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Abstract

SCTP is a message oriented, connection based protocol with flexible
ordering options. This research aims to determine when this proto-
col would be useful as a transport protocol for VPN traffic. Specifi-
cally, the throughput of SCTP, UDP and TCP while encapsulating
IP packets is compared. SCTP is shown to clearly have the potential
to out perform TCP. Also, due to its connection oriented nature,
it may be preferable to UDP in some circumstances. However im-
plementation issues on various platforms limit the practicality of its
use.
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1 Introduction

A Virtual Private Network (VPN) allows two endpoints to communicate se-
curely over an untrusted connection. Conceptually a VPN can be viewed as a
tunnel through an untrusted network, through which various traffic can pass.
This is typically implemented by encapsulating and encrypting traffic as it en-
ters the tunnel, then decapsulating and decrypting the traffic as it exits. An
advantage of this method is that the tunnel can support various types of traffic.
Also, the source and destination of the traffic need not know that the tunnel
exits. Some of the challenges of implementing a VPN are how best to encapsu-
late this wide variety of data and how to transport it over the network. While
the application of encryption is also an important topic, it is not the focus of
this research. Various techniques have been used to implement tunnels. The
open source VPN solution, OpenVPN, can use either TCP or UDP to transport
traffic[4]. With IPSec the Encapsulating Security Payload (ESP) protocol is
used[7]. Cisco developed its own protocol for encapsulation, Generic Routing
Encapsulation (GRE)[2], which is also used by the Point-to-Point Tunneling
Protocol (PPTP)[5]. This research will investigate the possibility of using the
Stream Control Transmission Protocol (SCTP) and compare it to TCP and
UDP. As a transport protocol SCTP is similar to TCP in that it is a connec-
tion oriented protocol that provides reliable delivery[9]. This is important as a
connection-less protocol like UDP, may have issues with stateful firewalls not
being able to track the connection[10]. Unlike TCP, SCTP is message based[9],
meaning that the transport protocol will maintain message boundaries. When
encapsulating IP traffic, this will result in only entire packets being delivered
to next higher layer. With a stream based protocol such as TCP, the applica-
tion must implement a method of identifying the boundaries of packets. Where
TCP provides ordered delivery and UDP does not, SCTP provides options for
more flexible ordering. This is important in mitigating the Head-of-Line block-
ing problem that can occur with ordered delivery[11]. The issue occurs when
a message is lost and all the messages ordered after it must not be delivered
until the lost message is recovered. SCTP allows each message to be assigned
to a stream, with each stream being independently ordered[14]. This could be
used to prevent unrelated traffic passing through a tunnel from blocking each
other. SCTP also allows for the selective disabling of the ordering requirement
for individual messages[9]. For these reasons the possibility of using SCTP to
transport VPN traffic is being investigated.

2 Research Question

This research will determine under what circumstances, if any, is SCTP a
suitable choice of a transport protocol for VPN traffic. This research will specif-
ically focus on how SCTP performance compares to TCP and UDP, how the
SCTP ordering options affect performance and the practicality of implementing
a tunnel using SCTP.



3 Related Work

Other research has considered the use of SCTP as a transport protocol for
VPN traffic. However, that research has focused on the use of the multi-homing
feature of SCTP to create a multi-homed VPN[17]. This research does not in-
volve multi-homing and instead focuses on the selective ordering option of SCTP
and how it affects performance. There has also been research done into the se-
cure transporting of SCTP traffic[12]. This research differs in that it is concerned
with the performance of transporting other IP protocols over SCTP not the en-
capsulation of SCTP trafficc. The ARPA 2 Project has several open projects
involving the use of SCTP as a transport protocol[l]. However these projects
involve the mapping of specific higher layer protocols into SCTP. Whereas, this
research is about the encapsulation of arbitrary IP traffic and the simultaneous
encapsulation of multiple connections.

4 Method

A tunneling application was written that was capable of setting up a tunnel
between two endpoints using TCP, UDP or SCTP. The application was also ca-
pable of enabling or disabling ordering on the SCTP tunnel. FreeBSD 10.2 was
chosen as the operating system for each endpoint due to its long standing sup-
port for SCTP[13]. Encapsulation was performed by taking IP packets received
on a tunnel adapter and encapsulating them as the payload of the selected pro-
tocol. The application was written to be as simple as possible, using the default
options for each protocol with the exception of SCTP ordering. It also was de-
signed to minimize the differences in how each protocol was handled. However,
due to TCP being a stream based protocol, the application had to implement
a means of identifying message boundaries. This was done by prepending two
bytes to each message containing the total size of the message. The application
was tested in a lab environment to ensure that it operated correctly before being
used to gather data.

In order to test SCTP performance in a variety of situations, six virtual
machines were setup to act as tunnel endpoints. Each virtual machine was
setup in a disparate location and paired with another. Resulting in three tunnels
each with substantially different lengths, both in the physical and network sense
(Table 1).

Locations Distance | Hops | Round Trip Time
Amsterdam to Frankfurt 360 km 7 7.36 ms
London to New York 5500 km 8 71.5 ms
San Francisco to Singapore | 13,600 km 10 196 ms

Table 1: Endpoint Pairs

Four tunnels were setup between each pair to encapsulate traffic. TCP and
UDP, were used on two of the tunnels. The other two tunnels used SCTP, one
with ordering enabled the other without. The iperf utility was used to send
traffic through the tunnels, one tunnel at a time, and measure the throughput.
Given that TCP is used for the vast majority of network traffic[8][3], it was used
for the traffic going through the tunnel. Ten simultaneous streams were used



for thirty seconds at a time. Each tunnel was tested five times in each direction.
Throughput measurements were taken on the receiving end.

5 Experiments

Table 2 shows the measurements taken for for each trial of each protocol at
every pair. The averages for each tunnel are also shown. The first five trials
show traffic moving in the same direction as the endpoints are listed. Trials
six through ten are in the reverse direction. Throughput measurements were
always taken at the receiving end.

Tunnel Amsterdam to Frankfurt London to New York San Francisco to Singapore
Protocol | TCP | UDP (oﬁg:e.:Zd) (unﬁ?d-l;:r,ed) TCP | UDP (oﬁg:e.:Zd) (unﬁ?d.lzr,ed) TCP | UDP (o?:?:r:d) (umsuﬁlt:ed)
Trial 1 60.9 116 148 147 6.1 254 30.5 28.8 2.03 u 3.57 4.75
Trial 2 60.5 132 134 136] 6.07| 34.1 45.7 322 1.951 11.4 3.93 10.4
Trial 3 61.2 124 131 134] 6.11| 29.1 26.7 49.5 224 111 6.72 10.6
Trial 4 60.9 123 128 126| 6.27| 30.3 419 353 2271 114 6.49 4.82
Trial 5 60.8 123 130 129] 6.11| 19.1 42 28.3 2.26| 115 8.37 10.8
Trial 6 60.7 140 143 150 6.19| 457 31 39.3] 0.669 6.31 0.596 0.773
Trial 7 61.8 126 138 136| 6.15| 38.2 21.2 14.4] 0.688| 5.86 0.704 0.648
Trial 8 61.2 139 130 132 6.2| 545 19.2 219 156 7.73 1.03 1.26
Trial 9 55.8 136 125 132 6.17| 574 18.1 12.8 1.23 9.8 13 142
Trial 10 56.1) 132 132 124] 6.26| 484 13.2 14.9 156 145 119 141
Average 59.99| 129.1 133.9 134.6| 6.163| 38.22 28.95 27.74| 1.6457| 10.06 3.39 4.6881

Table 2: Measured Performance Data (Mb/s)

Figure 1 shows the average throughput of each protocol between each pair of
endpoints. As expected each protocol performed better the shorter the tunnel.
It can be seen that UDP is the best performer or performs close to the best
performer within any pair of endpoints. TCP is consistently the worse performer
between any pair. The performance between SCTP ordered and unordered is
close on all pairs.
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Figure 1: Average throughput measured on each tunnel.



To better visualize the relative performance within each pair of endpoints,
Figure 2 shows the performance of each protocol relative to how UDP performed
between the same endpoints.
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Figure 2: Throughput relative to UDP on the same pair.

6 Analysis

Two areas seem to be significant in evaluating the current potential of SCTP
to be used for the encapsulation of data. The performance data gathered is
clearly important when evaluating the protocol. However, a number of issues
where encountered while implementing the SCTP tunnels which are also rele-
vant.

6.1 Performance

Before comparing SCTP to TCP and UDP it is interesting to consider or-
dered versus unordered delivery within SCTP. Figure 2 shows that unordered
delivery does not seem to have any significant advantage except between the
pair of endpoints with the greatest delay. This would suggest that performing
selective ordering on a per message basis may not yield a noticeable advan-
tage given the increased over head inspecting each packet would cause. In fact
the overhead of doing such classification in real time would more likely cause
a degradation in performance. When comparing the three protocols, UDP is
clearly the best performer in two out of three cases, outperforming the next best
protocol by 32% in one case and 114% in the other. Even in the one case where
it was not the best performer it was only outperformed by 4%. TCP is clearly
the worse performer in all cases, with every other protocol having at least twice
the throughput. This could be due to the TCP over TCP problem[16], where
the reliability mechanism of the transport protocol interferes with mechanism
on the traffic being encapsulated. These tests used TCP traffic passing through



the tunnels as it is by far the most commonly used protocol [8, 3]. In an environ-
ment with an unusual traffic pattern, such that TCP is not the majority, these
results could differ. The relative performance of SCTP seems to be related to
the delay between the two endpoints. Its performance relative to UDP is best
between the shortest link and the worst over the longest link. This holds true
weather or not ordered deliver was disabled.

6.2 Implementing

A number of issued were encountered while attempting to implement SCTP
tunnels. Initial testing was done using Ubuntu Linux 14.04 endpoints. SCTP
showed a substantially lower performance compared to TCP and UDP. This oc-
curred even when not encapsulating other traffic. Similar results were achieved
using multiple Linux distributions. After further investigation it was discovered
that the Linux implementation of SCTP has severe performance issues in some
circumstances. This was documented in research performed by Asim Igbal while
at CERNI[6]. As the goal of this research was to determine the true potential of
SCTP, a different implementation was used to conduct further testing. FreeBSD
which uses the reference implementation of SCTP[13], was chosen for testing.
However the FreeBSD implementation was not without its own issues. Through-
out the conducted research an SCTP connection was unable to be established
when using IPv4. Also, driver options had to be applied to the network interface
in order to establish a IPv6 SCTP connection. This was of course dependent
on the driver in use, but with the commonly used virtio network device driver,
IPv6 checksum offloading and segmentation offloading needed to be disabled.
Tests showed that this did not hamper the performance of the other protocols.

7 Conclusions

While UDP clearly has the best consistent performance across all the end-
point pairs that does not mean that a case cannot be made for the use of SCTP.
There are currently cases where TCP is chosen over UDP. In the book Mastering
OpenVPN it is suggested to use UDP if it works and if it does not then to use
TCP[4]. Since UDP is a connection-less protocol, tunnels using UDP can have
issues transversing stateful firewalls. While OpenVPN provides options to mit-
igate these issues[10], there are occasions where a connection oriented protocol
must be used. This is where SCTP might be the best option. As it is connection
oriented and outperforms TCP, at least when carry TCP data, it may be the
best choice when UDP does not work. However, given the issues encountered
during this research it should be expected that there will be some situations
where SCTP will just not work as well. For instance if a stateful firewall is
not SCTP aware, a SCTP tunnel may fair no better then a UDP tunnel. Also
care needs to be taken what platform is used for the tunnel endpoints as not all
implementations of SCTP perform equally.

8 Future Work

Given the implementation issues discovered during this research, one area of
future work could be a comparison of SCTP support and performance in various



platforms. This could include network devices such as firewalls as well computer
operating systems. This research focused on a one to one tunnel, but a VPN
can also be implemented in a one to many fashion. In that scenario, one end
point would be a server or network device that many clients would connect to.
The clients could often be using a mobile device so it may also be worth while
to survey support in Android and iOS. Also, there are several RFC’s proposing
extensions to the SCTP protocol, such as the partial reliability extension[15].
Some of these extension may provide a performance benefit when encapsulating
data. This could be researched along with the current state of support for the
extension.



9 Appendix

Source code of tunnel application, written in C for FreeBSD.

#include <sys/stat.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <stdio.h>
#include <stdlib .h>
#include <string.h>
#include <strings.h>
#include <unistd .h>
#include <fcntl.h>
#include <poll.h>
#include <arpa/inet.h>
#include <netinet/sctp.h>

#define MAX MSGSIZE 16384
#define MAXDATASIZE 16386

// Display Error Message and Exit
void die (char xmsg) {

perror (msg);

exit (—1);

}

// Opens the Tunnel Device Specified by Command Line
int get_tun(char xdev_name) {

char dev_path[16] = 7 /dev/”;

int tun;

strncat (dev_path , dev_name, 8);

printf(”Opening_Tunnel ... . ”);

if ((tun = open(dev_path ,ORDWR)) = —1)
die (” Tunnel _Open_Error”);

printf(”Done.(%s).\n”, fdevname (tun));

return tun;

}

// Opens a network socket of the specified protocol
// U: UDP
// T: TCP
// S: SCTP (ordered)
// X: SCTP (unordered)
int get_socket (char proto) {
int sckt;
struct sctp_sndrcvinfo sctp_defaults;



bzero(&sctp_defaults , sizeof(sctp_defaults));

switch(proto) {

case ‘U’ :
sckt = socket (AFINET6, SOCKDGRAM, 0);
break;

case T’ :
sckt = socket (AF_INET6, SOCKSTREAM, 0);
break;

case X’
sctp-defaults.sinfo_flags = SCTP-UNORDERED;

case 'S’ :
sckt = socket (AF.INET6, SOCKSTREAM, IPPROTO.SCTP);
setsockopt (sckt , IPPROTOSCTP, SCTPDEFAULT_SEND PARAM,

&sctp_defaults , sizeof(sctp_defaults));
break;

case 'Q’ :
sckt = socket (AF.INET6, SOCKSEQPACKET, IPPROTOSCTP);
break;

default
die (”Invalid .Socket _Type” );

}

if (sckt < 1) die(”Socket_Error”);

return sckt;

}

// Binds Network Socket to Local Address and Port
void bind_socket (int sckt, comst char xlocal_ip ,
const char xlocal_port) {
struct sockaddr_in6 local_address;

bzero(&local_address ,sizeof(local_address));
local_address.sin6_family = AF_INETG;

local_address.sin6_port = htons(atoi(local_port));
if (inet_pton (AFINET6, local_ip ,
local_address.sin6_addr.s6_addr) != 1)
if (inet_pton (AF.INET, local_ip ,
local_address.sin6_addr.s6_addr) != 1)

die (" Invalid _.Address.(Local)”);

if (bind(sckt, (struct sockaddr *) &local_address,
sizeof(local_address)) = —1)
die (”Bind_.Error”);

}

// Sets the network Socket to Listen For connections
void listen_socket (int sckt) {
if (listen (sckt,l) < 0)



die (” Socket_Listen_Error”);

}

// Accepts an incoming connection request
// spawns new socket
int accept_connection(int sckt) {

int new_sckt;

new_sckt = accept (sckt ,NULL,NULL);
if (new_sckt < 0)

die (” Socket _Accept_Error”);
close (sckt);

return new_sckt ;

}

// Sets up connection with remote IP Address and port
void connect_socket (int sckt, const char sremote_ip,
const char xremote_port) {
struct sockaddr_in6 remote_address;

bzero(&remote_address ,sizeof(remote_address));
remote_address.sin6_family = AF_INET6;

remote_address.sin6_port = htons(atoi(remote_port));
if (inet_pton (AFINET6, remote_ip,
remote_address.sin6_addr.s6_addr) != 1)
if (inet_pton (AF.INET, remote.ip,
remote_address.sin6_addr.s6_addr) != 1)

die (" Invalid ~Address.(Remote)” );

if (connect(sckt, (struct sockaddr %) &remote_address,
sizeof(remote_address)) = —1)
die (” Unable_To_Connect” );

}

// Transfers message oriented data

// between socket and tunnel device

void transfer_data (int sckt, int tun) {
struct pollfd pfds[2];
unsigned char buffer [MAX MSG.SIZE|;
int msg_len;

].fd = sckt;

]. events = POLLIN;
].fd = tun;

]. events = POLLIN;
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if (pfds[0].revents = POLLIN) {
msg_len = recv (sckt, buffer, MAXMSGSIZE, 0);
if (msg_len < 1)
die (” Socket .Recv_Error”);
if (write(tun, buffer, msg_len) < msg_len )
die (” Tunnel _Write_Error” );

if (pfds[1].revents = POLLIN) {
msg_len = read (tun, buffer, MAXMSGSIZE);
if (msg.len < 1)
die (” Tunnel_Read _Error” );
if (send(sckt, buffer, msg_len, 0) < msg_len)
die (” Socket .Write_Error”);
}

}
}

// Transfers stream oriented data

// between tunnel device and socket

void transfer_stream (int sckt, int tun) {
struct pollfd pfds[2];

unsigned char sckt2tun [MAX DATA SIZE*2];

unsigned char xdata_ptr = sckt2tun;
int data_len = 0;
int recv_status, recv_len = 0;

unsigned char tun2sckt [MAX DATA SIZE*2];
unsigned char smsg_ptr = tun2sckt+2;
int msg_len;

pfds [0].fd = sckt;

pfds [0]. events = POLLIN;
pfds[1].fd = tun;
pfds[1].events = POLLIN;
while (1) {

poll(pfds, 2, —1);

if (pfds[0].revents = POLLIN) {
// START RECEIVE STREAM

// Receive Beginning of Next Packet
if (recv_len = 0 && data_len = 0) {
if ((recv_.len = recv(sckt, sckt2tun,
MAX DATASIZE, 0)) < 1)
die (" Socket _Recv_Error”);
if (recv_.len < 2)
recv_len += recv(sckt, data_ptr+recv_len, 1, 0);
data_len = data_ptr[0] + (data_ptr[l] << 8);
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} else if (data_len > recv_.len) {
if ((recv_status = recv(sckt, data_ptr+recv_len
data_len—recv_len, 0)) < 1)
die (" Socket _Recv_Error”);
recv_len 4= recv_status;

}

// Process leading packets
while (recv_len > data_len) {
if (write(tun, data_ptr+2, data_len—2) < 1)
die (” Tunnel _Write_Error” );
data_ptr += data_len;
recv_len —= data_len;
if (recv_.len < 2)
recv_len 4= recv(sckt, data_ptr+recv_len, 1, 0);
data_len = data_ptr[0] + (data_ptr[l] << 8);

}

// Process Final Packet
if (recv_len = data_len) {
if (write(tun, data_ptr+2, data_len—2) < 1)
die (” Tunnel _Write_Error” );
recv_len = 0;
data_len = 0;
data_ptr = sckt2tun;

// END RECEIVE STREAM
}
if (pfds[1].revents = POLLIN) {
if ((msg_len = read(tun, msg_ptr, MAXMSGSIZE)) < 1)
die (” Tunnel _Read _Error”);
msg_len 4= 2;
tun2sckt [0] = msg_len & 0xff;
tun2sckt [1] = msg_len >> 8;
if (send(sckt, tun2sckt, msg_len, 0) < msg_len)
die (” Socket .Write_Error” );
}
}
}

int main(int argc, char xargv[]) {
int sckt, tun;
char xlocal_ip, xlocal_port , xremote_ip;
char xremote_port, xdev, role, proto;

if (arge != 8 )
die (”Wrong_Number._of _Arguments” );

local_ip = argv([l];
local_port = argv][2];
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remote_ip = argv|[3];

remote_port = argv[4];

dev = argv|[5b]; // Tunnel Device Name

role = xargv [6]; // Act as Client or Server
proto = xargv [7]; // Protocol to use for tunnel

setvbuf (stdout, NULL, IONBF, 0);

tun = get_tun (dev);
sckt = get_socket (proto);

if ( proto = ’U’) role = 'U’;

switch(role) {
case ’'U’
bind_socket (sckt ,local_ip ,local_port);
connect_socket (sckt ,remote_ip ,remote_port );
break;
case 'S’ :
bind_socket (sckt ,local_ip ,local_port);
listen_socket (sckt);
sckt = accept_connection (sckt);
break;
case 'C’
connect_socket (sckt ,remote_ip ,remote_port );
break;
default
die (”Unknown_Role” );
}

printf(” Connection_Established .(%c)\n”, proto);

switch (proto) {
case ’'U’
case 'S’
case X’
transfer_data (sckt ,tun);
break;
case T’
transfer_stream (sckt ,tun);
break;
default
die(”Invalid .Protocol _Type” );
}

close (sckt); close(tun);

return 0;

}
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