lastly, by using
screen shots and screen casting we can audit the manual of the pen tester
when uses his/her own environment.

Moreover, we saw that collaboration is an essential part of penetration
testing procedure as it is usually performed within a team. The problems
of collaboration is planning, task sharing and duplicated actions. A system
that addresses those problems will increase the productivity of the team as

12

well as their performance. In order to achieve that, a centralized storage
that can store any type of �les is needed. This will let the pen testers use
any type of tool, so that they will be creative and not restricted.

13

Chapter 3

Requirements

3.1 Introduction

In this section, we will establish the requirements of the system, which de-
scribe the exact functionality of it in order to solve the problems that were
recognised. This is a needed phase, as these requirements will provide a
roadmap for the design of the system.

3.2 Methods of gathering requirements

In order to formalize and obtain the system requirements, we used a variety
of methods to gather the needed data. The analysis of those data will extract
the requirements of the system. A list of those methods is the following:

• Interviews

• Questionnaires

• Literature study

Interviews were the �rst approach that we used for the sake of obtaining the
initial information that guided our research. This method was also performed
after the literature study to see the correlation between the research existing
and the actual practice. The personnel that was interviewed varied from
penetration testers that were recently employed sta� to senior sta� and team
leaders. The goal of this targeted variety was to extract knowledge from
experienced penetration testers, as well as new innovative ideas from the
younger personnel.

Questionnaires were used to gather quantitative data and answer ques-
tions that were formed after the analysis of the interviews. The literature
study was performed to obtain knowledge from the security community and
provide us with a more scienti�c view.

14

3.3 Gathering and analysis of requirements

According to our research, the system will be based on the sources of au-
ditability data, the methods of gathering those sources and functionality that
increases teamwork. As we identi�ed form the Literature Survey Chapter 2,
the sources of auditability data are the manual actions and automated tools.
Those actions involve the command line (manual commands, command line
tools), GUI tools and actions that use the environment (e.g. browser navi-
gation, router login etc.). In order to capture the identi�ed sources we need
the following methods:

• Capturing of the command line streams (stdin, stdout, stderr).

• Log �les and reports of automated tools (both command line based
and GUI).

• Screen shots and screen casting for auditing manual actions that use
the environment and GUI tools.

In addition, collaboration plays a valuable role to penetration testing as
each job requires a team of pen testers. In order to increase their teamwork,
our research showed that they need planning, task sharing, communication
and collaborative documenting. The system needs to have functionality that
will cover the above mentioned aspects.

3.4 Functional Requirements

3.4.1 Action Recording

1. Capturing of the command line streams.

Description: Capturing input and output of the command line inter-
face and store it into a �le.

Priority Level: High

2. Add timestamps to the command line capture.

Description: Add timestamps to the command line commands, as
well as their output and store them into a �le.

Priority Level: High

3. Image capturing.

Description: Allow a user to take screen shots of his/her actions.

Priority Level: Medium

15

4. Screen casting.

Description: Allow a user to record screen videos of his/her actions.

Priority Level: Medium

5. Create / Edit / Delete Notes.

Description: Allow a user to take manual notes of his/her actions,
ideas, goals and organize them.

Priority Level: Medium

3.4.2 Planning

1. Create a plan.

Description: Allow users to create a plan for the penetration testing
procedure.

Priority Level: High

2. Modify a plan.

Description: Allow users to modify a plan for the penetration testing
procedure.

Priority Level: High

3. Delete a plan.

Description: Allow users to delete a plan for the penetration testing
procedure.

Priority Level: High

4. Add / Edit / Delete task to / from a plan.

Description: Allow users to add / delete / modify a task of / to the
penetration testing procedure plan.

Priority Level: High

5. Allow access to a plan and its tasks to the pen testers.

Description: Make the plan and its tasks available to the users related
to the penetration testing procedure.

Priority Level: High

6. Associate �ndings to a task and users.

Description: Show the data that has been collected by a certain user
related to a task.

Priority Level: High

16

7. Show current status of a task.

Description: Show if a task is under progress, completed or if it is
new.

Priority Level: Low

3.4.3 Data Sharing / Storage

1. Upload �les to a centralized store.

Description: Allow a user to upload any type of �les to a centralized
storage space.

Priority Level: High

2. Allow users to have access to the uploaded �les.

Description: Allow users to view and download all �les that have
been uploaded from the other users to the centralized storage space.

Priority Level: High

3. Associate �les to the users that had uploaded them.

Description: Show which user uploaded a certain �le.

Priority Level: Medium

3.4.4 Chatting

1. Global chat.

Description: Allow communication between users using a global chat.

Priority Level: Medium

2. One-to-one chat.

Description: Allow one-to-one communication between users.

Priority Level: Low

3. Store chats.

Description: Allow users to see the messages that have been ex-
changed during previous conversations.

Priority Level: Low

3.4.5 Collaborative Documenting

1. Create a collaborative document.

Description: Allow users to create shared collaborative documents.

Priority Level: High

17

2. Modify a collaborative document in real time.

Description: Allow multiple users to modify existing shared collab-
orative documents and show the changes that are being made in real
time.

Priority Level: High

3. Delete a collaborative document.

Description: Allow users to delete existing shared collaborative doc-
uments.

Priority Level: High

3.5 Non Functional Requirements

1. The system should be responsive.

Description: Commands should take place, when users request them,
meaning that they should start and stop immediately when a user asks
for it. This has the exception of network bandwidth and latency.

2. The system should be available for as long as the penetration testing
procedure takes place.

Description: The system should be available at least during working
hours and time line of the pen testing procedure. The machine, where
the centralized storage space is placed (server) should be running and
be accessible during this period.

3. The backup procedure should be easy and performed regularly.

Description: The state of the centralized storage space should be
able to be backup at any time without much e�ort.

4. User friendly interface.

Description: The system should have a user interface, that is easy to
learn and use.

5. Quick access to the uploaded �les.

Description: A user should be able to access the �les in less than
four actions.

18

Chapter 4

Design

4.1 Introduction

This section will be dedicated to the design of our proposed system. The de-
sign constitutes an important and absolutely necessary phase, as it describes
how the system should actually work. This phase follows the establishment
of the functional and non-functional requirements, as the design presents
how these requirements are being satis�ed by the system. The design phase
will provide us with a roadmap for the implementation of the system.

4.2 Framework

In general, a framework is a real or conceptual structure intended to serve as
a support or guide for the building of something that expands the structure
into something useful [21]. This framework is our proposed methodology of
how penetration testing auditability should be done among a team.

Our framework is based on the following categories:

• Action recording

• Centralized storage

• Communication

• Collaboration

By analysing the above categories, we can conclude that the framework will
be divided into �ve sub-systems:

1. Action Recording

2. Planning

3. Data Sharing / Storage

19

4. Chatting

5. Collaborative Documenting

4.2.1 Action Recording

In this sub-system, the functional requirements 1-5 of action recording, sec-
tion 3.4.1, will be satis�ed.

To be more precise, this sub-system should have a functionality of cap-
turing in real time the I/O of a command line session and input timestamps
for each command along with its output. Moreover, it will need to be able
to o�er image capturing and screen casting. As a �nal requirement, this
sub-system will include a functionality that will allow a user to take notes
during the penetration testing procedure.

4.2.2 Planning

This sub-system will cover the functional requirements 1-7 of planning sec-
tion 3.4.2.

Speci�cally, the user should be given the capability of creating, modifying
and deleting a plan of action for the penetration testing procedure. The idea
is to create multiple tasks, that users will be able to share among themselves.
This sub-system should provide a method of adding, editing and deleting
tasks, as well as showing which tasks were performed by one or more users
and what data they obtained from those tasks.

Finally, this sub-system should present a complete image of a plan and
its tasks. It should also present the information that is relevant to the status
of a task (e.g. new, under progress, completed, etc.).

4.2.3 Data Sharing / Storage

In this subsection, will be covered the functional requirements 1-3 of the data
sharing / storage sub-system.

First of all, a user should be able to upload any type of �les to the
centralized storage space, but also be able to download and read any other
�les that other users uploaded, in order to enforce collaboration. Another
responsibility of this sub-system will be to show which �les are uploaded by
a certain user.

4.2.4 Chatting

Chatting sub-system will be implemented in a way that provide commu-
nication between users, in order to avoid using any public communication
method that might lead to leakage of information. It should allow global

20

communication among the users of the system. It may also provide func-
tionality for one-to-one communication, as well as storing the messages that
had been exchanged. These functionalities are the requirements 1-3 of the
section 3.4.4.

4.2.5 Collaborative Documenting

Collaborative documenting that covers the requirements 1-3 of section 3.4.5,
needs to be a sub-system of its own.

This sub-system will hold features for creating, editing and deleting col-
laborative documents, that will be updated in real time. In addition, those
documents should be accessible by all users of the system.

Figure 4.1: Proposed framework.

4.3 Prototype

This section describes the design of a prototype that was created as an
implementation of the proposed framework. This prototype will be used as
a proof of concept and evaluate the improvements that the framework can
establish for the penetration testing auditability.

21

4.3.1 System Architecture

Our prototype is based on the scenario that pen testers have machines on
which they perform the pen testing procedure and a server that will host
a centralized storage space. In our perspective, the sub-systems of data
sharing / storage and planning can be combined and implemented using a
web application, which will be hosted on the server. The rest of the sub-
systems, will be placed on the pen testers machines. There are already
existing open source tools, that can satisfy those sub-systems and will be
integrated to form the implementation of the framework.

Figure 4.2: Prototype architecture.

Web Application

The architecture of the web application will be formed by three layers, which
are the back-end, the middleware and the front-end. In the back-end, a
database which will hold the accounts of the pen testers and a �le directory
tree, which will hold the �les and the planning of the procedure. Middleware
will be responsible for the connection of the database and the �le directory
tree with the front-end. Lastly, the front-end is the user interface of the web
application.

22

Figure 4.3: Web application architecture.

Command Line Capture

During our research, we found out that command line capture should also
include timestamps for security purposes and correlation between the ac-
tions that pen testers performed and the behaviour of the targeted system.
Although, we found many tools that can capture the command line streams,
we did not discover any tool that can also add timestamps to the capture.

For this reason, we needed to create one that should be able to capture
the command line streams and add timestamps after each called command as
well as the output of it. Additionally, this tool should work on the command
line interface that it was called from and allow all the functionality that the
command line provides. It will also allow the user to specify the name of each
log �le that will contain the capture. Finally, due to fact that pen testers
might perform testing for a foreign company or they can be geographically
distributed, the timestamps should be in the coordinated universal time
(UTC).

23

Chapter 5

Implementation

5.1 Introduction

This chapter will be devoted to the implementation of a prototype that is
based on the already designed framework. The prototype is implemented,
in order to test whether our proposed framework increases the quality of
penetration testing auditability as well as the collaboration among the pen
testers. The general overview of the implementation is based on two virtual
machines, one that would be the server and another which is going to be the
pen tester's machine.

5.2 Server

The server is simulated using a virtual machine that runs Kali Linux 2.0

as its operating system. This virtual machine will be used for the hosting
of our web application as well as for the storage, planning and collaboration
among a team of pen testers.

5.2.1 XAMPP

Taking into consideration the requirements that were established, while de-
scribing the functionality of the server machine we came to the conclusion
that, �rst, a web sever is needed to host the web application and, second, a
database to manage the accounts of the pen testers.

For the above mentioned reasons, we choose the XAMPP package (ver-
sion 5.5.30) that includes, among several tools, an Apache HTTP server
2.4.17, PHP 5.5.30, MariaDB 10.1.9 and Perl 5.16.3. Using this package we
can satisfy the needed requirements to start implementing the web applica-
tion and host it to our server.

24

5.2.2 Back-end

This layer of our implemented prototype is responsible for the centralized
storage. It is divided into a database and a �le directory tree.

Database MySQL

This database is only responsible for managing of the pen testers accounts.
The database is named cpto. The following table describes the design of a
single table, called pentesters that our database holds.

Table 5.1: Design of pentesters table.
Field Name Type Primary Key Extra

id_user int(11) Yes AUTO_INCREMENT
name varchar(128) No None
email varchar(64) No None
username varchar(16) No None
password varchar(32) No None

File Directory Tree

The �le directory tree is responsible for storing the projects, plans of these
projects and �les as well as relate a �le to its task and its uploader. The
design in Figure 5.1 was chosen, in order to organize the mass of data that
a pen testing procedure creates. Using this directory tree, a user can easily
�nd a �le without the use of the web application. On the other hand, the web
application makes accessing and presenting of those �les easier and faster.

In addition, backup of those �les is as simple as copying the directory
"Projects". Let us consider the scenario that, this web application is going
to be used into a smaller scale, for instance, if a small server is established
to serve a small team of pen testers for a single job. The directories of
the Projects can then be copied from the smaller scale server into the main
server. This will have the result, that the web application will instantly show
from the main server, the Projects that came from the smaller server without
any implications.

25

Figure 5.1: File directory tree.

5.2.3 Middleware

Middleware by its de�nition, is responsible for the connection and the in-
teraction of the front-end with the back-end. In our case, while a user uses
the middleware can communicate (send requests / receive responses) with
the database, in order to manage his/her account, as well as with the �le
directory tree.

Database Management

The database management is done by three PHP �les, namely fg_membersite.php,
formvalidator.php, membersite_config.php. These �les were obtained
from [12] and modi�ed according to our needs.

First of all, we have the membersite_config.php, which is responsible
for the initial connection to the database. Using this �le we can con�gure

26

the name of the database that is going to be used and the needed credentials
in order to connect to it. Additionally, this PHP �le calls functions from
fg_membersite.php in order to initialize the connected database. The code
is available at Appendix section A.20.

The PHP �le fg_membersite.php is responsible for querying the database
and present the results to the front-end. It contains functions such as
Login(), CheckLogin(), LogOut(), ChangePassword(), RegisterUser(),
etc. For example, Login() is responsible to check the credentials of the user
and if they are correct creates a session for that user. The CheckLogin()

function, on the other hand, checks which user is using the session and
LogOut() destroys the session and redirects the user to the home page. The
code is available at Appendix section A.18.

Finally, the role of the PHP �le formvalidator.php is to check the
validity of the data submitted to certain forms. For instance, it has the
functionality to check whether an email is valid, if the username given already
exists in the database, check the strength of the password, etc. The code is
available at Appendix section A.19.

File Directory Tree Management

The management of the �le directory tree is done by a number of PHP
�les that are responsible to create / move / delete projects and inside those
projects to create / delete tasks and upload / delete �les to / from those
tasks.

The PHP �le addcurrent.php is responsible to add a project into the
Current directory. It simply creates a directory with the name provided, if
that does not exist in Current or Archived directories, along with the directo-
ries of the phases namely Introductory, Discovery, Assessment, Exploitation,
Maintaining and Reporting. The code is available at Appendix section A.17.

The goal of moveArchived.php is to archive the current jobs, in order
to mark them as completed. The only functionality it has is to move the
existing project directory that its name was given by the user from the
Current directory to the Archived one. The code is available at Appendix
section A.15.

The functionality that deletes a project from the Archived directory is
provided by deleteFolder.php. This is done by providing the path to the
directory needed to be deleted and the code recursively deletes all the �les
and directories inside the speci�ed directory and then deletes that directory
as well. The code is available at Appendix section A.16.

The PHP �le addtask.php is responsible for creating the tasks inside a
phase of a project. This is done by providing the path of the phase directory
in which the task needs to be created. Inside that path it will create a
directory with the name of the task and inside that directory the directory
CoLoR will be created as well. The code is available at Appendix section

27

A.6.
The role of the deletetask.php �le is to delete a task. This is achieved

by �rst giving the path to the phase that the task belongs to as well as the
name of the task. The code will recursively delete all the �les inside the task
and then the directory of the task itself. The code is available at Appendix
section A.9.

The next in line is the upload.php �le, which is responsible to upload
a �le and relate it to a task and the user that actually upload it. This is
done by providing the path to the directory of the task, in which we want to
upload the �le and get the username from the session. Then, the code will
check if a directory with the username exists inside the path and if it exists,
it will place the uploaded �le inside it or, if it does not, it will create it and
then place the �le inside it. The code is available at Appendix section A.10.

The role of PHP �le deletefile.php is to delete a �le from within the
task. In a few words, the path to the �le is provided and then it simply
deletes it. The code is available at Appendix section A.8.

Finally, we have the color.php �le, which is responsible for setting the
indicator of the status color. This functionality simply checks if the CoLoR
directory is empty, it will create the red.color �le inside it, or if the red.color
�le exists it will delete it and create the green.color �le and �nally if the
green.color �le exists, it will delete it. The code is available at Appendix
section A.7.

5.2.4 Front-end

Home page

The home page of the web application, that can be seen at Appendix sec-
tion B.1, allows the user to login or register. The button Login redirects
the user to login.php �le, while the Register button redirects the user to
register.php. The code of the home page is available at Appendix section
A.2.

Register page

The register.php allows a user to enter the needed details in order to be
enrolled in the database. A screen shot of the page can be seen at Ap-
pendix section B.2. The details of the user are checked for their validity by
formvalidator.php. If the data given are correct, then the Submit button
will call the RegisterUser() function of the fg_membersite.php that actu-
ally is responsible for enrolling the user into the database. After registering
the user to the database, it will redirect him/her to thank-you-regd.html

page. The code of register page is available at Appendix section A.3 and the
code of thank-you-regd.html at section A.4.

28

Login page

The login page (login.php) can be seen at Appendix section B.3 and its code
at Appendix section A.12. The code of this �le simply calls the Login()

function of the fg_membersite.php that actually checks if the credentials
given by the user are correct. If they are valid, then the user will be redirected
to the pro�le page (login-home.php). If not, then the user will get an error
message.

Pro�le page

The pro�le page (login-home.php) gives the options of seeing the projects,
change his/her password or logout. The Go to Projects button redirects the
user to the jobs page. The Change Password button redirects the user to the
change password page and the logout destroys the session and redirects the
user to the logout page (logout.php, see Appendix section A.11). A view of
the pro�le page is available at Appendix section B.5 and its code at section
A.13.

Change password page

Next in line is the change password page (see screen shot at Appendix sec-
tion B.5 and for its code at section A.21). This page prompts the user
to give his/her old password and the new one. The Submit button calls
the ChangePasswword() function of the fg_membersite.php that actually
checks if the old password is correct and change it with the new one in the
database. Then, the LogOut() function of the fg_membersite.php is called
and the user is redirected to changed-pwd.html (see Appendix section A.22
for its code).

Jobs page

The page jobs gives an overview of the currently opened jobs and the com-
pleted ones (see screen shot at Appendix section B.6). A view of the page
is available at Appendix section B.6. A loop is responsible to print a but-
ton with each of the current jobs that redirects to its plan page. Next to
the job button a save button is printed that calls the moveArchived.php.
Another loop is responsible to print a button with each of the archived jobs
that redirects to its plan page and next to it a delete button that calls the
deleteFolder.php. In addition, it has the functionality to create a new job,
by simply typing the name of the job, at the text box provided, and click
on the Create button that calls the addcurrent.php. The code of the jobs
page is available at Appendix section A.14.

29

Plan page

The plan page allows a user to see and create a plan to the job chosen (see
screen shot at Appendix section B.7). Additionally, it allows the users to
share tasks and �les among themselves. This page has a panel menu with the
phases of the penetration testing procedure. At each phase tab, a function
taskfill($phase, $directory) is called. This function has nested loops
that are responsible to print the tasks, inside of the task will print a panel
of the user's name and at its body the �les that he/she uploaded. The �les
are printed as clickable links, that allow the user to download them. Next
to the �le a delete button is printed that calls the deletetask.php. Next to
the task name a status button, that changes its color every time it is being
clicked, is printed. This button calls the color.php. Next to the status
button a delete button that calls the deletetask.php is printed. At the end
of each task panel, a button Choose File allows the user to choose a �le that
he/she wants to upload and by clicking the Upload button, that calls the
upload.php, uploads the �le to the task under his/her name. Finally, at the
end of the phase tab a user can create a task by providing the name of the
task inside the a text box and click at the add task button, which calls the
addtask.php. The code of the plan page is available at Appendix section
A.5.

5.3 Pen tester's machine

In order to simulate a pen tester's machine, we created a virtual machine
that runs Kali Linux 2.0 as its operating system. We chose this operating
system, because it is designed for advanced penetration testing and security
auditing. It contains several pen test tools and by default root privileges
[13].

In this virtual machine, we are going to add a suite of tools needed,
in order to support our proposed framework. As described in Chapter 4:
Design, subsection 4.3.1: System Architecture we have three sub-systems in
the pen tester's machine namely:

1. Action Recording

2. Chatting

3. Collaborative Documenting

5.3.1 Action Recording

This sub-system has the functionality needed for capturing data needed
for the penetration testing auditability procedure. The functionality im-
plemented here has as an aim to keep the freedom of the pen testers. In

30

addition all those tools used here can easily be replaced with others as long
as they follow the suggested framework.

Script capture.py

This Python script is responsible for the capturing of the command line
streams (stdin, stdout, strerr) and also add timestamps to each com-
mand and its output. In order to see an example of how it works, see
Appendix B.8 and B.9.

This is done by spawning a process and connect its controlling termi-
nal with the current process's standard I/O. This allows us to capture the
standard I/O and place it into a �le. The timestamps are using UTC time
zone and are placed at each new line that the program detects inside the
captured stream. The capture.py is based on the code given at [20], which
was modi�ed in order to achieve the requested functionality. The code of
the capture.py script is available at Appendix section A.1.

Screen shots

The chosen tool for this functionality in our prototype is Shutter (version
0.92). This application is free, open-source, and licensed under GPL v3. The
reason that we chose this one is because, �rst it is for a Linux based operating
system and it has the functionality to take a screenshot of a speci�c area,
window, or the whole screen [24].

Screen casting

For screen casting the tool Vokoscreen (version 2.1.0) was chosen. It has
the functionality to capture videos of the whole screen, speci�ed window or
selected area. In addition, it allows voice recording and camera recording.
Using this tool pen testers can record their actions and also use the voice
recording to record their thoughts. It is available at GitHub repository:
https://github.com/vkohaupt/vokoscreen

Notes

In order to allow pen testers to keep notes of their actions, thoughts and
ideas in an organized way, we chose Tomboy (version 1.14.1). Using this
software, a user can create notebooks, where he/she can create multiple
notes. Among some of its features is auto-linking web and email addresses,
inline spell checking, font styling and sizing as well as it allows a user to
export his/her notes in HTML format [26].

31

https://github.com/vkohaupt/vokoscreen

5.3.2 Chatting

As discussed in previous sections, communication is essential for the collab-
oration among a team of pen testers. in order to avoid any public commu-
nication method, we decided to add a chatting software that works within
a LAN. The software chosen to ful�ll these requirements is iptux (version
0.6.1). Iptux supports auto-detection of other users on the intranet, send
messages to other users and even send �les to other users [16].

5.3.3 Collaborative Documenting

To cover the collaborative documenting we chose Gobby (version 0.5.0),
which is a multi-platform collaborative text editor. This software allows
multiple users to work on the same document and shows the results in real
time. The data transferred are encrypted including perfect forward secrecy
(PFS) and the sessions can be password-protected. User can con�gure a
server where the �les are going to be hosted. Moreover, it has integrated
group chat that allows communication of users while they modify a docu-
ment. Gobby is licensed under GPLv2+ and ISC [6].

32

Chapter 6

Testing and Results

6.1 Introduction

This chapter will be dedicated, �rst, to the testing of our implemented frame-
work along with its prototype and second to the gathered results. To be more
precise, during the second section we are going to present all the testing meth-
ods that we used in order to gather our results. In the third section, the main
goal is to present those results, using diagrams and �nally, during the fourth
section we are going to present a statistical analysis on those results. This
analysis will lead eventually to answer the question if our framework actually
improved the penetration testing auditability procedure.

6.2 Testing Methods

In order to rate the usability testing of our framework, we used three di�erent
methods. The �rst method was observation with the think-aloud approach.
In more detail, we set up a testing environment, using two laptops connected
at the same network and three VMs. The two VMs, a client and a server,
respectively, were running on one of the two laptops using the network set-
ting "Bridge" (provided by the VirtualBox virtualization software package,
which was developed by Oracle) and the third VM was another client that
was running on the other laptop with the same network settings. These net-
work settings were used, in order to make the three VMs appear in the same
network. The think-aloud method simply involved asking test participants,
in our case 8 out of 16 in total pen testers, to use our system while contin-
uously thinking out loud. This led to the verbalization of their thoughts as
they were moving through the user interface [18].

The second method that we used, in order to evaluate the system was
a questionnaire. The reason we chose that method was to gather written
responses that later can be analysed using statistical methods. This ques-
tionnaire was given to pen testers after they �nished testing the system's

33

usability.
The third method that was used, it refers only to the created capture.py

script. After we contacted our supervisor, Christopher Mills, we agreed
to give him the script and let him testing its performance in a real world
scenario.

6.3 Results

6.3.1 Questionnaire

The already mentioned questionnaire that was used, in order to gather the re-
sults is divided into three parts, the "Action Recording" part, which consists
of the �rst six questions, the "Web Application: Collaborate Pen Testing
Organizer (CPTO)" part which includes questions 7 - 16 and �nally the
"System as a whole" part, which includes questions 17 - 19. The questions
6 and 14 - 19 have a rate scale 1 - 10 and the rest 1 - 5. Questions that
have rate scale 1 - 5 represent the options "Strongly Disagree" to "Strongly
Agree".

Action Recording

Figure 6.1: Question 1. Figure 6.2: Question 2.

Figure 6.3: Question 3. Figure 6.4: Question 4.

34

Figure 6.5: Question 5. Figure 6.6: Question 6.

Web Application: Collaborate Pen Testing Organizer (CPTO)

Figure 6.7: Question 7. Figure 6.8: Question 8.

Figure 6.9: Question 9. Figure 6.10: Question 10.

35

Figure 6.11: Question 11. Figure 6.12: Question 12.

Figure 6.13: Question 13. Figure 6.14: Question 14.

Figure 6.15: Question 15. Figure 6.16: Question 16.

System as a whole

36

Figure 6.17: Question 17.

Figure 6.18: Question 18.

Figure 6.19: Question 19.

37

6.3.2 Script capture.py

After a week of continuous testing, our supervisor Christopher Mills replied
with an important feedback. He stated that while using the script he did
not face any errors or unreasonable behaviour. In addition, he managed to
capture more actions than previous methods making his log more verbose
and furthermore the capture.py managed to log failed attempts that might
had left corrupted data to the targeted system. Using the timestamps he
could easily correlate his actions with reported behaviour from the client of
the targeted system.

6.4 Analysis

In this section is going to be performed an analysis on the data that we
obtained from pen tester's answers to the mentioned questionnaire. The
following table provides statistics about the mean and the median of the
above questions answers.

Table 6.1: Statistics.
Question Rate Scale Mean Median

Q1 1 - 5 3.625 4
Q2 1 - 5 4.25 4
Q3 1 - 5 4.125 4
Q4 1 - 5 4.25 4.5
Q5 1 - 5 4 4
Q6 1 - 10 8.625 8.5
Q7 1 - 5 3.375 3
Q8 1 - 5 3.75 4
Q9 1 - 5 3.75 4
Q10 1 - 5 3.5 3.5
Q11 1 - 5 4.5 5
Q12 1 - 5 3.625 3.5
Q13 1 - 5 4.25 4
Q14 1 - 10 7.125 7
Q15 1 - 10 7.5 8
Q16 1 - 10 7.625 7.5
Q17 1 - 10 7.75 8
Q18 1 - 10 7.5 7.5
Q19 1 - 10 7.625 8

38

Action Recording

Question 1 shows that the proposed suite of tools, indeed captures all the
needed data for penetration testing auditability, as its statistics show that
users agree with it. The tools chosen were also easy to use as the mean
and the median are close to each other at the rate of 4, which means that
users agree with it. In addition, those tools were not intrusive to pen testers
as the statistics of question 3 show. Furthermore, looking at statistics of
question 4, we can conclude that the tools indeed improved the performance
of auditability, as the mean and the median show that users agree a bit
stronger on that question. They also improve the quality and quantity of
the captured data as the mean and the median of question 5, which are
both equal to 4, conclude that users agree. The last question of "Action
Recording" part (question 6) is devoted to the rating of the capture.py. Its
statistics of mean and median show that capture.py improves signi�cantly
the process of auditing the command line.

To sum up, taking into consideration the questions of "Action Record-
ing" part, the prototype managed to improve the process of auditing pen
tester's actions during the penetration testing procedure. As the prototype
is the implementation of our framework, this leads to the conclusion that the
framework's sub-system Action Recording (see Chapter Design sub-section
4.2.1) indeed improves the penetration testing auditability.

Web Application: Collaborate Pen Testing Organizer (CPTO)

Question 7 shows that the implementation of the web application is on the
correct path, but it will need some improvements on the human computer
interaction as the statistics of mean and median are close to 3 showing that
users are neutral on whether the web application is easy to use or not. The
planning is representative to the pen tester's work and using the web appli-
cation makes it more e�cient as the statistics of question 8 show.

The process of task sharing is more e�cient using the web application
as users agree with it based on the statistics of question 9. Also, sharing of
data among a pen tester's team (question 10) is a bit more e�cient in our
implementation as the statistics of both mean and median are equal to 3.5.
Question 11 statistics show that the method implemented for uploading a �le
to a speci�c task is extremely easy. On the other hand, the process of �nding
a �le using the web application (question 12) will need some improvement
as the statistical values of mean and median are both close to 3.5. The web
application achieved its goal on planning as question 13 statistics conclude
that users agreed to that statement.

As far as collaboration improving rating concerns (question 14), the sta-
tistical values of mean and median are close to 7 showing that this web
application indeed improves it. Additionally, question 15 proofs that the

39

process of sharing the penetration testing auditability data among a team
of pen tester's was actually enhanced as mean is equal to 7.5 and median is
equal to 8. Last but not least, the question 16, which ask whether this system
improves data storing and sharing in comparison to previous used methods,
the users responses showed that this implementation improves those aspects
as both statistical values are close to 7.5.

The conclusion that was drawn based on the statistical analysis of ques-
tions 7 - 16 is that the web application indeed improves storing and sharing of
penetration testing auditability data as well as enhances collaboration among
pen testers. This part of the prototype is the implementation of the frame-
work's sub-systems "Planning" and "Data Sharing / Storage" (see Chapter
Design sub-sections 4.2.2 and 4.2.3). This is a proof that the suggested
methodology for storing / sharing and planning indeed improves the pene-
tration testing auditability procedure and the collaboration of pen tester's
through it.

System as a whole

Questions 17 - 19 are the rating of the whole prototype, in order to see
the rate of improvement on penetration testing auditability using it. First,
we have question 17 which asks if the performance of penetration testing
auditability was actually increased. Judging from the mean being equal to
7.75 and the median being equal to 8, we can conclude that performance is
increased signi�cantly.

Next in line is question 18, which helped us understand whether the
system as a whole enhanced collaboration in a team of pen testers. With the
values of mean and median being both equal to 7.5, we can interpret that
the system achieves its goal on teamwork.

Lastly, question 19 asks the users to rate whether our prototype improved
the quality and quantity of pen testing auditability data gathered. The
responses show that it achieved that aim as the statistical values of mean
and median are equal to 7.625 and 8 respectively.

To conclude, our prototype achieved all of its goals, that were based on
collaboration, data gathering, data storing and sharing as well as planning
and organizing the penetration testing auditability procedure. Although
some of the prototype's features implementation need to be improved, the
methodology still is in correct path. As the prototype is the implementation
of the proposed framework, inevitably the proposed framework can improve
penetration testing auditability on those aspects.

40

Chapter 7

Conclusion and Further work

7.1 Introduction

The aim of this chapter is to describe in both a general and a speci�c way,
what was the outcome of our research as far as concerns the improvement on
penetration testing auditability process. We will start by giving an overview
of the project, meaning the process that took place in order to complete our
research. We will also discuss the contribution of this project and how it can
bene�t the community. Last but not least, we are going to mention what we
believe can be extended as further work.

7.2 Overview of the project

The project started by recognizing the problems that needed to be solved
regarding the penetration testing auditability and followed by identifying our
scope by establishing the research questions. Next in line, was the beginning
of our research by interviews of penetration testers, questionnaires that were
given to them and literature study.

After collecting all the needed knowledge, we proceeded with a design
of a framework that can solve the identi�ed problems. By the completion
of the framework's design, we started the design of a prototype that was
aimed as a proof of concept. The next phase in our research project was the
implementation of the designed prototype.

The prototype was tested by pen testers, in order to evaluate its perfor-
mance on penetration testing auditability. The results of these tests were
gathered and statistically analysed, so that a conclusion could be drawn on
whether the proposed framework was actually solving the identi�ed problems
of penetration testing auditability.

41

7.3 Answering the research questions

During our research project we managed to answer the established research
questions. Our �rst question was related to what are the sources of pen-
etration testing auditability data. The answer to that question consists of
two types of actions, manual and automated actions. Manual actions were
split into command line actions and other actions that used the environment.
This leads to the conclusion, that command line is one source of the data
and the other is the screen of the machine. We chose the screen as a source
because we wanted to have a generalized source that can present any type
of action. The automated actions were based on automated tools that were
categorized into command line tools and GUI tools. Command line, again, is
a source of pen testing auditability data as well as the screen of the machine,
and now, additionally, we have the produced log �les and reports of those
tools.

The second research question was related to the methods that can be
used to e�ectively audit the identi�ed sources. Our proposed solution was
to capture the command line streams and store them into a �le along with
timestamps of the commands executed and their outputs. An implementa-
tion of this solution is our Python script called capture.py. To capture the
second source of data, the screen of the machine, we proposed a solution
that includes taking screen shots as well as screen casting. In order to audit
the automated tools, we can use their log �les and reports as they are, and
additionally the command line tools can be audited using the method of
capturing command line streams, something that capture.py does.

We believe that a centralized storage is the solution of storing these
data, because using this method everyone in a team can access these data.
In addition, we recommend that the centralized storage should support any
type of �les, so that pen testers can keep their freedom and use any tool or
method that they want.

Our last research question was referring to how can penetration test-
ing auditability enhance collaboration among pen testers during penetration
testing procedure. Our answer begins with using planning and task sharing.
Auditability is based on recording actions of a task. In this perspective,
planning and sharing of tasks can be included in auditability. Data shar-
ing can also enhance collaboration. These data are the ones that are used
in auditability. Our proposed methodology to increase teamwork using au-
ditability is to provide the pen testers with a method of creating plans and
tasks, relate those tasks with the data obtained from the penetration testing
procedure and �nally make those data accessible to the whole team of pen
testers.

42

7.4 Contribution

Our research product was a framework that can improve penetration test-
ing auditability. This framework is a standardized methodology that can
increase the quality and quantity of auditability data. Also, it improves the
performance of auditability process and enhances communication and col-
laboration within a pen testing team. The prototype created is an example
of how the framework can be implemented and the test of it showed in which
extent the auditability process and collaboration can be improved.

Our framework is proposed with freedom of pen testers in mind. As we
stated at Literature Survey, Chapter 2, penetration testing is characterized
as an art. This leads to the conclusion, that pen testers need to be allowed to
use any tool or any method that they want for penetration testing purposes.
That is why our prototype allows of uploading and download any type of
�le. In contradiction with other, already discussed, collaboration tools that
use add-ons for speci�ed tools as well as databases that limits the type of
information that the users can enrol.

Moreover, the prototype proved that planning and task sharing can be in-
cluded in penetration testing auditability and increase collaboration through
it. The idea of creating tasks that a pen tester can share and relate those
tasks with data proved to be a signi�cant feature of the prototype, hence the
framework.

7.5 Further Work

The framework might be enhanced after the completion of two types of
research that we were not able to perform, due to the limited time that this
project had. The �rst research is whether network tra�c capturing can be
used for penetration testing auditability purposes. We removed that as an
option for our framework as packet capturing can consume a huge amount
of data space. In addition, we have the problem of relating the packets with
the actions performed and even worst, in case of secure channels the packets
are encrypted. However, there is a possibility that packet headers might be
helpful on penetration testing auditability when someone �nd out a method
that relates them with a pen tester's actions.

Another research is to �nd out what type of data can be stored in a
database in a uni�ed way. In our project we tried to cover both network and
application penetration testing. A valuable further work will be to �nd out
a method that can store both of these pen testing types in a uni�ed way, so
that a user can query them.

Our capture.py script can capture the command line streams, which
include the special characters that a terminal uses. These characters are
mainly for design purposes, such as colours. This is both a feature and a

43

limitation. By using the cat command, the user can see exactly how the
command line interface looked like. The problem that arises, on the other
hand, is that if someone uses a normal editor, these special characters can
make the produced log �le di�cult to read. A further work could be a tool
that can �lter and remove these characters.

Our prototype's main goal was to prove that our framework improves
penetration testing auditability. This leads to the conclusion, that the pro-
totype is not a completed working system. It needs to be implemented with
security in mind, something that we did not have the time to do. Access
controls lists (ACLs) is a feature that could actually be used to support this
perspective. Moreover, the implementation of the database and the code of
the web application were not created taking into consideration SQL injection
attacks, code injection and fuzzing. A proper implementation of the frame-
work must include security as the data stored in it are of high sensitivity.

44

Bibliography

[1] Asciinema. How it works. https://asciinema.org/docs/

how-it-works. Online Access on 17-01-2016.

[2] Andrew Austin and Laurie Williams. One technique is not enough: A
comparison of vulnerability discovery techniques. In Empirical Software

Engineering and Measurement (ESEM), 2011 International Symposium

on, pages 97�106. IEEE, 2011.

[3] Rahmat Budiarto, Sureswaran Ramadass, Azman Samsudin, and Salah
Noori. Development of penetration testing model for increasing network
security. 2004.

[4] CoreSecurity. Penetration testing overview. http://www.

coresecurity.com/penetration-testing-overview. Online Ac-
cess on 07-01-2016.

[5] Daniel Geer and John Harthorne. Penetration testing: A duet. In Com-

puter Security Applications Conference, 2002. Proceedings. 18th Annual,
pages 185�195. IEEE, 2002.

[6] gobby.github.io. Gobby: a collaborative text editor. https://gobby.

github.io/, 2015. Online Access on 24-01-2016.

[7] Gremwell. Video: Using magictree for analysing data. http://www.

gremwell.com/video_using_magictree_for_analysing_data. Online
Access on 06-01-2016.

[8] Gremwell. What is magictree? http://www.gremwell.com/what_is_

magictree. Online Access on 06-01-2016.

[9] Kurt Grutzmacher. Welcome to kvasir! https://github.com/

KvasirSecurity/Kvasir/wiki. Online Access on 06-01-2016.

[10] Kurt Grutzmacher. Introducing kvasir. http://blogs.cisco.com/

security/introducing-kvasir, 23-09-2013. Online Access on 06-01-
2016.

45

https://asciinema.org/docs/how-it-works
https://asciinema.org/docs/how-it-works
http://www.coresecurity.com/penetration-testing-overview
http://www.coresecurity.com/penetration-testing-overview
https://gobby.github.io/
https://gobby.github.io/
http://www.gremwell.com/video_using_magictree_for_analysing_data
http://www.gremwell.com/video_using_magictree_for_analysing_data
http://www.gremwell.com/what_is_magictree
http://www.gremwell.com/what_is_magictree
https://github.com/KvasirSecurity/Kvasir/wiki
https://github.com/KvasirSecurity/Kvasir/wiki
http://blogs.cisco.com/security/introducing-kvasir
http://blogs.cisco.com/security/introducing-kvasir

[11] Liwen He and Nikolai Bode. Network penetration testing. In EC2ND

2005, pages 3�12. Springer, 2006.

[12] html-form guide.com. Creating a registration form using php. http:

//www.html-form-guide.com/php-form/php-registration-form.

html, 2012. Online Access on 27-01-2016.

[13] kali.org. What is kali linux ? http://docs.kali.org/introduction/

what-is-kali-linux, 2015. Online Access on 24-01-2016.

[14] Michael Kerrisk. Script(1). http://man7.org/linux/man-pages/

man1/script.1.html. Online Access on 06-01-2016.

[15] Michael Kerrisk. Scriptreplay(1). http://man7.org/linux/

man-pages/man1/scriptreplay.1.html. Online Access on 06-01-2016.

[16] Linux Mint. iptux. http://community.linuxmint.com/software/

view/iptux, 2014. Online Access on 24-01-2016.

[17] Nitin A Naik, Gajanan D Kurundkar, Santosh D Khamitkar, and
Namdeo V Kalyankar. Penetration testing: A roadmap to network
security. arXiv preprint arXiv:0912.3970, 2009.

[18] JAKOB NIELSEN. Thinking aloud: The #1 us-
ability tool. https://www.nngroup.com/articles/

thinking-aloud-the-1-usability-tool/, 2012. Online Access
on 28-01-2016.

[19] Charles P P�eeger, Shari Lawrence P�eeger, and Mary Frances Theo-
fanos. A methodology for penetration testing. Computers & Security,
8(7):613�620, 1989.

[20] python.org. 33.8. pty â�� pseudo-terminal utilities. https://docs.

python.org/3.2/library/pty.html. Online Access on 24-01-2016.

[21] Margaret Rouse. De�nition framework. http://whatis.techtarget.

com/definition/framework, 2015. Online Access on 23-01-2016.

[22] Darrien Rushing, Jason Guidry, and Ihssan Alkadi. Collaborative
penetration-testing and analysis toolkit (cpat). In Aerospace Confer-

ence, 2015 IEEE, pages 1�9. IEEE, 2015.

[23] Karen Scarfone, Murugiah Souppaya, Amanda Cody, and Angela Ore-
baugh. Technical guide to information security testing and assessment.
NIST Special Publication, 800:115, 2008.

[24] shutter project.org. About. http://shutter-project.org/about/.
Online Access on 24-01-2016.

46

http://www.html-form-guide.com/php-form/php-registration-form.html
http://www.html-form-guide.com/php-form/php-registration-form.html
http://www.html-form-guide.com/php-form/php-registration-form.html
http://docs.kali.org/introduction/what-is-kali-linux
http://docs.kali.org/introduction/what-is-kali-linux
http://man7.org/linux/man-pages/man1/script.1.html
http://man7.org/linux/man-pages/man1/script.1.html
http://man7.org/linux/man-pages/man1/scriptreplay.1.html
http://man7.org/linux/man-pages/man1/scriptreplay.1.html
http://community.linuxmint.com/software/view/iptux
http://community.linuxmint.com/software/view/iptux
https://www.nngroup.com/articles/thinking-aloud-the-1-usability-tool/
https://www.nngroup.com/articles/thinking-aloud-the-1-usability-tool/
https://docs.python.org/3.2/library/pty.html
https://docs.python.org/3.2/library/pty.html
http://whatis.techtarget.com/definition/framework
http://whatis.techtarget.com/definition/framework
http://shutter-project.org/about/

[25] Tom Steele and Dan Kottmann. Def con 21 - tom steele and dan
kottmann - collaborative penetration testing with lair. https://www.

youtube.com/watch?v=3JwSsfx-H40, 2013. Online Access on 17-01-
2016.

[26] Christian Weiske. Tomboy. https://wiki.gnome.org/Apps/Tomboy,
2014. Online Access on 24-01-2016.

[27] Wikipedia. Penetration test. https://en.wikipedia.org/wiki/

Penetration_test. Online Access on 06-01-2016.

47

https://www.youtube.com/watch?v=3JwSsfx-H40
https://www.youtube.com/watch?v=3JwSsfx-H40
https://wiki.gnome.org/Apps/Tomboy
https://en.wikipedia.org/wiki/Penetration_test
https://en.wikipedia.org/wiki/Penetration_test

Appendix A

Code

A.1 capture.py

import os , time , sys

import pty

from datetime import datetime

def read(fd):

data = os.read(fd , 1024)

write = data

if data.endswith('\n'):

write= data + 'ESC [1;32m'+

datetime.utcnow ().strftime("%d-%m-%Y %H:%M:%S")

+'ESC[0m'+ '\n'

file.write(write)

return data

shell = 'sh'

filename = raw_input('Enter the name of your log file: ')

filename= filename + '_' +

datetime.utcnow ().strftime("%d-%m-%Y_%H:%M:%S")

mode = 'w'

if os.environ.has_key('SHELL '):

shell = os.environ['SHELL ']

file = open(filename , mode)

sys.stdout.write('Capture started , file is: %s\n' %

filename)

file.write('Capture started at UTC time %s\n' %

datetime.utcnow ().strftime("%d-%m-%Y %H:%M:%S"))

pty.spawn(shell , read)

file.write('Capture stopped at UTC time %s\n' %

datetime.utcnow ().strftime("%d-%m-%Y %H:%M:%S"))

sys.stdout.write('Capture stopped , file is %s\n' %

filename)

48

A.2 Home page

<!DOCTYPE html>

<html>

<head>

<link rel="stylesheet"

href="./bootstrap -master/dist/css/bootstrap.min.css">

<script

src="./ scripts/jquery -1.12.0. min.js"></script >

<script

src="./bootstrap -master/dist/js/bootstrap.min.js"></script >

<title>Welcome to CPTO!</title >

</head>

<body>

<div>

<div class = "page -header text -center">

<h1>Collaborate Pen Testing

Organizer
<small>Welcome!</small ></h1>

</div>

<div class = "text -center">

<h1><small>Please , login if you are an already

registered pentester!</small></h1>

<a href='./ login/login.php ' class="btn -primary

btn -lg btn -block">Login

</div>

<div class = "text -center">

<h1><small>Please , sign up if you are a new

pentester!</small></h1>

<a href='./ register/register.php '

class="btn -primary btn -lg

btn -block">Register

</div>

</div>

</body>

</html>

A.3 register.php

<?PHP

/*

The following code was taken and modified from:

http :// www.html -form -guide.com/files/php -form/RegistrationForm.zip

*/

require_once("../ include/membersite_config.php");

49

Check if a user registration was submitted and if it

was correct

redirect to thank -you -regd.html

if(isset($_POST['submitted ']))

{

if($fgmembersite ->RegisterUser ())

{

$fgmembersite ->RedirectToURL("./thank -you -regd.html");

}

}

?>

<!DOCTYPE html>

<html>

<head>

<link rel="stylesheet"

href="../ bootstrap -master/dist/css/bootstrap.min.css">

<script

src="../ scripts/jquery -1.12.0. min.js"></script >

<script

src="../ bootstrap -master/dist/js/bootstrap.min.js"></script >

<title>Registration Form</title >

<script type='text/javascript '

src='../ scripts/gen_validatorv31.js '></script >

<link rel="STYLESHEET" type="text/css"

href="../ style/pwdwidget.css" />

<script src="../ scripts/pwdwidget.js"

type="text/javascript"></script >

</head>

<body>

<!-- Form Code Start -->

<div id='fg_membersite '>

<form id='register ' action='<?php echo

$fgmembersite ->GetSelfScript (); ?>'

method='post ' accept -charset='UTF -8'>

<fieldset >

<div class = "page -header text -center">

<h1>Collaborate Pen Testing

Organizer
<small>Register </small ></h1>

</div>

<input type='hidden ' name='submitted '

id='submitted ' value='1'/>

<div class="text -center">* required

fields </div>

50

<div><?php echo

$fgmembersite ->GetErrorMessage ();

?></div>

<div class="container text -center">

<label for='name ' >Your Full Name*:

</label>

<input type='text ' name='name ' id='name '

value='<?php echo

$fgmembersite ->SafeDisplay('name ') ?>'

maxlength="50" />

<span id='register_name_errorloc '

class='error '>

<label for='email ' >Email

Address *:</label >

<input type='text ' name='email ' id='email '

value='<?php echo

$fgmembersite ->SafeDisplay('email ') ?>'

maxlength="50" />

<span id='register_email_errorloc '

class='error '>

<label for='username ' >Username *:</label >

<input type='text ' name='username '

id='username ' value='<?php echo

$fgmembersite ->SafeDisplay('username ') ?>'

maxlength="50" />

<span id='register_username_errorloc '

class='error '>

<label for='password ' >Password *:</label >

<div class="pagination centering"

id='thepwddiv '></div>

<noscript >

<input type='password ' name='password '

id='password ' maxlength="50" />

</noscript >

<div id='register_password_errorloc '

class='error ' style='clear:both '></div>

</div>

<div class="container text -center">

<input type='submit ' name='Submit '

value='Submit ' class="btn btn -primary"/>

</div>

</fieldset >

</form>

<script type='text/javascript '>

// <![CDATA[

var pwdwidget = new

PasswordWidget('thepwddiv ','password ');

51

pwdwidget.MakePWDWidget ();

var frmvalidator = new Validator("register");

frmvalidator.EnableOnPageErrorDisplay ();

frmvalidator.EnableMsgsTogether ();

frmvalidator.addValidation("name","req","Please

provide your name");

frmvalidator.addValidation("email","req","Please

provide your email address");

frmvalidator.addValidation("email","email","Please

provide a valid email address");

frmvalidator.addValidation("username","req","Please

provide a username");

frmvalidator.addValidation("password","req","Please

provide a password");

//]]>

</script >

<!--

Form Code End

-->

</body>

</html>

A.4 thank-you-regd.html

<!DOCTYPE html>

<html>

<head>

<link rel="stylesheet"

href="../ bootstrap -master/dist/css/bootstrap.min.css">

<script

src="../ scripts/jquery -1.12.0. min.js"></script >

<script

src="../ bootstrap -master/dist/js/bootstrap.min.js"></script >

<title>Thank you!</title >

</head>

<body>

<div>

<div class = "page -header text -center">

<h1>Collaborate Pen Testing

Organizer
<small>Thanks for

registering!</small></h1>

</div>

52

<div class = "text -center">

<h2>Your registration is now complete!</h2>

<a href ='../ login/login.php ' class="btn -primary

btn -lg btn -block">Click here to login

</div>

</div>

</body>

</html>

A.5 Plan page

<?php

require_once("../ include/membersite_config.php");

Check if a user is logged in

if(! $fgmembersite ->CheckLogin ())

{

$fgmembersite ->RedirectToURL("login.php");

exit;

}

?>

<!DOCTYPE html>

<html>

<head>

<link rel="stylesheet"

href="../ bootstrap -master/dist/css/bootstrap.min.css">

<link rel="stylesheet" href="../ Style/dropzone.css">

<script

src="../ scripts/jquery -1.12.0. min.js"></script >

<script

src="../ bootstrap -master/dist/js/bootstrap.min.js"></script >

<script type="text/javascript"

src="../ scripts/bootstrap -filestyle.min.js">

</script >

<title>Plan</title >

</head>

<body>

<?php

Dir path of selected job

$directory =($_POST['job ']);

?>

<div class = "page -header">

<h1>Collaborate Pen Testing Organizer

<!-- Get username -->

<small> User: <?= $fgmembersite ->UserFullName ();

?> </small > <a href ='../ logout/logout.php '

class="btn btn -primary">Logout

<small>Choose a task from the lists provided to

work with</small>

53

</h1>

</div>

<div class="container">

<h2>Penetration Testing Phases </h2>

<ul class="nav nav -pills">

<li class="active"><a data -toggle="pill"

href="#home">Introductory Planning and

Preparation

<a data -toggle="pill"

href="#menu1">Discovery and

Investigation

<a data -toggle="pill"

href="#menu2">Assessment and

Strategy

<a data -toggle="pill"

href="#menu3">Exploitation /

Invasion

<a data -toggle="pill"

href="#menu4">Maintaining Access

<a data -toggle="pill"

href="#menu5">Reporting /

Documenting

<div class="tab -content">

<div id="home" class="tab -pane fade in active">

<div class="panel panel -default"

id="PlanningPreparation">

<h3>Introductory Planning and

Preparation </h3>

<?php

Fill the tasks of the Introductory

phase

taskfill('Introductory ',$directory);

?>

</div>

<form class="form -inline" role="form"

method="post">

<div class="form -group">

<label for="Filename">Task Name: </label >

<input type="text" class="form -control"

name="name">

<input type="hidden" name="phase"

value="Introductory">

<?php

echo '<input type="hidden"

name="directory"

value=" '.$directory.'">';

?>

</div>

54

<div class="form -group">

<button type="submit" class="btn

btn -primary"

formaction="addtask.php">Add

Task</button >

</div>

</form>

</div>

<div id="menu1" class="tab -pane fade">

<div class="panel panel -default"

id="PlanningPreparation">

<h3>Discovery and Investigation </h3>

<?php

Fill the tasks of the Discovery phase

taskfill('Discovery ',$directory);

?>

</div>

<form class="form -inline" role="form"

method="post">

<div class="form -group">

<label for="Filename">Task Name: </label >

<input type="text" class="form -control"

name="name">

<input type="hidden" name="phase"

value="Discovery">

<?php

echo '<input type="hidden"

name="directory"

value=" '.$directory.'">';

?>

</div>

<div class="form -group">

<button type="submit" class="btn

btn -primary"

formaction="addtask.php">Add

Task</button >

</div>

</form>

</div>

<div id="menu2" class="tab -pane fade">

<div class="panel panel -default"

id="PlanningPreparation">

<h3>Assessment and Strategy </h3>

<?php

Fill the tasks of the Assessment phase

taskfill('Assessment ',$directory);

?>

</div>

<form class="form -inline" role="form"

55

method="post">

<div class="form -group">

<label for="Filename">Task Name: </label >

<input type="text" class="form -control"

name="name">

<input type="hidden" name="phase"

value="Assessment">

<?php

echo '<input type="hidden"

name="directory"

value=" '.$directory.'">';

?>

</div>

<div class="form -group">

<button type="submit" class="btn

btn -primary"

formaction="addtask.php">Add

Task</button >

</div>

</form>

</div>

<div id="menu3" class="tab -pane fade">

<div class="panel panel -default"

id="PlanningPreparation">

<h3>Exploitation / Invasion </h3>

<?php

Fill the tasks of the Exploitation

phase

taskfill('Exploitation ',$directory);

?>

</div>

<form class="form -inline" role="form"

method="post">

<div class="form -group">

<label for="Filename">Task Name: </label >

<input type="text" class="form -control"

name="name">

<input type="hidden" name="phase"

value="Exploitation">

<?php

echo '<input type="hidden"

name="directory"

value=" '.$directory.'">';

?>

</div>

<div class="form -group">

<button type="submit" class="btn

btn -primary"

formaction="addtask.php">Add

56

Task</button >

</div>

</form>

</div>

<div id="menu4" class="tab -pane fade">

<div class="panel panel -default"

id="PlanningPreparation">

<h3>Maintaining Access </h3>

<?php

Fill the tasks of the Maintaining phase

taskfill('Maintaining ',$directory);

?>

</div>

<form class="form -inline" role="form"

method="post">

<div class="form -group">

<label for="Filename">Task Name: </label >

<input type="text" class="form -control"

name="name">

<input type="hidden" name="phase"

value="Maintaining">

<?php

echo '<input type="hidden"

name="directory"

value=" '.$directory.'">';

?>

</div>

<div class="form -group">

<button type="submit" class="btn

btn -primary"

formaction="addtask.php">Add

Task</button >

</div>

</form>

</div>

<div id="menu5" class="tab -pane fade">

<div class="panel panel -default"

id="PlanningPreparation">

<h3>Reporting / Documenting </h3>

<?php

Fill the tasks of the Reporting phase

taskfill('Reporting ',$directory);

?>

</div>

<form class="form -inline" role="form"

method="post">

<div class="form -group">

<label for="Filename">Task Name: </label >

57

<input type="text" class="form -control"

name="name">

<input type="hidden" name="phase"

value="Reporting">

<?php

echo '<input type="hidden"

name="directory"

value=" '.$directory.'">';

?>

</div>

<div class="form -group">

<button type="submit" class="btn

btn -primary"

formaction="addtask.php"><span

class="glyphicon

glyphicon -plus -sign"> Add

Task</button >

</div>

</form>

</div>

</div>

</div>

</body>

</html>

<?php

function taskfill($phase ,$directory) {

Get array of all files and dirs inside the

specified path

$tasks = array_diff(scandir($directory."/".$phase),

array('..', '.'));

Check if array is empty

if (! empty($tasks)){

Loop through tasks

foreach ($tasks as &$value) {

Check if color is red

if (file_exists

($directory."/".$phase."/".$value."/CoLoR/red.color"

))

{

Set the background to red

$color='style="background -color:red"';

Check if color is green

}elseif(file_exists

($directory."/".$phase."/".$value."/CoLoR/green.color"

))

{

Set the background to green

$color='style="background -color:lightgreen"';

}

58

else

{

Set the background to white

$color='style="background -color:white"';

}

Print tasks and add remove button

echo '<div class="panel panel -primary">

<div class="panel -heading

form -inline">'.$value.'

<form class="form -group" role="form"

method="post">

<input type="hidden" name="value"

value=" '.$value.'">

<input type="hidden" name="directory"

value=" '.$directory.'">

<input type="hidden" name="phase"

value=" '.$phase.'">

<button type="submit" class="btn

btn -default" hspace="100"

formaction="color.php" '.$color.'

></button >

</form> <form

class="form -group" role="form"

method="post">

<input type="hidden" name="value"

value=" '.$value.'">

<input type="hidden" name="directory"

value=" '.$directory.'">

<input type="hidden" name="phase"

value=" '.$phase.'">

<button type="submit" class="btn

btn -danger btn -xs"

formaction="deletetask.php"><span

class="glyphicon

glyphicon -remove -sign"></button ></form></div>';

Get array of all files and dirs inside the

specified path

$users =

array_diff(scandir($directory."/".$phase."/".$value),

array('..', '.'));

Check if array is greater than 1 (if its 1

there no users , just the dir CoLoR)

if (sizeof($users) > 1){

Loop through the array

foreach ($users as &$user) {

Check if user is CoLoR

if($user!='CoLoR '){

Check if user dir is empty

if (count (glob

59

($directory."/".$phase."/".$value."/".$user."/*")

) === 0)

{

Remove dir

rmdir($directory."/".$phase."/".$value."/".$user);

}

else

{

Print user panel

echo '<div class="panel panel -info">

<div

class="panel -heading">'.$user.'</div>';

Get array of all files and dirs inside

the specified path

$files = array_diff(scandir

($directory."/".$phase."/".$value."/".$user),

array('..', '.'));

Loop through the array

foreach ($files as &$file) {

Print files and remove button

echo '<div class="panel -body

form -inline">

<a href=" '.$directory. '/'.$phase.

'/'.$value. '/'.$user.'/'

.$file.'" download >'.$file.'

<form class="form -group" role="form"

method="post">

<input type="hidden" name="name"

value=" '.$file.'">

<input type="hidden"

name="directory"

value=" '.$directory.'">

<input type="hidden"

name="location"

value=" '.$phase.'/'.$value.'/'.$user.'">

<button type="submit" class="btn

btn -danger btn -xs"

formaction="deletefile.php"><span

class="glyphicon

glyphicon -remove -sign"></button >

</form>

</div>';

}

echo '</div>';

}

}

}

}

else

60

{

echo '<div class="panel -body">No Files </div>';

}

Print upload form

echo '<form enctype="multipart/form -data"

action="upload.php" method="POST">

<input type="hidden" name="value"

value=" '.$value.'">

<input type="hidden" name="directory"

value=" '.$directory.'">

<input type="hidden" name="phase"

value=" '.$phase.'">

<input type="file" class="filestyle"

data -buttonName="btn -primary"

data -iconName="glyphicon

glyphicon -inbox"

data -buttonBefore="true" name="uploaded">

<button class="btn btn -primary"

type="submit"><span class="glyphicon

glyphicon -upload"> Upload File

</button ></form>

</form>

</div>';

}

}

else

{

echo '<div class="panel -heading">No Tasks </div>';

}

}

?>

A.6 addtask.php

<!DOCTYPE html>

<html>

<head>

<link rel="stylesheet"

href="../ bootstrap -master/dist/css/bootstrap.min.css">

<script

src="../ scripts/jquery -1.12.0. min.js"></script >

<script

src="../ bootstrap -master/dist/js/bootstrap.min.js"></script >

<title>Create Task</title >

</head>

<body>

<?php

Remove warning messages

61

error_reporting(E_ALL ^ E_WARNING);

$directory = $_POST["directory"];

$filename = $_POST["name"];

$phase = $_POST["phase"];

Check if filename was given

if(! empty($filename)){

$filename = $directory."/".$phase."/".$filename;

Create dir with name filename and inside

create the CoLoR dir

if (mkdir($filename ,0700)){

mkdir($filename."/CoLoR" ,0700);

echo "<label ><h1 >You have succesfully created

a new task.</h1 ></label >";

}else{

echo "<label ><h1 >An error occured. Propably

the name given does already

exist.</h1 ></label >";

}

}

else{

echo "<label ><h1 >Please provide a name for the

new task.</h1 ></label >";

}

?>

<form action="./ index.html" method="post">

<?php

echo '<input type="hidden" name="job"

value=" '.$directory.'">';

?>

<button class="btn btn -primary"

type="submit"><span class="glyphicon

glyphicon -circle -arrow -left"> Back

</button >

</form>

</body>

</html>

A.7 color.php

<?php

$directory = $_POST['directory '];

$value= $_POST['value '];

$phase = $_POST['phase '];

Check if file red.color exists

if (file_exists

($directory."/".$phase."/".$value."/CoLoR/red.color"

))

{

62

Delete red.color

unlink

($directory."/".$phase."/".$value."/CoLoR/red.color"

);

Create green.color

touch($directory."/".$phase."/".$value."/CoLoR/green.color"

);

}

Check if file green.color exists

elseif(file_exists

($directory."/".$phase."/".$value."/CoLoR/green.color"

))

{

Delete green.color

unlink

($directory."/".$phase."/".$value."/CoLoR/green.color"

);

}

else

{

Create red.color

touch($directory."/".$phase."/".$value."/CoLoR/red.color");

}

?>

<!DOCTYPE html>

<html>

<form action="./ index.html" method="post"

id='redirect '>

<?php

echo '<input type="hidden" name="job"

value=" '.$directory.'">';

?>

</form>

</html>

<script type="text/javascript">

// Call form action

document.getElementById("redirect").submit ();

</script >

A.8 delete�le.php

<!DOCTYPE html>

<html>

<head>

<link rel="stylesheet"

href="../ bootstrap -master/dist/css/bootstrap.min.css">

<script

src="../ scripts/jquery -1.12.0. min.js"></script >

63

<script

src="../ bootstrap -master/dist/js/bootstrap.min.js"></script >

<title>Delete File</title >

</head>

<body>

<?php

Remove warning messages

error_reporting(E_ALL ^ E_WARNING);

$directory = $_POST["directory"];

$filename = $_POST["name"];

$location = $_POST["location"];

$path= $directory."/".$location;

Check if path is empty

if(! empty($path)){

$path = $path."/".$filename;

Check if file exists

if(file_exists($path)){

Delete file

unlink($path);

echo "<label ><h1 >You have succesfully deleted

a file.</h1 ></label >";

}else{

echo "<label ><h1 >The file provided does not

exist.</h1 ></label >";

}

}else{

echo "<label ><h1 >Please provide a name for the

file to be deleted.</h1 ></label >";

}

?>

<form action="./ index.html" method="post">

<?php

echo '<input type="hidden" name="job"

value=" '.$directory.'">';

?>

<button class="btn btn -primary"

type="submit"><span class="glyphicon

glyphicon -circle -arrow -left"> Back

</button >

</form>

</body>

</html>

A.9 deletetask.php

<!DOCTYPE html>

<html>

<head>

<link rel="stylesheet"

64

href="../ bootstrap -master/dist/css/bootstrap.min.css">

<script

src="../ scripts/jquery -1.12.0. min.js"></script >

<script

src="../ bootstrap -master/dist/js/bootstrap.min.js"></script >

<title>Delete Task</title >

</head>

<body>

<?php

Remove warning messages

error_reporting(E_ALL ^ E_WARNING);

$directory = $_POST["directory"];

$filename = $_POST["value"];

$phase = $_POST["phase"];

Check if filename is empty

if(! empty($filename)){

$location = $directory."/".$phase."/".$filename;

Check if dir exists

if(file_exists($location)){

Delete($location);

echo "<label ><h1 >You have succesfully deleted

a task.</h1 ></label >";

}else{

echo "<label ><h1 >The task provided does not

exist.</h1 ></label >";

}

}else{

echo "<label ><h1 >Please provide a name for the

task to be deleted.</h1 ></label >";

}

?>

<form action="./ index.html" method="post">

<?php

echo '<input type="hidden" name="job"

value=" '.$directory.'">';

?>

<button class="btn btn -primary"

type="submit"><span class="glyphicon

glyphicon -circle -arrow -left"> Back

</button >

</form>

</body>

</html>

<?php

Recursive delete of the files and dirs inside the

specified path

function Delete($path)

{

65

if (is_dir($path) === true)

{

$files = array_diff(scandir($path), array('.',

'..'));

foreach ($files as $file)

{

Delete(realpath($path) . '/' . $file);

}

return rmdir($path);

}

else if (is_file($path) === true)

{

return unlink($path);

}

return false;

}

?>

A.10 upload.php

<?php

require_once("../ include/membersite_config.php");

Check if user is logged in

if(! $fgmembersite ->CheckLogin ())

{

$fgmembersite ->RedirectToURL("login.php");

exit;

}

?>

<!DOCTYPE html>

<html>

<head>

<link rel="stylesheet"

href="../ bootstrap -master/dist/css/bootstrap.min.css">

<script

src="../ scripts/jquery -1.12.0. min.js"></script >

<script

src="../ bootstrap -master/dist/js/bootstrap.min.js"></script >

<title>Upload File</title >

</head>

<body>

<?php

$directory = $_POST['directory '];

$task= $_POST['value '];

$phase = $_POST['phase '];

$ds = DIRECTORY_SEPARATOR;

$user= $fgmembersite ->UserFullName ();

66

$target =

$directory.$ds.$phase.$ds.$task.$ds.$user.$ds;

$target = $target . basename(

$_FILES['uploaded ']['name ']) ;

$ok=1;

Check if file exists

if

(! file_exists($directory.$ds.$phase.$ds.$task.$ds.$ds.$user))

{

Create user dir

mkdir($directory.$ds.$phase.$ds.$task.$ds.$ds.$user ,0700);

}

Move the uploaded file to the specified location

if(move_uploaded_file($_FILES['uploaded ']['tmp_name '],

$target))

{

echo "<label ><h1 >The file ".basename(

$_FILES['uploaded ']['name '])." has been

uploaded.</h1 ></label >";

}

else

{

echo "<label ><h1 >Sorry , there was a problem

uploading your file.</h1 ></label >";

}

?>

<form action="./ index.html" method="post">

<?php

echo '<input type="hidden" name="job"

value=" '.$directory.'">';

?>

<button class="btn btn -primary"

type="submit"><span class="glyphicon

glyphicon -circle -arrow -left"> Back

</button >

</form>

</body>

</html>

A.11 logout.php

<?PHP

/*

The following code was taken and modified from:

http :// www.html -form -guide.com/files/php -form/RegistrationForm.zip

67

*/

require_once("../ include/membersite_config.php");

$fgmembersite ->LogOut ();

?>

<!DOCTYPE html>

<html>

<head>

<link rel="stylesheet"

href="../ bootstrap -master/dist/css/bootstrap.min.css">

<script

src="../ scripts/jquery -1.12.0. min.js"></script >

<script

src="../ bootstrap -master/dist/js/bootstrap.min.js"></script >

<title>Logout </title >

<script type='text/javascript '

src='../ scripts/gen_validatorv31.js '></script >

</head>

<body>

<div>

<div class = "page -header text -center">

<h1>Collaborate Pen Testing

Organizer
<small>You have logged

out</small ></h1>

</div>

<div class = "text -center">

<a href ='../ index.html ' class="btn -primary

btn -lg btn -block">Home

<a href ='../ login/login.php ' class="btn -primary

btn -lg btn -block">Login

</div>

</div>

</body>

</html>

A.12 login.php

<?PHP

/*

The following code was taken and modified from:

http :// www.html -form -guide.com/files/php -form/RegistrationForm.zip

*/

68

require_once("../ include/membersite_config.php");

Check if user credentials are correct and if yes logs

him/her in

and redirects to login -home.php

if(isset($_POST['submitted ']))

{

if($fgmembersite ->Login ())

{

$fgmembersite ->RedirectToURL("login -home.php");

}

}

?>

<!DOCTYPE html PUBLIC >

<html>

<head>

<link rel="stylesheet"

href="../ bootstrap -master/dist/css/bootstrap.min.css">

<script

src="../ scripts/jquery -1.12.0. min.js"></script >

<script

src="../ bootstrap -master/dist/js/bootstrap.min.js"></script >

<title>Login</title >

<script type='text/javascript '

src='../ scripts/gen_validatorv31.js '></script >

<link rel="STYLESHEET" type="text/css"

href="../ style/pwdwidget.css" />

<script src="../ scripts/pwdwidget.js"

type="text/javascript"></script >

</head>

<body>

<!-- Form Code Start -->

<div id='fg_membersite '>

<form id='login ' action='<?php echo

$fgmembersite ->GetSelfScript (); ?>'

method='post ' accept -charset='UTF -8'>

<fieldset >

<div class = "page -header text -center">

<h1>Collaborate Pen Testing

Organizer
<small>Login</small ></h1>

</div>

<input type='hidden ' name='submitted '

id='submitted ' value='1'/>

<div class="text -center">* required

69

fields </div>

<div><?php echo

$fgmembersite ->GetErrorMessage ();

?></div>

<div class="container text -center">

<label for='username '

>Username *:</label >

<input type='text ' name='username '

id='username ' value='<?php echo

$fgmembersite ->SafeDisplay('username ')

?>' maxlength="50" />

<span id='login_username_errorloc '

class='error '>

</div>

<div class="container text -center">

<label for='password '

>Password *:</label >

<input type='password ' name='password '

id='password ' maxlength="50" />

<span id='login_password_errorloc '

class='error '>

</div>

<div class="container text -center">

<input type='submit ' name='Submit '

value='Submit ' class="btn

btn -primary"/>

</div>

</fieldset >

</form>

<script type='text/javascript '>

// <![CDATA[

var frmvalidator = new Validator("login");

frmvalidator.EnableOnPageErrorDisplay ();

frmvalidator.EnableMsgsTogether ();

frmvalidator.addValidation("username","req","Please

provide your username");

frmvalidator.addValidation("password","req","Please

provide the password");

//]]>

</script >

</div>

<!--

70

Form Code End

-->

</body>

</html>

A.13 login-home.php

<?PHP

/*

The following code was taken and modified from:

http :// www.html -form -guide.com/files/php -form/RegistrationForm.zip

*/

require_once("../ include/membersite_config.php");

Check if a user is logged in

if(! $fgmembersite ->CheckLogin ())

{

$fgmembersite ->RedirectToURL("login.php");

exit;

}

?>

<!DOCTYPE html>

<html>

<head>

<link rel="stylesheet"

href="../ bootstrap -master/dist/css/bootstrap.min.css">

<script

src="../ scripts/jquery -1.12.0. min.js"></script >

<script

src="../ bootstrap -master/dist/js/bootstrap.min.js"></script >

<title>Home page</title >

</head>

<body>

<div>

<div class = "page -header text -center">

<h1>Collaborate Pen Testing

Organizer
<small>Home Page</small></h1>

</div>

<div class = "text -center">

<h2>Welcome back <?=

$fgmembersite ->UserFullName (); ?>!</h2>

<a href ='../ jobs/index.html ' class="btn -primary

71

btn -lg btn -block">Go to Projects </br>

<a href ='../ changepassword/change -pwd.php '

class="btn -primary btn -lg btn -block">Change

password

<a href ='../ logout/logout.php '

class="btn -primary btn -lg

btn -block">Logout

</div>

</div>

</body>

</html>

A.14 Jobs page

<?php

require_once("../ include/membersite_config.php");

Check if a user is logged in

if(! $fgmembersite ->CheckLogin ())

{

$fgmembersite ->RedirectToURL("login.php");

exit;

}

?>

<!DOCTYPE html>

<html>

<head>

<link rel="stylesheet"

href="../ bootstrap -master/dist/css/bootstrap.min.css">

<script

src="../ scripts/jquery -1.12.0. min.js"></script >

<script

src="../ bootstrap -master/dist/js/bootstrap.min.js"></script >

<title>Projects </title >

</head>

<body>

<div class = "page -header">

<h1>Collaborate Pen Testing Organizer

<!-- Get the username -->

<small> User: <?= $fgmembersite ->UserFullName ();

?> </small > <a href ='../ logout/logout.php '

class="btn btn -primary">Logout

<small>Choose a project from the provided

lists </small >

</h1>

</div>

<div>

<div class="list -group">

72

<h2>Current Jobs</h2>

<?php

$directory = "../ Projects/Current";

Get array of all files and dirs inside the

specified path

$jobs = array_diff(scandir($directory),

array('..', '.'));

Check if array is empty

if (! empty($jobs)){

Loop through the array and print current

jobs

foreach ($jobs as &$value) {

Print form that creates clickable links

for the jobs and the achive button

echo '<form class="form -inline"

role="form" method="post">

<input type="hidden" name="job"

value=" '.$directory .'/'.$value.'">

<input type="hidden" name="name"

value=" '.$value.'">

<button type="submit" class="btn

btn -default"

formaction="../ plan/index.html"

>'.$value.'</button >

<button type="submit" class="btn

btn -danger"

formaction="moveArchived.php"><span

class="glyphicon

glyphicon -floppy -disk"></button >

</form>';

}

}

else

{

echo '<div>No jobs</div>';

}

?>

</div>

<form class="form -inline" role="form"

method="post">

<div class="form -group">

<label for="Filename">Job Name: </label >

<input type="text" class="form -control"

name="name">

</div>

<div class="form -group">

<button type="submit" class="btn btn -primary"

formaction="addcurent.php"><span

class="glyphicon

73

glyphicon -plus -sign">Create </button >

</div>

</form>

<div class="list -group">

<h2>Archived Jobs</h2>

<?php

$directory = "../ Projects/Archived";

Get array of all files and dirs inside the

specified path

$jobs = array_diff(scandir($directory),

array('..', '.'));

Check if array is empty

if (! empty($jobs)){

Loop through the array and print archived

jobs

foreach ($jobs as &$value) {

Print form that creates clickable links

for the jobs and the delete button

echo '<form class="form -inline"

role="form" method="post"

action="../ plan/index.html">

<input type="hidden" name="job"

value=" '.$directory .'/'.$value.'">

<input type="hidden" name="name"

value=" '.$value.'">

<button type="submit" class="btn

btn -default"

formaction="../ plan/index.html"

>'.$value.'</button >

<button type="submit" class="btn

btn -danger"

formaction="deleteFolder.php"><span

class="glyphicon

glyphicon -remove -sign"></button ></button >

</form>';

}

}

else

{

echo '<div>No jobs</div>';

}

?>

</div>

</div>

</body>

</html>

74

A.15 moveArchived.php

<!DOCTYPE html>

<html>

<head>

<link rel="stylesheet"

href="../ bootstrap -master/dist/css/bootstrap.min.css">

<script

src="../ scripts/jquery -1.12.0. min.js"></script >

<script

src="../ bootstrap -master/dist/js/bootstrap.min.js"></script >

<title>Archive Project </title >

</head>

<body>

<?php

Remove warning messages

error_reporting(E_ALL ^ E_WARNING);

$filename = $_POST["name"];

Check if filename was given

if(! empty($filename)){

$currentlocation =

"../ Projects/Current/".$filename;

$newlocation = "../ Projects/Archived/".$filename;

Move dir or file from old to new location

if (rename($currentlocation ,$newlocation)){

echo "<label ><h1 >You have succesfully archived

a project.</h1 ></label >";

}else {

echo "<label ><h1 >An error occured. Propably

the name given does not

exist.</h1 ></label >";

}

}else{

echo "<label ><h1 >Please provide a name for the

project to be Archived.</h1 ></label >";

}

?>

<form action="./ index.html">

<button class="btn btn -primary"

type="submit"><span class="glyphicon

glyphicon -circle -arrow -left"> Back

</button >

</form>

</body>

</html>

A.16 deleteFolder.php

<!DOCTYPE html>

75

<html>

<head>

<link rel="stylesheet"

href="../ bootstrap -master/dist/css/bootstrap.min.css">

<script

src="../ scripts/jquery -1.12.0. min.js"></script >

<script

src="../ bootstrap -master/dist/js/bootstrap.min.js"></script >

<title>Delete Project </title >

</head>

<body>

<?php

Remove warning messages

error_reporting(E_ALL ^ E_WARNING);

$filename = $_POST["name"];

Check if filename is empty

if(! empty($filename)){

$location = "../ Projects/Archived/".$filename;

If file exists , delete it

if(file_exists($location)){

Delete($location);

echo "<label ><h1 >You have succesfully deleted

a project.</h1 ></label >";

}else{

echo "<label ><h1 >The project provided does not

exist.</h1 ></label >";

}

}else{

echo "<label ><h1 >Please provide a name for the

project to delete.</h1 ></label >";

}

?>

<form action="./ index.html">

<button class="btn btn -primary"

type="submit"><span class="glyphicon

glyphicon -circle -arrow -left"> Back

</button >

</form>

</body>

</html>

<?php

Recursive delete of the files and dirs inside the

specified path

function Delete($path)

{

if (is_dir($path) === true)

{

$files = array_diff(scandir($path), array('.',

76

'..'));

foreach ($files as $file)

{

Delete(realpath($path) . '/' . $file);

}

return rmdir($path);

}

else if (is_file($path) === true)

{

return unlink($path);

}

return false;

}

?>

A.17 addcurent.php

<!DOCTYPE html>

<html>

<head>

<link rel="stylesheet"

href="../ bootstrap -master/dist/css/bootstrap.min.css">

<script

src="../ scripts/jquery -1.12.0. min.js"></script >

<script

src="../ bootstrap -master/dist/js/bootstrap.min.js"></script >

<title>Create Project </title >

</head>

<body>

<?php

Remove warning messages

error_reporting(E_ALL ^ E_WARNING);

$filename = $_POST["name"];

Check if filename was given

if(! empty($filename)){

Check if file exists

if (file_exists (

"../ Projects/Archived/".$filename))

{

echo "<label ><h1 >The Project name exist in the

Archived directory.</h1 ></label >";

}else

{

Create dir with name filename and inside

create the needed dirs

$filename = "../ Projects/Current/".$filename;

if (mkdir($filename ,0700)){

mkdir($filename."/Assessment" ,0700);

mkdir($filename."/Discovery" ,0700);

77

mkdir($filename."/Exploitation" ,0700);

mkdir($filename."/Introductory" ,0700);

mkdir($filename."/Maintaining" ,0700);

mkdir($filename."/Reporting" ,0700);

echo "<label ><h1 >You have succesfully

created a new project.</h1 ></label >";

}else{

echo "<label ><h1 >An error occured. Propably

the name given does already

exist.</h1 ></label >";

}

}

}

else{

echo "<label ><h1 >Please provide a name for the

new project.</h1 ></label >";

}

?>

<form action="./ index.html">

<button class="btn btn -primary"

type="submit"><span class="glyphicon

glyphicon -circle -arrow -left"> Back

</button >

</form>

</body>

</html>

A.18 fg_membersite.php

<?PHP

/*

Registration/Login script from HTML Form Guide

Version 1.0

This program is free software published under the

terms of the GNU Lesser General Public License.

http :// www.gnu.org/copyleft/lesser.html

The following code was taken and modified from:

http :// www.html -form -guide.com/files/php -form/RegistrationForm.zip

http :// www.html -form -guide.com/php -form/php -registration -form.html

http :// www.html -form -guide.com/php -form/php -login -form.html

*/

require_once("formvalidator.php");

78

class FGMembersite

{

var $admin_email;

var $from_address;

var $username;

var $pwd;

var $database;

var $tablename;

var $connection;

var $rand_key;

var $error_message;

//-----Initialization -------

function FGMembersite ()

{

$this ->sitename = 'os3.nl ';

$this ->rand_key = '0iQx5oBk66oVZep ';

}

function

InitDB($host ,$uname ,$pwd ,$database ,$tablename)

{

$this ->db_host = $host;

$this ->username = $uname;

$this ->pwd = $pwd;

$this ->database = $database;

$this ->tablename = $tablename;

}

function SetAdminEmail($email)

{

$this ->admin_email = $email;

}

function SetWebsiteName($sitename)

{

$this ->sitename = $sitename;

}

function SetRandomKey($key)

{

$this ->rand_key = $key;

}

//-------Main Operations ----------------------

function RegisterUser ()

{

if(! isset($_POST['submitted ']))

79

{

return false;

}

$formvars = array ();

if(!$this ->ValidateRegistrationSubmission ())

{

return false;

}

$this ->CollectRegistrationSubmission($formvars);

if(!$this ->SaveToDatabase($formvars))

{

return false;

}

return true;

}

function Login ()

{

if(empty($_POST['username ']))

{

$this ->HandleError("UserName is empty!");

return false;

}

if(empty($_POST['password ']))

{

$this ->HandleError("Password is empty!");

return false;

}

$username = trim($_POST['username ']);

$password = trim($_POST['password ']);

if(! isset($_SESSION)){ session_start (); }

if(!$this ->CheckLoginInDB($username ,$password))

{

return false;

}

$_SESSION[$this ->GetLoginSessionVar ()] =

$username;

return true;

}

80

function CheckLogin ()

{

if(! isset($_SESSION)){ session_start (); }

$sessionvar = $this ->GetLoginSessionVar ();

if(empty($_SESSION[$sessionvar]))

{

return false;

}

return true;

}

function UserFullName ()

{

return

isset($_SESSION['name_of_user '])?$_SESSION['name_of_user ']:'';

}

function UserEmail ()

{

return

isset($_SESSION['email_of_user '])?$_SESSION['email_of_user ']:'';

}

function LogOut ()

{

session_start ();

$sessionvar = $this ->GetLoginSessionVar ();

$_SESSION[$sessionvar]=NULL;

unset($_SESSION[$sessionvar]);

}

function ChangePassword ()

{

if(!$this ->CheckLogin ())

{

$this ->HandleError("Not logged in!");

return false;

}

if(empty($_POST['oldpwd ']))

{

$this ->HandleError("Old password is empty!");

return false;

}

81

if(empty($_POST['newpwd ']))

{

$this ->HandleError("New password is empty!");

return false;

}

$user_rec = array ();

if(!$this ->GetUserFromEmail($this ->UserEmail (),$user_rec))

{

return false;

}

$pwd = trim($_POST['oldpwd ']);

if($user_rec['password '] != md5($pwd))

{

$this ->HandleError("The old password does

not match!");

return false;

}

$newpwd = trim($_POST['newpwd ']);

if(!$this ->ChangePasswordInDB($user_rec ,

$newpwd))

{

return false;

}

return true;

}

//-------Public Helper functions -------------

function GetSelfScript ()

{

return htmlentities($_SERVER['PHP_SELF ']);

}

function SafeDisplay($value_name)

{

if(empty($_POST[$value_name]))

{

return '';

}

return htmlentities($_POST[$value_name]);

}

function RedirectToURL($url)

{

header("Location: $url");

exit;

82

}

function GetSpamTrapInputName ()

{

return 'sp '.md5('KHGdnbvsgst '.$this ->rand_key);

}

function GetErrorMessage ()

{

if(empty($this ->error_message))

{

return '';

}

$errormsg =

nl2br(htmlentities($this ->error_message));

return $errormsg;

}

//-------Private Helper functions -----------

function HandleError($err)

{

$this ->error_message .= $err."\r\n";

}

function HandleDBError($err)

{

$this ->HandleError($err."\r\n

mysqlerror:".mysql_error ());

}

function GetFromAddress ()

{

if(! empty($this ->from_address))

{

return $this ->from_address;

}

$host = $_SERVER['SERVER_NAME '];

$from ="nobody@$host";

return $from;

}

function GetLoginSessionVar ()

{

$retvar = md5($this ->rand_key);

$retvar = 'usr_ '. substr($retvar ,0 ,10);

return $retvar;

}

83

function CheckLoginInDB($username ,$password)

{

if(!$this ->DBLogin ())

{

$this ->HandleError("Database login failed!");

return false;

}

$username = $this ->SanitizeForSQL($username);

$pwdmd5 = md5($password);

$qry = "Select name , email from $this ->tablename

where username='$username ' and

password='$pwdmd5 '";

$result = mysql_query($qry ,$this ->connection);

if(! $result || mysql_num_rows($result) <= 0)

{

$this ->HandleError("Error logging in. The

username or password does not match");

return false;

}

$row = mysql_fetch_assoc($result);

$_SESSION['name_of_user '] = $row['name '];

$_SESSION['email_of_user '] = $row['email '];

return true;

}

function ResetUserPasswordInDB($user_rec)

{

$new_password = substr(md5(uniqid ()) ,0,10);

if(false ==

$this ->ChangePasswordInDB($user_rec ,$new_password))

{

return false;

}

return $new_password;

}

function ChangePasswordInDB($user_rec , $newpwd)

{

$newpwd = $this ->SanitizeForSQL($newpwd);

$qry = "Update $this ->tablename Set

password='".md5($newpwd)."' Where

84

id_user=".$user_rec['id_user ']."";

if(! mysql_query($qry ,$this ->connection))

{

$this ->HandleDBError("Error updating the

password \nquery:$qry");

return false;

}

return true;

}

function GetUserFromEmail($email ,& $user_rec)

{

if(!$this ->DBLogin ())

{

$this ->HandleError("Database login failed!");

return false;

}

$email = $this ->SanitizeForSQL($email);

$result = mysql_query("Select * from

$this ->tablename where

email='$email '",$this ->connection);

if(! $result || mysql_num_rows($result) <= 0)

{

$this ->HandleError("There is no user with

email: $email");

return false;

}

$user_rec = mysql_fetch_assoc($result);

return true;

}

function GetResetPasswordCode($email)

{

return

substr(md5($email.$this ->sitename.$this ->rand_key) ,0,10);

}

function ValidateRegistrationSubmission ()

{

//This is a hidden input field. Humans won 't

fill this field.

if(! empty($_POST[$this ->GetSpamTrapInputName ()])

)

{

//The proper error is not given intentionally

85

$this ->HandleError("Automated submission

prevention: case 2 failed");

return false;

}

$validator = new FormValidator ();

$validator ->addValidation("name","req","Please

fill in Name");

$validator ->addValidation("email","email","The

input for Email should be a valid email

value");

$validator ->addValidation("email","req","Please

fill in Email");

$validator ->addValidation("username","req","Please

fill in UserName");

$validator ->addValidation("password","req","Please

fill in Password");

if(! $validator ->ValidateForm ())

{

$error='';

$error_hash = $validator ->GetErrors ();

foreach($error_hash as $inpname => $inp_err)

{

$error .= $inpname .':'. $inp_err."\n";

}

$this ->HandleError($error);

return false;

}

return true;

}

function CollectRegistrationSubmission (& $formvars)

{

$formvars['name '] =

$this ->Sanitize($_POST['name ']);

$formvars['email '] =

$this ->Sanitize($_POST['email ']);

$formvars['username '] =

$this ->Sanitize($_POST['username ']);

$formvars['password '] =

$this ->Sanitize($_POST['password ']);

}

function SaveToDatabase (& $formvars)

{

if(!$this ->DBLogin ())

{

$this ->HandleError("Database login failed!");

86

return false;

}

if(!$this ->Ensuretable ())

{

return false;

}

if(!$this ->IsFieldUnique($formvars ,'email '))

{

$this ->HandleError("This email is already

registered");

return false;

}

if(!$this ->IsFieldUnique($formvars ,'username '))

{

$this ->HandleError("This UserName is already

used. Please try another username");

return false;

}

if(!$this ->InsertIntoDB($formvars))

{

$this ->HandleError("Inserting to Database

failed!");

return false;

}

return true;

}

function IsFieldUnique($formvars ,$fieldname)

{

$field_val =

$this ->SanitizeForSQL($formvars[$fieldname]);

$qry = "select username from $this ->tablename

where $fieldname='".$field_val."'";

$result = mysql_query($qry ,$this ->connection);

if($result && mysql_num_rows($result) > 0)

{

return false;

}

return true;

}

function DBLogin ()

{

$this ->connection =

mysql_connect($this ->db_host ,$this ->username ,$this ->pwd);

if(!$this ->connection)

87

{

$this ->HandleDBError("Database Login failed!

Please make sure that the DB login

credentials provided are correct");

return false;

}

if(! mysql_select_db($this ->database ,

$this ->connection))

{

$this ->HandleDBError('Failed to select

database: '.$this ->database.' Please

make sure that the database name

provided is correct ');

return false;

}

if(! mysql_query("SET NAMES

'UTF8 '",$this ->connection))

{

$this ->HandleDBError('Error setting utf8

encoding ');

return false;

}

return true;

}

function Ensuretable ()

{

$result = mysql_query("SHOW COLUMNS FROM

$this ->tablename");

if(! $result || mysql_num_rows($result) <= 0)

{

return $this ->CreateTable ();

}

return true;

}

function CreateTable ()

{

$qry = "Create Table $this ->tablename (".

"id_user INT NOT NULL AUTO_INCREMENT ,".

"name VARCHAR(128) NOT NULL ,".

"email VARCHAR(64) NOT NULL ,".

"username VARCHAR(16) NOT NULL ,".

"password VARCHAR(32) NOT NULL ,".

"PRIMARY KEY (id_user)".

")";

if(! mysql_query($qry ,$this ->connection))

{

88

$this ->HandleDBError("Error creating the

table \nquery was\n $qry");

return false;

}

return true;

}

function InsertIntoDB (& $formvars)

{

$insert_query = 'insert into

'.$this ->tablename .'(

name ,

email ,

username ,

password

)

values

(

"' .

$this ->SanitizeForSQL($formvars['name '])

. '",

"' .

$this ->SanitizeForSQL($formvars['email '])

. '",

"' .

$this ->SanitizeForSQL($formvars['username '])

. '",

"' . md5($formvars['password ']) . '"

) ';

if(! mysql_query($insert_query

,$this ->connection))

{

$this ->HandleDBError("Error inserting data

to the table\nquery:$insert_query");

return false;

}

return true;

}

function SanitizeForSQL($str)

{

if(function_exists("mysql_real_escape_string"

))

{

$ret_str = mysql_real_escape_string($str

);

}

else

{

89

$ret_str = addslashes($str);

}

return $ret_str;

}

/*

Sanitize () function removes any potential threat

from the

data submitted. Prevents email injections or any

other hacker attempts.

if $remove_nl is true , newline characters are

removed from the input.

*/

function Sanitize($str ,$remove_nl=true)

{

$str = $this ->StripSlashes($str);

if($remove_nl)

{

$injections = array ('/(\n+)/i',

'/(\r+)/i',

'/(\t+)/i',

'/(%0A+)/i',

'/(%0D+)/i',

'/(%08+)/i',

'/(%09+)/i'

);

$str = preg_replace($injections ,'',$str);

}

return $str;

}

function StripSlashes($str)

{

if(get_magic_quotes_gpc ())

{

$str = stripslashes($str);

}

return $str;

}

}

?>

A.19 formvalidator.php

<?PHP

/*

90

PHP Form Validator (formvalidator.php)

Version 1.1

This program is free software published under the

terms of the GNU Lesser General Public License.

http :// www.gnu.org/copyleft/lesser.html

The following code was taken without any change from:

http :// www.html -form -guide.com/files/php -form/RegistrationForm.zip

http :// www.html -form -guide.com/php -form/php -form -validation.html

*/

/**

* Carries information about each of the form validations

*/

class ValidatorObj

{

var $variable_name;

var $validator_string;

var $error_string;

}

/**

* Base class for custom validation objects

**/

class CustomValidator

{

function DoValidate (&$formars ,& $error_hash)

{

return true;

}

}

/** Default error messages **/

define("E_VAL_REQUIRED_VALUE","Please enter the value

for %s");

define("E_VAL_MAXLEN_EXCEEDED","Maximum length exceeded

for %s.");

define("E_VAL_MINLEN_CHECK_FAILED","Please enter input

with length more than %d for %s");

define("E_VAL_ALNUM_CHECK_FAILED","Please provide an

alpha -numeric input for %s");

define("E_VAL_ALNUM_S_CHECK_FAILED","Please provide an

alpha -numeric input for %s");

define("E_VAL_NUM_CHECK_FAILED","Please provide numeric

input for %s");

91

define("E_VAL_ALPHA_CHECK_FAILED","Please provide

alphabetic input for %s");

define("E_VAL_ALPHA_S_CHECK_FAILED","Please provide

alphabetic input for %s");

define("E_VAL_EMAIL_CHECK_FAILED","Please provide a

valida email address");

define("E_VAL_LESSTHAN_CHECK_FAILED","Enter a value less

than %f for %s");

define("E_VAL_GREATERTHAN_CHECK_FAILED","Enter a value

greater than %f for %s");

define("E_VAL_REGEXP_CHECK_FAILED","Please provide a

valid input for %s");

define("E_VAL_DONTSEL_CHECK_FAILED","Wrong option

selected for %s");

define("E_VAL_SELMIN_CHECK_FAILED","Please select

minimum %d options for %s");

define("E_VAL_SELONE_CHECK_FAILED","Please select an

option for %s");

define("E_VAL_EQELMNT_CHECK_FAILED","Value of %s should

be same as that of %s");

define("E_VAL_NEELMNT_CHECK_FAILED","Value of %s should

not be same as that of %s");

/**

* FormValidator: The main class that does all the form

validations

**/

class FormValidator

{

var $validator_array;

var $error_hash;

var $custom_validators;

function FormValidator ()

{

$this ->validator_array = array ();

$this ->error_hash = array();

$this ->custom_validators=array ();

}

function AddCustomValidator (& $customv)

{

array_push($this ->custom_validators ,$customv);

}

function addValidation($variable ,$validator ,$error)

{

$validator_obj = new ValidatorObj ();

$validator_obj ->variable_name = $variable;

92

$validator_obj ->validator_string = $validator;

$validator_obj ->error_string = $error;

array_push($this ->validator_array ,$validator_obj);

}

function GetErrors ()

{

return $this ->error_hash;

}

function ValidateForm ()

{

$bret = true;

$error_string="";

$error_to_display = "";

if(strcmp($_SERVER['REQUEST_METHOD '],'POST ')==0)

{

$form_variables = $_POST;

}

else

{

$form_variables = $_GET;

}

$vcount = count($this ->validator_array);

foreach($this ->validator_array as $val_obj)

{

if(!$this ->ValidateObject($val_obj ,$form_variables ,$error_string))

{

$bret = false;

$this ->error_hash[$val_obj ->variable_name]

= $error_string;

}

}

if(true == $bret && count($this ->custom_validators)

> 0)

{

foreach($this ->custom_validators as

$custom_val)

{

if(false ==

$custom_val ->DoValidate($form_variables ,$this ->error_hash))

{

$bret = false;

}

93

}

}

return $bret;

}

function

ValidateObject($validatorobj ,$formvariables ,& $error_string)

{

$bret = true;

$splitted =

explode("=",$validatorobj ->validator_string);

$command = $splitted [0];

$command_value = '';

if(isset($splitted [1]) && strlen($splitted [1]) >0)

{

$command_value = $splitted [1];

}

$default_error_message="";

$input_value ="";

if(isset($formvariables[$validatorobj ->variable_name]))

{

$input_value =

$formvariables[$validatorobj ->variable_name];

}

$bret =

$this ->ValidateCommand($command ,$command_value ,$input_value ,

$default_error_message ,

$validatorobj ->variable_name ,

$formvariables);

if(false == $bret)

{

if(isset($validatorobj ->error_string) &&

strlen($validatorobj ->error_string) >0)

{

$error_string = $validatorobj ->error_string;

}

else

{

$error_string = $default_error_message;

}

}

94

return $bret;

}

function validate_req($input_value ,

&$default_error_message , $variable_name)

{

$bret = true;

if(! isset($input_value) ||

strlen($input_value) <=0)

{

$bret=false;

$default_error_message =

sprintf(E_VAL_REQUIRED_VALUE ,$variable_name);

}

return $bret;

}

function validate_maxlen($input_value ,$max_len ,

$variable_name ,& $default_error_message)

{

$bret = true;

if(isset($input_value))

{

$input_length = strlen($input_value);

if($input_length > $max_len)

{

$bret=false;

$default_error_message =

sprintf(E_VAL_MAXLEN_EXCEEDED ,$variable_name);

}

}

return $bret;

}

function

validate_minlen($input_value ,$min_len ,$variable_name ,

&$default_error_message)

{

$bret = true;

if(isset($input_value))

{

$input_length = strlen($input_value);

if($input_length < $min_len)

{

$bret=false;

$default_error_message =

sprintf(E_VAL_MINLEN_CHECK_FAILED ,$min_len ,$variable_name);

}

}

95

return $bret;

}

function test_datatype($input_value ,$reg_exp)

{

if(ereg($reg_exp ,$input_value))

{

return false;

}

return true;

}

function validate_email($email)

{

return preg_match(

"/^[_\.0-9a-zA-Z-]+@([0-9a-zA -Z][0-9a-zA-Z -]+\.) +[a-zA -Z]{2,6}$/i",

$email);

}

function

validate_for_numeric_input($input_value ,& $validation_success)

{

$more_validations=true;

$validation_success = true;

if(strlen($input_value)>0)

{

if(false == is_numeric($input_value))

{

$validation_success = false;

$more_validations=false;

}

}

else

{

$more_validations=false;

}

return $more_validations;

}

function validate_lessthan($command_value ,$input_value ,

$variable_name ,& $default_error_message)

{

$bret = true;

if(false ==

$this ->validate_for_numeric_input($input_value ,

$bret))

{

96

return $bret;

}

if($bret)

{

$lessthan = doubleval($command_value);

$float_inputval = doubleval($input_value);

if($float_inputval >= $lessthan)

{

$default_error_message =

sprintf(E_VAL_LESSTHAN_CHECK_FAILED ,

$lessthan ,

$variable_name);

$bret = false;

}

}

return $bret ;

}

function

validate_greaterthan($command_value ,$input_value ,

$variable_name ,& $default_error_message)

{

$bret = true;

if(false ==

$this ->validate_for_numeric_input($input_value ,$bret))

{

return $bret;

}

if($bret)

{

$greaterthan = doubleval($command_value);

$float_inputval = doubleval($input_value);

if($float_inputval <= $greaterthan)

{

$default_error_message =

sprintf(E_VAL_GREATERTHAN_CHECK_FAILED ,

$greaterthan ,

$variable_name);

$bret = false;

}

}

return $bret ;

}

function

validate_select($input_value ,$command_value ,

&$default_error_message ,$variable_name)

{

$bret=false;

97

if(is_array($input_value))

{

foreach($input_value as $value)

{

if($value == $command_value)

{

$bret=true;

break;

}

}

}

else

{

if($command_value == $input_value)

{

$bret=true;

}

}

if(false == $bret)

{

$default_error_message =

sprintf(E_VAL_SHOULD_SEL_CHECK_FAILED ,

$command_value ,$variable_name);

}

return $bret;

}

function

validate_dontselect($input_value ,$command_value ,

&$default_error_message ,$variable_name)

{

$bret=true;

if(is_array($input_value))

{

foreach($input_value as $value)

{

if($value == $command_value)

{

$bret=false;

$default_error_message =

sprintf(E_VAL_DONTSEL_CHECK_FAILED ,$variable_name);

break;

}

}

}

else

{

if($command_value == $input_value)

{

98

$bret=false;

$default_error_message =

sprintf(E_VAL_DONTSEL_CHECK_FAILED ,$variable_name);

}

}

return $bret;

}

function

ValidateCommand($command ,$command_value ,$input_value ,

&$default_error_message ,$variable_name ,$formvariables)

{

$bret=true;

switch($command)

{

case 'req ':

{

$bret = $this ->validate_req($input_value ,

$default_error_message ,$variable_name);

break;

}

case 'maxlen ':

{

$max_len = intval($command_value);

$bret =

$this ->validate_maxlen($input_value ,$max_len ,

$variable_name ,

$default_error_message);

break;

}

case 'minlen ':

{

$min_len = intval($command_value);

$bret =

$this ->validate_minlen($input_value ,$min_len ,

$variable_name ,

$default_error_message);

break;

}

case 'alnum ':

{

$bret=

$this ->test_datatype($input_value ,"[^A-Za -z0 -9]");

if(false == $bret)

{

$default_error_message =

99

sprintf(E_VAL_ALNUM_CHECK_FAILED ,$variable_name);

}

break;

}

case 'alnum_s ':

{

$bret=

$this ->test_datatype($input_value ,"[^A-Za -z0 -9]");

if(false == $bret)

{

$default_error_message =

sprintf(E_VAL_ALNUM_S_CHECK_FAILED ,$variable_name);

}

break;

}

case 'num ':

case 'numeric ':

{

$bret=

$this ->test_datatype($input_value ,"[^0 -9]");

if(false == $bret)

{

$default_error_message =

sprintf(E_VAL_NUM_CHECK_FAILED ,$variable_name);

}

break;

}

case 'alpha ':

{

$bret=

$this ->test_datatype($input_value ,"[^A-Za -z]");

if(false == $bret)

{

$default_error_message =

sprintf(E_VAL_ALPHA_CHECK_FAILED ,$variable_name);

}

break;

}

case 'alpha_s ':

{

$bret=

$this ->test_datatype($input_value ,"[^A-Za -z

]");

if(false == $bret)

{

$default_error_message =

100

sprintf(E_VAL_ALPHA_S_CHECK_FAILED ,$variable_name);

}

break;

}

case 'email ':

{

if(isset($input_value) &&

strlen($input_value) >0)

{

$bret=

$this ->validate_email($input_value);

if(false == $bret)

{

$default_error_message =

E_VAL_EMAIL_CHECK_FAILED;

}

}

break;

}

case "lt":

case "lessthan":

{

$bret =

$this ->validate_lessthan($command_value ,

$input_value ,

$variable_name ,

$default_error_message);

break;

}

case "gt":

case "greaterthan":

{

$bret =

$this ->validate_greaterthan($command_value ,

$input_value ,

$variable_name ,

$default_error_message);

break;

}

case "regexp":

{

if(isset($input_value) &&

strlen($input_value) >0)

{

if(! preg_match("$command_value",$input_value))

{

$bret=false;

$default_error_message =

101

sprintf(E_VAL_REGEXP_CHECK_FAILED ,$variable_name);

}

}

break;

}

case "dontselect":

case "dontselectchk":

case "dontselectradio":

{

$bret =

$this ->validate_dontselect($input_value ,

$command_value ,

$default_error_message ,

$variable_name);

break;

}

case "shouldselchk":

case "selectradio":

{

$bret =

$this ->validate_select($input_value ,

$command_value ,

$default_error_message ,

$variable_name);

break;

}

case "selmin":

{

$min_count = intval($command_value);

if(isset($input_value))

{

if($min_count > 1)

{

$bret = (count($input_value) >=

$min_count)?true:false;

}

else

{

$bret = true;

}

}

else

{

$bret= false;

$default_error_message =

sprintf(E_VAL_SELMIN_CHECK_FAILED ,

$min_count ,$variable_name);

102

}

break;

}

case "selone":

{

if(false == isset($input_value)||

strlen($input_value)<=0)

{

$bret= false;

$default_error_message =

sprintf(E_VAL_SELONE_CHECK_FAILED ,$variable_name);

}

break;

}

case "eqelmnt":

{

if(isset($formvariables[$command_value]) &&

strcmp($input_value ,$formvariables[$command_value])==0

)

{

$bret=true;

}

else

{

$bret= false;

$default_error_message =

sprintf(E_VAL_EQELMNT_CHECK_FAILED ,

$variable_name ,$command_value);

}

break;

}

case "neelmnt":

{

if(isset($formvariables[$command_value]) &&

strcmp($input_value ,$formvariables[$command_value])

!=0)

{

$bret=true;

}

else

{

$bret= false;

$default_error_message =

sprintf(E_VAL_NEELMNT_CHECK_FAILED ,

$variable_name ,$command_value);

}

break;

103

}

}

return $bret;

}

}

?>

A.20 membersite_con�g.php

<?PHP

/*

This program is free software published under the

terms of the GNU Lesser General Public License.

http :// www.gnu.org/copyleft/lesser.html

The following code was taken and modified from:

http :// www.html -form -guide.com/files/php -form/RegistrationForm.zip

*/

require_once("../ include/fg_membersite.php");

$fgmembersite = new FGMembersite ();

// Provide your site name here

$fgmembersite ->SetWebsiteName('test.nl ');

// Provide the email address where you want to get

notifications

$fgmembersite ->SetAdminEmail('smaritsas@os3.nl ');

// Provide your database login details here:

//hostname , user name , password , database name and table

name

//note that the script will create the pentesters table

//by itself on submitting register.php for the first time

$fgmembersite ->InitDB (/* hostname*/'localhost ',

/* username*/'root ',

/* password*/'admin ',

/* database name*/'cpto ',

/* table name*/'pentesters ');

//For better security. Get a random string from this

link: http :// tinyurl.com/randstr

//and put it here

104

$fgmembersite ->SetRandomKey('qSRcVS6DrTzrPvr ');

?>

A.21 change-pwd.php

<?PHP

/*

The following code was taken and modified from:

http :// www.html -form -guide.com/files/php -form/RegistrationForm.zip

*/

require_once("../ include/membersite_config.php");

Check if a user is logged in

if(! $fgmembersite ->CheckLogin ())

{

$fgmembersite ->RedirectToURL("login.php");

exit;

}

Change password , log out user , and then redirect to

changed -pwd.html page

if(isset($_POST['submitted ']))

{

if($fgmembersite ->ChangePassword ())

{

$fgmembersite ->LogOut ();

$fgmembersite ->RedirectToURL("../ changepassword/changed -pwd.html");

}

}

?>

<!DOCTYPE html>

<html>

<head>

<link rel="stylesheet"

href="../ bootstrap -master/dist/css/bootstrap.min.css">

<script

src="../ scripts/jquery -1.12.0. min.js"></script >

<script

src="../ bootstrap -master/dist/js/bootstrap.min.js"></script >

<title>Change password </title >

<script type='text/javascript '

105

src='../ scripts/gen_validatorv31.js '></script >

<link rel="STYLESHEET" type="text/css"

href="../ style/pwdwidget.css" />

<script src="../ scripts/pwdwidget.js"

type="text/javascript"></script >

</head>

<body>

<!-- Form Code Start -->

<div id='fg_membersite '>

<form id='changepwd ' action='<?php echo

$fgmembersite ->GetSelfScript (); ?>'

method='post ' accept -charset='UTF -8'>

<fieldset >

<div class = "page -header text -center">

<h1>Collaborate Pen Testing

Organizer
<small>Password

Change </small></h1>

</div>

<input type='hidden ' name='submitted '

id='submitted ' value='1'/>

<div class="text -center">* required

fields </div></br>

<!-- Put the error message from

fg_membersite.php into a div -->

<div><?php echo

$fgmembersite ->GetErrorMessage ();

?></div>

<div class="container text -center">

<label for='oldpwd ' >Old

Password *:</label>

<div class="pagination centering"

id='oldpwddiv ' ></div>

<noscript >

<input type='password ' name='oldpwd '

id='oldpwd ' maxlength="50" />

</noscript >

<span id='changepwd_oldpwd_errorloc '

class='error '>

</div>

<div class="container text -center">

<label for='newpwd ' >New

Password *:</label>

<div class="pagination centering"

id='newpwddiv ' ></div>

106

<noscript >

<input type='password ' name='newpwd '

id='newpwd ' maxlength="50" />

</noscript >

<span id='changepwd_newpwd_errorloc '

class='error '>

</div>

<div class="container text -center">

<input type='submit ' name='Submit '

value='Submit ' class="btn btn -primary"/>

</div>

</fieldset >

</form>

<script type='text/javascript '>

// <![CDATA[

var pwdwidget = new

PasswordWidget('oldpwddiv ','oldpwd ');

pwdwidget.enableGenerate = false;

pwdwidget.enableShowStrength=false;

pwdwidget.enableShowStrengthStr =false;

pwdwidget.MakePWDWidget ();

var pwdwidget = new

PasswordWidget('newpwddiv ','newpwd ');

pwdwidget.MakePWDWidget ();

var frmvalidator = new Validator("changepwd");

frmvalidator.EnableOnPageErrorDisplay ();

frmvalidator.EnableMsgsTogether ();

frmvalidator.addValidation("oldpwd","req","Please

provide your old password");

frmvalidator.addValidation("newpwd","req","Please

provide your new password");

//]]>

</script >

</div>

<!--

Form Code End

-->

</body>

</html>

A.22 changed-pwd.html

<!DOCTYPE html>

<html>

107

<head>

<link rel="stylesheet"

href="../ bootstrap -master/dist/css/bootstrap.min.css">

<script

src="../ scripts/jquery -1.12.0. min.js"></script >

<script

src="../ bootstrap -master/dist/js/bootstrap.min.js"></script >

<title>Change password </title >

</head>

<body>

<div>

<div class = "page -header text -center">

<h1>Collaborate Pen Testing

Organizer
<small>You have successfully

changed your password!</small ></h1>

</div>

<div class = "text -center">

<a href ='../ index.html ' class="btn -primary

btn -lg btn -block">Home

<a href ='../ login/login.php ' class="btn -primary

btn -lg btn -block">Login

</div>

</div>

</div>

</body>

</html>

108

Appendix B

Screen shots

B.1 Home page

Figure B.1: Home page.

109

B.2 Register page

Figure B.2: Register page.

B.3 Login page

Figure B.3: Login page.

110

B.4 Pro�le page

Figure B.4: Pro�le page.

B.5 Change password page

Figure B.5: Change password page.

111

B.6 Jobs page

Figure B.6: Jobs page.

B.7 Plan page

Figure B.7: Plan page.

112

B.8 Using capture.py

Figure B.8: A simple example of capture.py script.

113

B.9 Output of capture.py

Figure B.9: Output of capture.py script.

114

	Introduction
	Problem Description
	Aims
	Objectives

	Literature Survey
	Introduction
	Penetration Testing Procedure
	Definition
	Phases of penetration testing procedure
	Manual and automated penetration testing
	Standardized procedure or not?

	Penetration Testing Auditability
	Sources of auditability data
	Current methods
	Problems

	Existing Work
	Command line capturing tools
	Auditability data management tools
	Manual notes
	Collaborative tools

	Conclusion

	Requirements
	Introduction
	Methods of gathering requirements
	Gathering and analysis of requirements
	Functional Requirements
	Action Recording
	Planning
	Data Sharing / Storage
	Chatting
	Collaborative Documenting

	Non Functional Requirements

	Design
	Introduction
	Framework
	Action Recording
	Planning
	Data Sharing / Storage
	Chatting
	Collaborative Documenting

	Prototype
	System Architecture

	Implementation
	Introduction
	Server
	XAMPP
	Back-end
	Middleware
	Front-end

	Pen tester's machine
	Action Recording
	Chatting
	Collaborative Documenting

	Testing and Results
	Introduction
	Testing Methods
	Results
	Questionnaire
	Script capture.py

	Analysis

	Conclusion and Further work
	Introduction
	Overview of the project
	Answering the research questions
	Contribution
	Further Work

	Code
	capture.py
	Home page
	register.php
	thank-you-regd.html
	Plan page
	addtask.php
	color.php
	deletefile.php
	deletetask.php
	upload.php
	logout.php
	login.php
	login-home.php
	Jobs page
	moveArchived.php
	deleteFolder.php
	addcurent.php
	fg_membersite.php
	formvalidator.php
	membersite_config.php
	change-pwd.php
	changed-pwd.html

	Screen shots
	Home page
	Register page
	Login page
	Profile page
	Change password page
	Jobs page
	Plan page
	Using capture.py
	Output of capture.py

