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Abstract

The Recursive InterNetwork Architecture (RINA) is a new Internet architecture that tries to solve
many of the current Internet’s problems. In this report, the IRATI implementation has been assessed
on the topic of multihoming. Currently, it is not fully possible to use the multihoming capabilities
of this RINA implementation, because the mapping between applications and DIFs is still static.
However, there is active development in this field and in the upcoming two years, projects will
research and further develop the multihoming and mobility capabilities.
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Chapter 1

Introduction

The Internet is based on the architecture of the ARPANET, which has evolved into a network archi-
tecture based on the TCP/IP stack. Throughout the years, quite some limitations were discovered
in the current Internet architecture and implementation. One of the problems is that networks do
not have a notion of node and/or application names. Therefore, applications need to have a combi-
nation of the interface address and the (transport layer) port number to identify different nodes and
their services in a network. Every time a host’s location changes its point-of-attachment, the logical
location changes from a network point-of-view. This results in further complicating multihoming,
mobility, and security.
Multihoming is the practise of connecting a host or a computer network to more than one network
[60]. Typically, a host is connected to just one network. However, in many circumstances, it could
be very useful to connect a host to multiple networks, e.g. for redundancy. Mobility is the practise
of changing a single unit’s point of attachment to the Internet and therefore its reachability in the
Internet topology [14]. Multihoming and mobility are therefore closely related, but with multihoming
you do not necessarily change the point-of-attachment as many times as one might with mobility.
Because the interfaces in the Internet are named and not the node and/or application, multihoming
and mobility are very hard to achieve. Applications cannot handle multihoming very well out-of-the-
box and therefore, special protocols and point solutions are necessary. The Recursive InterNetwork
Architecture (RINA) is an effort of redesigning the Internet to solve multiple current Internet prob-
lems, including the multihoming problem. RINA is a specific architecture, implementation, testing
platform, and ultimately, deployment of the theory, namely the Inter-Process Communication (IPC)
model [9]. Furthermore, the IPC model also deals with concepts that are generic for distributed
applications and therefore it is not only limited to networking.
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1.1 Research Question

The research is formed around the main research question:
How does RINA solve the multihoming problem?

As a result of the main research question, the following sub research questions are created:

• What are the problems with multihoming and mobility in the current Internet?

• What kind of solutions are proposed to solve the multihoming/mobility problem in the current
Internet?

• To what extend is multihoming/mobility implemented in the IRATI implementation?

1.2 Related Work

The principles behind RINA were first described in the book Patterns in Network Architecture: A
return to Fundamentals by John Day [9]. Day takes the lessons learned of the almost forty years of
TCP/IP experience, the lessons of OSI’s failures, and other network technologies. John Day, et al.
presented their ideas also during the CoNEXT conference in 2008 [13].
A paper by Grasa, et al. describes the design principles of the Recursive InterNetwork Architecture
(RINA) [25]. Furthermore, the document describes the fundamental limitations of the current
Internet and the path to the future Internet.
One of the implementations of the Recursive InterNetwork Architecture is IRATI Project [58].
Since 2014, they have been developing a prototype implementation of the Recursive InterNetwork
Architecture. The IRATI implementation has a rich set of features for experimental testing of
RINA.
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Chapter 2

The Multihoming Problem

When the Sputnik 1 was launched by the Soviet Union in 1957, it lead to the creation of the
Advanced Research Projects Agency (ARPA) in 1958. ARPA was later renamed into Defence ARPA
(DARPA) [38]. (D)ARPA made plans for creating the first wide-area packet switching network, the
ARPANET. The ARPANET is basically the basis for the current Internet. The almost fifty years
of Internet evolution has led to several interesting challenges, problems, and solutions.

2.1 A bit of Internet History

In 1972, the researchers of ARPANET, NPL1, CYCLADES2, and other computer researchers de-
cided that it would be a good idea to form an International Network Working Group (INWG). This
lead to its major project, creating an international network transport protocol [41] so all the differ-
ent networks running their own protocols could be interconnected to each other. In 1976 the INWG
voted on an international transport protocol and the selected option had an architecture composed
of three layers. A Data Link layer to handle different types of physical media, a Network Layer
to handle different kind of networks, and an Internetwork Layer to handle a network of networks3.
Each of these layers had their own address space. These layers are depicted in Figure 2.1a. When
TCP/IP was introduced, it ran at the Internetwork Layer on top of the Network Control Program
(NCP) and other network technologies. On the 1st of January 1983, also known as flag day, the
ARPANET migrated into a full TCP/IP network, permanently activating TCP/IP and switching
off NCP. This resulted in the disappearance of the Internetwork Transport Layer, as shown in Figure
2.1b.
Initially, early TCP versions performed error and flow control4 and relaying and multiplexing func-
tions in the same protocol. In 1978, Cerf, Postel, and Dany Cohen at ISI decided to split TCP
into two separate functions of TCP and the Internet Protocol [53] [28]. This resulted in TCP being
in charge of the creation of TCP segments and reassembling them at the destination side and IP
is responsible for transmitting individual segments. Splitting the layers would not have been a
problem if the two layers were independent and if the two layers did not contain repeated functions.
However, these layers are dependent on each other and contain repeated functions. The Internet

1 National Physical Laboratory Network, a British research network created in the 1970s
2 A French research network created in the 1970s
3 A network of networks is the concept of connecting separate networks to each other, creating one big network
4 These functions are still in today’s version of TCP

6



Transport Layer

Internetwork Transport Layer

Network Layer

Data Link Layer

(a) The Internet layers before getting rid of NCP

Transport Layer

Network Layer

Data Link Layer

(b) The Internet layers after getting rid of NCP

Figure 2.1: The different Internet layers

Protocol needs to be aware of what the Transmission Control Protocol is doing. Unfortunately, it
was not understood as a symptom that TCP and IP were interdependent and therefore splitting it
into two layers of the same scope was not a good idea [36].
When Tinker Air Force Base joined the ARPANET in 1972, they wanted connections to two IMPs
for redundancy. In theory that would have been a good idea. However, in the architecture of the
ARPANET and Internet, that would not be possible [9]. The routing algorithm is not able to know
that there are two physical wires going to the same place. Back in the day, and still to this day
IP[v6] addresses of all types are assigned to interfaces, not nodes [29].

Because nodes in a network are identified by the name of an interface, it becomes hard to make
advantage of other connections that a multihomed node has. When applications were to have
their own address space, this problem could have been solved. In 1982, Jerry Saltzer published a
paper on the naming and binding of network destinations [52]. His view on how naming should
be used in networking is shown on the right side of Figure 2.2. In this scheme the node itself and
the applications running at that node also have their own address for identification. This view on
networking is not the reality in the current Internet, since there are no dedicated names or addresses
for a node itself and the application(s) running on the node. The left side of Figure 2.2 shows the
current situation in the Internet.
As mentioned before, prior to 1983, the ARPANET was running NCP. When TCP/IP was in-
troduced, it ran on top of NCP. During that time, IP was an Internetwork Layer-protocol, while
NCP was a Network Layer-protocol. When NCP was shut down in 1983 and replaced by TCP/IP,
TCP/IP took over the network role and the internetwork layer was lost [11], as shown in Figure
2.1b. IP did not become a true Internetwork Protocol, but just a network protocol. The lack of
having this internetwork transport layer, further complicates the multihoming and mobility prob-
lem. When NCP and TCP/IP were still running together, the IP address was not even the identifier
for a host, it simply identifies the point-of-attachment of a host. The host itself was not addressed.
That would be the proper role of an "Internetwork" layer [18].
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Figure 2.2: Saltzer’s Naming Model (From: [10])

"As a result, the Internet ceased to be an Internet and became basically a concate-
nation of IP networks with an end-to-end transport layer on top of it."

(From: J. Day [11])

Instead of having multiple networks that were exchanging traffic, basically one big network was cre-
ated (the Internet) that is interconnected. A big consequence of this decision is the fact that today’s
routing system is very complex, since both inter-domain and intra-domain routing is happening at
the network layer [43].

2.2 Definition of Multihoming

Multihoming is the practise of connecting a host or a computer network to more than one network.
This can be done in order to create reliability or improve performance, or to reduce cost [60] [26].
In a typical situation, a host is connected to simply one network. In some cases, it might be very
useful to connect a host to multiple networks. This is called Host Multihoming. Improving the
performance can be achieved by traffic engineering, it might be more efficient to route through
another network. One can decrease the cost by choosing cheaper routes - it is possibly cost effective
to route through another network [60]. An example of such a network topology is depicted in Figure
2.3. As shown in Figure 2.3b, when one of the interfaces fails it should rely on the other connected
link. Without extra mechanisms to point traffic to the right direction, this is impossible. When
an interface’s point-of-attachment changes, there is a chance that the address changes, and there
is a chance that the network prefix changes as well. This causes the network path to the node to
change. Running sessions will break when the IP address changes, since it is established using the
original IP address. From an Internet point-of-view, the address of the other interface could be
located somewhere on the other side of the world. Another way of multihoming is multihoming
per network, called Site Multihoming [56] [57], where a network is connected to multiple providers,
while using its own range of addresses. This is later described in more detail.
As mentioned in the introduction of this report, mobility is closely related to multihoming. Mobility
is the practise of changing a single unit’s point of attachment to the Internet and therefore its
reachability in the Internet topology, while keeping its communication context active [14] [26]. Tania
Tronco states in her book that mobility is in a way very fast multihoming [56]. In case of mobility, the
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(a) Both links are up-and-running (b) One of the links has broken down

Figure 2.3: Host Multihoming Example

device which is moving around does not necessarily need to be connected to multiple networks at the
same time, but moves around and will be connected to networks other than its own home network.
In today’s Internet one would need extra protocols to make this work, e.g. LISP (Locator/Identifier
Separation Protocol) [15], Mobile IPv4 [46], and Mobile IPv6 [47]. The current Internet solutions
for multihoming will be further described in the next section.

2.3 Current solutions to the multihoming problem

The following subsections will describe the common solutions used today for doing multihoming.
This includes multihoming in IPv4 networks, IPv6-only networks, and other architectures for using
multihoming in a network, e.g. LISP.

2.3.1 Multihoming with IPv4

Classically, multihoming is done by connecting a network to multiple providers. Usually, this is
realised by using a Provider-Independent address space (PI address space) range. PI is a block of
IP addresses, which is assigned by a Regional Internet Registry (RIR) [51] to an organisation. An
owner of this kind of address space needs to have a contract with an ISP to obtain routing for this
block of addresses in order to make it accessible from the Internet. An advantage of having PI
address space is the ability to change service providers without having to renumber the network. In
order to perform multihoming, one needs to allocate a Provider-Independent address space prefix,
which is reannounced by some or all of a network’s peers. PI address space cannot be aggregated by
an ISP and therefore it needs to be announced globally as is. This way of multihoming could provide
fault-tolerance, improve the throughput, and reduce the network costs. However, the routing of the
network needs to be carefully engineered. Multihoming works reasonably well in the network core,
but that does not apply at the edge [6]. One of the biggest concerns with multihoming is the fact
that, even when it is restricted to the large networks of the core, it will cause uncontrolled growth
of the default-free routing table, because efficient route aggregation is generally not possible.
Multihoming is generally impossible to implement when using a single Provider-Aggregatable ad-
dress space (PA address space) prefix. PA addresses are assigned by a single ISP. The route or
routes covering those PA addresses is announced or propagated by one or more additional transit
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providers5 [1] [30]. The transit provider, which assigned the PA addresses, originates a set of routes
which cover the site route set. The primary transit provider often originates or propagates the site
route set as well as the covering aggregates. For more information, one can refer to RFC 4116 [1].
Since announcing the same PA prefix to multiple ISPs is not always possible, one solution would
be to announce multiple PA prefixes, one per provider [6]. Using this approach, every host needs
to have multiple addresses assigned, one per provider. However, having multiple addresses would
require extra mechanisms for choosing a suitable source and destination address for each packet,
and to properly route each outgoing packet to its destination [6].
If a network is connected to two different providers, a packet with a source address in the address
range allocated to provider A, will usually not be accepted by provider B [16]. Provider B will
treat this packet as a packet with a spoofed source address and will discard it [16]. Additionally,
the prefix of provider A’s network will not be re-announced by provider B. Therefore, destinations
in provider A’s prefix will not be reachable over the link of provider B.
The decision-making for choosing the source and destination addresses is typically done by the
application layer. Once a connection has been established, it is no longer possible to change the
source and destination address without breaking the (e.g.) TCP session. When one of the links
of a multihomed host fails, the node will no longer be reachable on that particular address and is
only available via the other interface with another address. This causes the node to be unreachable,
since other nodes have been interacting with the node on the original chosen address. This makes
the extra interface/address useless in the sense of redundancy. Another approach would be to use a
transport protocol, which is capable of handling multiple addresses. One such protocol is Multipath
TCP (MPTCP) [4]. MPTCP is an extension of TCP which is able to multiplex a single application
layer flow over multiple Network Layer sub-flows, while trying to use as many distinct routes as
possible and either tries to carry it over the most efficient route or tries to perform load balancing [6].
Even though multihoming with multiple addresses has been implemented for IPv4, it is generally
not used. Host implementations are not able to handle the multiple address per interface that
well [61].

2.3.2 Multihoming with IPv6

In IPv6 it is possible to do both multihoming with and without multiple addresses. RIPE NCC,
Europe’s RIR, has a special allocated IPv6 Provider-Independent address space [40]. Multihoming
using PI address space works roughly the same as with IPv4, supporting traffic balancing across
multiple providers, and maintaining existing TCP and UDP sessions through cut-overs. Multihom-
ing with multiple addresses has been implemented for IPv6 [39]. For outgoing traffic, IPv6 needs to
rely on support on the host with protocols like MPTCP and SCTP [55] or IPv6-specific protocols
like SHIM6 [5].
Since IPv6 addresses are 96 bits longer than IPv4 addresses, there would be extra data that needs
to be stored inside the routing tables. Some people have been saying that with IPv4 alone the
increased size of the routing tables needed to handle multihoming will overwhelm current router
hardware [7]. Using IPv6 will only increase the size of the routing table, since the Internet is not
IPv6-only, but often dual-stack. Other people will argue that new hardware will be able to handle
the increasing size of the routing tables due to cheaper memory [8].
5 A ’transit provider’ operates a network that directly provides connectivity to the Internet to one or more external

sites. The connectivity provided extends beyond the transit provider’s own site and its own direct customer
networks. A transit provider’s site is directly connected to the sites for which it provides transit.
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Another solution for the multihoming problem6 is Mobile IP (there is Mobile IP and Mobile IPv6).
Mobile IP allows a mobile hosts to seamlessly move from its home domain to a foreign location
without losing connectivity. Mobile IP provides two basic mechanisms for respectively discovery
and registration. The discovery mechanism allows a node to detect its new point-of-attachment
and the registration mechanism allows a node to update its location to a foreign agent7, which will
report to the home agent the mobile node’s current location [45] [2].

2.3.3 Other solutions for the multihoming problem

Figure 2.4: Reachability Failure (From: [42])

Besides the implementations for multihoming
mentioned above, there are also other solu-
tions that try to mitigate the problems of mul-
tihoming in the Internet, e.g. the location
problems and the routing problems. One of
those solutions is the use of the Host Iden-
tity Protocol (HIP), therefore making this a
host-based solution. HIP tries to separates
the identifier and the locator of a node in
the network. HIP introduces a Host Iden-
tity (HI) name space based on a Public Key
Infrastructure [44]. When HIP is imple-
mented within a network, one will eliminate
the occurrences of IP addresses in applica-
tions and replace them with a (cryptographic)
host identifier. This results in decoupling the
Transport Layer from the Network Layer in
TCP/IP.

Another solution is to use the Locator/ID Sep-
aration Protocol (LISP). Unlike HIP, LISP is
a network-based solution. LISP is a map-and-
encapsulate protocol. LISP separates address
space in identifiers for source and destination hosts, and routing locators where border routers
act as routing locators for end systems. The way LISP does it is slightly different than with HIP.
In LISP only one number space is used, namely the IP addresses8 [15]. This can be both IPv4 and
IPv6. When using LISP, one does not have to announce the locator of the node, only the endpoint
identifier (EID). When using the map/encapsulating capabilities of LISP, it introduces the need
for path discovery. Because the identifier and locator are separated in LISP, it is getting harder to
determine if a particular destination locator is reachable. This general problem is also called the
Locator Path Liveness Problem. This problem can be stated as follows:

6 It focuses more on the mobility problem, than on the multihoming problem
7 It is possible that a foreign agent is not yet deployed. Then, each mobile node in a foreign network is assigned its

own co-located care-of-address
8 Although, also arbitrary elements can be used, e.g. MAC addresses
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Given a set of source locators and a set of destination locators, can bi-directional
connectivity be determined between <source locator,destination locator> address pairs?

(From: D. Meyer, et al. [42])

The RFC describes the following example to explain this problem. Suppose a small topology, as
shown in Figure 2.4.
In this scenario, Site 0 is multihomed to Provider A and Provider B. Site 0 has a PA locator from
Provider A (Locator A), and a PA locator from Provider B (Locator B). In this case, Site 0 might
’advertise’ that its EID prefixes can be reached through nodes Locator A and Locator B to its
correspondent sites.
Suppose that a correspondent site, Site 1, is connected to Provider C, and that Site 0 has told Site 1
that it can reach Site 0 on either Locator A or Locator B. Also suppose that Site 1 chooses Locator
A to reach Site 0, so that packets sourced from Site 1 destined for Site 0 traverse the path Site 1
→ C → B → A → Site 0. If connectivity between Provider B and Provider A is disrupted, Locator
A will not be reachable from Site 1. In this case, Site 1, must detect that Locator A is no longer
reachable and use Locator B to restore connectivity [42].
The Locator Path Liveness Problem is exhibited in host-based architectures like SHIM6 and HIP,
and in network-based architectures like LISP. This problem arises in subtly different ways, de-
pending on the contents of the mapping database, e.g. EIDs, Resource Locators (RLOCs), or a
combination of these two), and how knowledge is distributed between hosts and routing elements.
Research in the past has proved that path discovery does not scale and therefore, solutions like HIP
and LISP would not scale either [42].

As shown in this chapter, there are quite some problems with multihoming in the current Internet.
In the current Internet model, the interface address names both the node itself and the interface
(path) to that node. A lot of research has been performed on solving the multihoming problem,
without actually solving the underlying problem. Most of the work performed is trying to create
workarounds and it is debatable if these solutions will actually work and scale. These workarounds
introduce more complexity, decrease efficiency, and make implementation and maintenance more
difficult. Mainly, all the different ways of doing multihoming do not actually achieve the main
advantage of having multihoming, namely resilience. It turns out to be very hard to make use of
one’s backup connection(s). In the next chapter, the Recursive InterNetwork Architecture will be
introduced as one of the possible solutions to many Internet problems, including the multihoming
problem.
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Chapter 3

The Recursive InterNetwork
Architecture

As mentioned in the introduction of this report, the Recursive InterNetwork Architecture (RINA) is
trying to work out the general principle in computer networking that applies to everything. RINA is
a programmable networking approach, based on the Inter-Process Communication (IPC) paradigm,
which will support high scalability, multihoming, built-in security, seamless access to real-time in-
formation, and operation in dynamic environments [50].
In the current Internet we became all familiar with the principle of layering of the OSI model and
the TCP/IP layered architecture. In these models, a layer is providing a service to the layer above
it. An example would be the transport layer, which provides a virtual end-to-end channel to the
application layer.
Since RINA is a very complicated, though interesting subject, it is not possible to describe the entire
workings of RINA in one single paper. This chapter will give a short introduction to RINA. If one
is interested in this subject, one can refer to John Day’s book Patterns in Network Architecture [9],
articles provided by the Pouzin Society [48], and e.g. the paper Networking is IPC: A guiding
principle to a better Internet by John Day, Ibrahim Matta, and Karim Mattar [13].

3.1 Background Information

"Networking provides the means by which processes on separate computer systems
communicate, generalising the model of local inter-process communications."

(From IRATI [23])

In RINA, the principle behind this new architecture is that networking is IPC and nothing else [13].
This basically unifies networking and distributed computing, since the network is a distributed
application that provides IPC [24]. Another principle is that layers are recursive. The same protocol
can be used repeatedly in a protocol stack, encapsulating each layer in another instance of itself.
This implies that there is no need for special protocols per each layer and there is no fixed number
of layers in the stack, like we have in TCP/IP [18]. In the current Internet, one is bound to the
specific layer protocols, e.g. TCP or UDP for the transport layer. In RINA, there are basically
only two protocols, an application protocol and a data transport protocol, respectively the Common
Distributed Application Protocol (CDAP) and the Error and Flow Control Protocol (EFCP). The
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Figure 3.1: The IPC model (From [12])

CDAP protocol allows application processes to exchange structured data between each other9. The
EFCP protocol provides the IPC connection and flows associated with each allocation request,
providing the transfer of data between nodes [9]. Basically, one can have as many layers as needed.
In the current Internet architecture one is limited to the fixed layering of TCP/IP. A Computer
Science representation of the IPC principle is displayed in Figure 3.1. The two middle nodes could
be compared to today’s routers and the nodes at the left and right could be compared to today’s
servers. In this particular case there are two, so called, Distributed IPC Facilities (DIFs) and on
top of the highest-level DIF the user applications are located. The grey bars on the bottom side of
the diagram represent the physical (or virtual) connection between the different nodes.
In general, protocols are not bound to specific layers. One can use one or two protocols in one single
layer. The implementation of such a scheme is simpler to implement than the TCP/IP stack, since
there is no need for having separate protocols for, e.g. the data link layer and the network layer [18].
Each DIF is basically a repetition of the same protocols and functions. In RINA, a Distributed IPC
Facility (DIF) can be seen as what one generally would refer to as a layer.

"A Distributed IPC Facility (DIF) is an organising structure, grouping together
application processes that provide IPC services and are configured under the same poli-
cies." (From IRATI [23])

As mentioned before, networking is in this case not a layered set of different functions, but rather
a single layer of distributed IPC that repeats over different scopes. Such a scope could for in-
stance be providing the same (e.g.) routing policy, but every scope can have other policies for, e.g.
authorisation of access.

9 Just like in an IP network, it is possible to do multicasting in RINA for, e.g. videostreaming
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In order to interconnect different IPC processes (IPCPs), one needs to connect an IPCP to an
existing DIF. This DIF can dynamically be created using a DIF discovery mechanism, or by creating
a new DIF, when there is no suitable one available. This process of connecting IPCPs and DIFs is
called enrolling. Enrolling IPCPs ensures that information about the IPCP is added, maintained,
distributed, or deleted within a DIF. This information can be in the form of addressing, access-
control, or other kind of policies to create instances and characterise a communication. After
enrolling the IPCPs, the IPCPs are able to discover each other and become neighbours in the
DIF [59]. When an application wants to exchange traffic, a flow is allocated within the IPCP. During
this allocation phase, information to support data transfers is created, maintained, or deleted for
a particular IPCP. An example of this kind of information would be the binding of an IPCP to
a lower DIF (N-1). The allocation phase is done by the Flow Allocator. The Flow Allocator is
responsible for creating, managing, and eventually deleting a flow [54]. Flows are stored in the flow
table within the IPCP. When an application is finished exchanging traffic, the flow will be removed
from the flow table.

3.2 RINA and Multihoming

Before an application can communicate with another application in the network, it needs to request
service from the underlying DIF. This underlying DIF maps the destination application name to
a node address. As mentioned before, a DIF can recursively provide transport services between
source and destination application processes, using services of lower-level DIFs [35].

Figure 3.2: IPC Model with Multihoming

The route to the destination node address, the address to which the destination process is connected,
is computed as a sequence of intermediate node addresses. At each routing hop, the next-hop node
address is in turn recursively mapped to a lower-level node address by the underlying DIF. That
lower-level node address can be viewed as the point-of-attachment of the higher-level node. There-
fore, addresses within the RINA architecture are relative. A node address at a DIF level N is
considered a node name by a lower-level N-1 DIF. The directory service of the N-1 -DIF needs to
map this name to a node N-1 -address. In the end, the node address maps to a specific path. Be-
cause of this way of binding to a specific path it makes it easier for RINA to deal with mobility and
multihoming. If for any reason the active path to a node fails, RINA will map the node address of
the destination node to another operational path. According to a paper by Matta et al. [35] the cost
of such an operation would be very low, since the update is only local to the routing hop and the
destination node address is mapped to a lower-level node address that resides within the operational
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lower-level DIF. As mentioned in the previous chapter, in the Internet, the interface address of a
node names both the node itself and the interface (path) to that node. This complicates the ability
of managing mobility (and also multihoming). Figure 3.2 shows a simple RINA representation of
an application that has been registered at two separate lower-level DIFs at the same time, creating
a multihomed node. When a packet reaches a point in the path where it needs to make the decision
which path to take, it forwards the packet based on the current underlying DIF leading to the
destination process.

Basically, multihoming does not need a special mechanism in RINA, because it is a normal operation
by RINA’s design. When a node would connect to a network of another provider, the interface’s
address would change. However, the name of the host itself does not change, only the name of the
interface(s) change. RINA’s internal system would only need to change the mapping of the interface
name, not the name of the node itself. John Day claims in his presentation at TCN 15 that a RINA
network uses 50% up to 75% fewer addresses, and forwarding tables would proportionally be smaller
as well compared to the current Internet [12].

3.3 Related RINA Projects

3.3.1 IRATI

RINA itself is only a network architecture and does not provide an implementation on its own.
There are several projects that have been trying to create a working implementation of RINA. One
of those implementations is Investigating RINA as an Alternative to TCP/IP (IRATI).

"IRATI will advance the state of the art of RINA towards an architecture reference
model and specification that are closer to enable implementations deployable in produc-
tion scenarios. The design and implementation of a RINA prototype on top of Ethernet
will permit the experiments and evaluation of RINA in comparison to TCP/IP."

(From [34])

The IRATI project [34] was initially a Framework Programme 7 (FP7) project [17] funded by the
European Union. As mentioned above, IRATI’s goal is to achieve further exploration of this new
Internet architecture. The main objectives of IRATI were to make enhancements to the RINA
architecture reference model and specification, focussing on DIFs over Ethernet. Another objective
was to create an actual open source prototype over Ethernet for UNIX-like operating systems. By
creating a special DIF that is capable to run over Ethernet, it is easier to test RINA in an existing
environment. Besides the DIF over Ethernet, IRATI also supports a DIF over TCP and UDP to
run RINA over a current TCP/IP or UDP/IP network.

3.3.2 PRISTINE

Another closely related project to IRATI is PRISTINE [50]. This project is also funded by the
European Union. PRISTINE implements RINA and creates programmable functions for congestion
control, providing protection/resilience, facilitating more efficient topological routing and multi-
layer management for handling configuration, performance, and security [49]. The work of this
project group is a continuation of the work of the IRATI project. Features built by PRISTINE are
often forked into the IRATI stack.
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3.3.3 ARCFIRE

One of the newest projects, besides PRISTINE, is the ARCFIRE project [3]. Like IRATI and
PRISTINE, this project is also funded by the European Union, but this time under the H2020
program [27]. The main objective for the ARCFIRE project is to demonstrate the large scale
benefits of RINA, leveraging former European investments in Future Internet Testbeds (FIRE+)
and in the development of the basic RINA technology. Their goal is to improve the IRATI software
suite to make it possible to make large-scale experimental deployments with up to 100 nodes,
supporting tens of hundreds of DIFs, running experiments for up to a week. The ARCFIRE project
will closely work with the sister projects PRISTINE and IRATI.
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Chapter 4

Experiments

This chapter describes the experiments that were conducted during this research project. First, the
test environment will be described, followed by a description of the test scenarios and their results.

4.1 Test Environment

To perform tests with the IRATI stack, a virtual test environment was set up. KVM was used as
hypervisor for running the test virtual machines. During the tests two different systems were used
- a server with KVM virtual machines running a compiled IRATI stack, and a server running the
IRATI Demonstrator tool. The IRATI Demonstrator tool is a command-line tool to easily test the
IRATI stack in multi-node scenarios using small prefabricated VMs that include the IRATI stack.
An advantage of this tool is that one does not need to compile and install the IRATI stack by
hand. Another advantage is that configuration files are automatically generated using a topology
configuration file. There are a couple of examples available to see how the topology configuration
files work in order to create your own configuration file. All the nodes of this scenario are running
in lightweight virtual machines10 on top of a KVM hypervisor.

The characteristics of both servers and software versions, used during the experiments, are displayed
in Table 4.1 and Table 4.2, respectively.

Hardware Description

Device Dell PowerEdge R210
CPU Intel Xeon L3426 (4 cores, each 2 threads)
RAM 8GB (4x 2GB 1066 MHz)

Table 4.1: Hardware of the test servers

10 The disk image is roughly 30 MB
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Software Description

Hosting OS Ubuntu 16.04 LTS
Guest OS Debian 8.5
GitHub Commit of IRATI Demonstrator [32] 1df754a

GitHub Commit of IRATI stack [33] master (babd68b)
pristine-1.5 (06c59b0)

Virtualisation software libvirt-bin (1.3.1-1)
qemu-kvm (1:2.5)

IRATI Wireshark [31] c52c0e2

Table 4.2: Software of the test servers

The different VMs used during the experiments had the following characteristics, shown in Table
4.3.

Virtual hardware Description

CPU 2 virtual CPUs
RAM 512MB
HDD 30GB11

Table 4.3: Information about VMs

4.2 Basic tests with IRATI

Just like Klomp & van Leur [37] did during their research, the compiled stack was tested by following
the first two tutorials [19] [20] on the GitHub wiki of IRATI to get familiar with the workings of
IRATI. These tutorials go through the steps of creating the appropriate configuration files and how
to enroll the DIFs in the network.
After successfully testing the basic tutorials for simple connectivity, the third tutorial [21] on IRATI’s
wiki was followed, which contained multiple spanning DIFs to resemble multiple providers. The
expectations were that it would just simply work by following the instructions of the tutorial.
Unfortunately, there were some problems with the description of the tutorial. In the meantime,
the version of the stack was updated on GitHub and the way of writing configuration files changed
considerably. Therefore, enrolling the DIFs failed during the setup. The topology of this tutorial is
shown in Figure 4.1.
This topology resembles a provider network being connected to a customer network over different
DIFs. An application, like rina-echo-time12, will register to the multi-provider.DIF DIF to get
connectivity from the customer network to the provider network. One of the characteristics of this

11 The disk size only applies to the VMs used for the compiled IRATI stack, the VMs used in combination with the
IRATI Demonstrator are using a disk image of 30MB

12 The rina-echo-time is a ping application suitable for RINA networks
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Figure 4.1: RINA Topology of Tutorial 3 (From: [21])

tutorial was to connect the access.DIF DIF in a secure way using a password or using keys. Due
to lack of time and the outdated wiki pages on the GitHub, no extra time was spent to make the
scenario of the tutorial work. A GitHub issue was filed to notify the developers of the outdated wiki
pages.

4.3 Multihoming with IRATI

To test if the IRATI stack is capable of handling multihoming according to the RINA design [25],
the following setup was used:

• One node that represents a multihomed host, connecting to two different providers, named
Provider A and Provider B ;

• One node per provider with two different network connections (DIFs), namely an access DIF
and a regional DIF;

• One node that represents an upstream provider to which both providers are connected;

• One node that represents a server somewhere on "the Internet".

In order to test the multihoming capabilities of the IRATI stack, the topology shown in Figure
4.2 was used. All nodes of the topology are connected using a virtual bridge and use different
VLANs to communicate to each other. The VLANs are represented in the Figure as rbr<VLAN
id>. To represent a multi-provider network, multiple DIFs are used. Node 1 is connected to two
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different providers. The multihomed node is connected to two different provider’s access networks
by means of an access DIF. The provider nodes represent a router within a provider’s network
connecting the access DIF to a provider’s regional DIF. Finally, the regional DIFs are connected to
a shared upstream provider. Node 5 is located "somewhere in the Internet" and connects through
the upstream DIF to Node 1 over one of the two overlaying DIFs.

Figure 4.2: Network Topology

4.3.1 Test cases

During the experiments, two main tests were conducted. One test to see if it is possible to create
a multi-DIF topology that includes a multihomed node and two different providers. The other test
looks at the possibility of using the multihoming capabilities of a RINA network with an available
application. Unfortunately, not a lot of applications are available today that are capable to run on
a RINA network. One of the working programs is the before-mentioned rina-echo-time application,
which is part of the rina-tools. The rina-echo-time application resembles the same features as the
well-known ICMP echo request, also known as ping. The rina-echo-time application needs to be
run as a server and as a separate client.

21



The expected result of these experiments was that the multi-DIF topology and the multihoming
capabilities of IRATI will work. The main reason for this was that the theoretical architecture
supports both features out of the box. Pinging a server from a multihomed node should be working.
However, since this is still an experimental implementation, there might be some problems with the
code of the implementation itself.

To easily test the topology shown in Figure 4.2, the IRATI Demonstrator was used to automatically
create the appropriate configuration files for the IPCPs and the different DIFs in the topology. By
doing this, one can easily shutdown the small VMs by running the down.sh script of the Demon-
strator tool and bring them back up with the up.sh script. The scripts for generating and bringing
up and down the VMs is explained in more detail in Appendix B. Using the IRATI Demonstrator
saves a considerable amount of time, since one does not need to compile the IRATI stack and one
does not need to configure everything by hand.

Because the traffic flowing between nodes in a RINA network is not ’normal’ TCP/IP traffic, the
traffic would not be readable in a packet capture file when using Wireshark. IRATI developed a
special version of Wireshark to be able to get the data units of a RINA network readable. Unfortu-
nately, since Klomp & van Leur’s [37] research in January, no extra work has been done by IRATI
to maintain the Wireshark repository. The problems they experienced during their research do still
exist. Therefore, the IRATI Wireshark was not used during the research.

4.3.2 IRATI Demonstrator

To create a topology with the IRATI Demonstrator, one needs to create a topology configuration file.
The configuration file specifies which virtual shim interfaces need to be made and which DIFs need
to be created. These virtual interfaces will connect to an automatically generated virtual bridge to
make connections between the VMs. The first DIF in this topology is the shim DIF, which makes
the connection between the network interface and the IRATI stack. One needs to specify the DIF or
DIFs one wants to span over the shim interfaces. In the topology of this experiment, multiple DIFs
span over each other. First, the Access DIFs, Regional DIFs, and the Upstream DIF are spanned
over the shim interfaces. And finally, the end-to-end DIF that connects Node 1 to Node 5 in the
topology is spanned over the Access, Regional, and Upstream DIF of the appropriate providers. A
small excerpt of the IRATI Demonstrator configuration file is shown below in Listing 4.1.

Listing 4.1: Excerpt of IRATI Demonstrator configuration
# Defining Shim interfaces
# 400 is a shim -eth -vlan DIF , with nodes 1 and 4
eth 400 0Mbps 1 4
# 300 is a shim -eth -vlan DIF , with nodes 4 and 3
eth 300 0Mbps 3 4
# 500 is a shim -eth -vlan DIF , with nodes 3 and 5
eth 500 0Mbps 3 5

# Defining DIFs
dif providerAAccess 1 400
dif providerAAccess 4 400

dif providerARegional 4 300
dif providerARegional 3 300

dif upstream 3 500
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dif upstream 5 500

dif providerAInternet 1 providerAAccess
dif providerAInternet 4 providerAAccess providerARegional
dif providerAInternet 3 providerARegional upstream
dif providerAInternet 5 upstream

Because the DIFs are not visible in network topologies like in Figure 4.2, the IRATI developers
use a specific way of representing the stacking of DIFs in a network. Such a representation of the
experiments, carried out during this project, are shown in Figure 4.3 and Figure 4.4. Since two
providers in one single representation makes the diagram harder to read and understand, the two
different providers are split over two different diagrams.

Figure 4.3: RINA representation of Provider A

Figure 4.4: RINA representation of Provider B
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In the RINA representation, the different DIFs are clearly visible. The bottom DIFs represent the
shim DIFs, which make the connection between Ethernet and the RINA stack. On top of the shim
DIF, the access, regional, or upstream DIFs are spanned. And finally, on top of the these DIFs, the
end-to-end DIF is spanned (providerXInternet DIF ).

After running the generation script, one can start the VMs using the IRATI Demonstrator start.sh
script. A more detailed description of how the configurations are generated is described in Listing
B.2 in Appendix B. A rina-echo-time server was started on Node 5 and an attempt was made to
ping the server using the rina-echo-time client on Node 1. The execution of the commands for
running the client and server are shown in Listings 4.2 and 4.3.

Listing 4.2: rina-echo-time client
root@stockholm :/home/koen/demonstrator# ./ access.sh 1
Accessing buildroot VM 1
Warning: Permanently added ’[localhost ]:2223 ’ (ECDSA) to the list of known hosts.
# rina -echo -time -c 4
2088(1468416549)#librina.logs (DBG): New log level: INFO
2088(1468416549)#librina.nl -manager (INFO): Netlink socket connected to local port 2088
Flow allocation time = 4.9679 ms
SDU size = 20, seq = 0, RTT = 1.8312 ms
SDU size = 20, seq = 1, RTT = 1.9319 ms
SDU size = 20, seq = 2, RTT = 1.9906 ms
SDU size = 20, seq = 3, RTT = 2.0144 ms
SDUs sent: 4; SDUs received: 4; 0% SDU loss
Minimum RTT: 1.8312 ms; Maximum RTT: 2.0144 ms; Average RTT :1.942 ms; Standard deviation:

0.081594 ms

Listing 4.3: rina-echo-time server
root@stockholm :/home/koen/demonstrator# ./ access.sh 5
Accessing buildroot VM 5
Warning: Permanently added ’[localhost ]:2227 ’ (ECDSA) to the list of known hosts.
# rina -echo -time -l
1087(1468416540)#librina.logs (DBG): New log level: INFO
1087(1468416540)#librina.nl -manager (INFO): Netlink socket connected to local port 1087
1087(1468416548)#rina -echo -app (INFO): New flow allocated [port -id = 4]
1087(1468416551)#rina -echo -app (INFO): Flow torn down remotely [port -id = 4]

As shown above, the pinging between the nodes was successful. However, further investigation
showed that the data for the rina-echo-time server was going over one and the same path all the
time. It turned out that the RINA implementation does not dynamically select a path, but the
mapping between the applications (rina-echo-time) and the DIFs (either internetProviderA.DIF or
internetProviderB.DIF) is done statically. This is visible when looking at the Routing Information
Base (RIB) of the IPCP13, as shown in Listing 4.4. When the rina-echo-time client is started, a
flow is created for the rina.apps.echotime.client:1:: to rina.apps.echotime.server:1::. As shown in
the Listing, an underlying flow is called which uses the providerBInternet DIF. The other DIF, the
providerAInternet DIF, is not mentioned in the flow table.

13 The RIB is queried using the IPCP console. The way of connecting to the console is described in Appendix D.

24



Listing 4.4: IPCP RIB of VM1
Name: /fa/flows/key =17-5; Class: Flow; Instance: 48
Value: * State: 2
* Is this IPC Process the requestor of the flow? 1
* Max create flow retries: 1
* Hop count: 3
* Source AP Naming Info: rina.apps.echotime.client :1::
* Source address: 17
* Source port id: 5
* Destination AP Naming Info: rina.apps.echotime.server :1::* Destination addres: 21
* Destination port id: 4
* Connection ids of the connection supporting this flow: +
Src CEP -id 0; Dest CEP -id 0; Qos -id 1
* Index of the current active connection for this flow: 0

[...]

Name: /ipcManagement/irm/underflows/portId =4; Class: UnderlayingFlow; Instance: 32
Value: Local app name: providerBInternet .1.IPCP -1--Remote app name: providerBInternet .2.IPCP

-1--
N-1 DIF name: providerBAccess.DIF; port -id: 4
Flow characteristics: Jitter: 0; Delay: 0
In order delivery: 0; Partial delivery allowed: 1
Max allowed gap between SDUs: -1; Undetected bit error rate: 0
Average bandwidth (bytes/s): 0; Average SDU bandwidth (bytes/s): 0
Peak bandwidth duration (ms): 0; Peak SDU bandwidth duration (ms): 0

The mapping between applications and DIFs is done using a special configuration file called da.map.
When using the IRATI Demonstrator, this file is automatically generated. When compiling the
IRATI stack, one needs to create this file. An example of this file is shown in Listing 4.5.

Listing 4.5: Example configuration file: da.map
{

"applicationToDIFMappings ": [
{

"difName ": "providerBInternet.DIF",
"encodedAppName ": "rina.apps.echotime.server -1--"

},
{

"difName ": "providerBInternet.DIF",
"encodedAppName ": "rina.apps.echotime.client -1--"

}
]

}

As shown in Listing 4.5, the rina-echo-time server and client are mapped to one specific DIF,
namely providerBInternet.DIF. This phenomenon is further investigated in the second experiment,
described in the next section.

Another interesting result of using the IRATI Demonstrator was the constant crashing of the VMs.
It appeared that the memory consumption of the VMs kept increasing. After running the rina-
echo-time application for a while, to see if there were any lost packets during the test, the memory
consumption of the VM increased linearly. When the memory is almost completely used, the whole
VM crashes and needs to be restarted. This increasing memory consumption also happened when
the rina-echo-time server and client were not running. Using the script described in Appendix E,
the free memory was logged every second until the VM crashed. The graph plot of the log file is
shown in Figure 4.5.
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Figure 4.5: Free RAM using IRATI Demonstrator (RAM: 512 MB)

One of the possibilities for this increase of memory usage over time is the debugging option of the
IRATI stack. This option is enabled by default when compiling the IRATI stack. Since the IRATI
stack is already compiled when using the IRATI Demonstrator, one cannot be entirely sure if the
debugging is enabled. Klomp & van Leur [37] had problems with the debugging option enabled,
because the debugging was filling up the disks. This was not the case in this experiment, only RAM
was affected. When generating the VMs using the IRATI Demonstrator, one can choose the size of
the RAM of every VM. When the size of the RAM was increased to 1024MB, the pattern of free
memory was still linear and went down until the VM crashed. It was unclear which specific version
of the IRATI stack was used for the IRATI Demonstrator. In the next part of the experiments, it
was tested if the compiled IRATI stack showed the same memory behaviour. Since the configuration
files generated by the IRATI Demonstrator are in principle the same, these configuration files were
reused during the next experiment. By using these configuration files, a lot of time was saved when
configuring the IRATI stack in the next experiment. It was assumed that the internal workings of
the IRATI Demonstrator and the compiled IRATI stack were the same.

4.3.3 IRATI stack

To further investigate the possibilities of multihoming with the IRATI stack, and to see if the
compiled stack also has problems with running out of memory, new VMs were created. For this
experiment, the same topology is used as during the IRATI Demonstrator test. In order to run
the IRATI stack, one needs to compile and install the special kernel with RINA support and the
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required libraries and RINA tools. When compiling the IRATI stack, the debugging option was
disabled, because Klomp & van Leur [37] had problems with filling disks when the debugging
option was enabled. A detailed description of which options were used for compiling the IRATI
stack is described in Appendix A. During the IRATI Demonstrator test, a couple of configuration
files were generated for the IPC manager and the different DIFs. To see if the memory problem also
appeared in the VMs with the compiled IRATI stack, the memory test mentioned in the previous
section was executed on these VMs as well. As shown in Figure 4.6, the VMs with the compiled
IRATI stack did not show this behaviour and the memory consumption was stable throughout the
whole experiment. This means that there is probably something wrong with the used disk image
of the IRATI Demonstrator VMs, since the increasing memory usage is not seen in the compiled
stack VMs. Apparently, the IRATI Demonstrator and the compiled IRATI stack are not entirely
the same.
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Figure 4.6: Free RAM using VM with compiled IRATI stack (RAM: 512MB)

As shown in the IRATI Demonstrator experiment, the mapping of the application and the DIFs is
done statically. This forces traffic to a specific DIF, instead of dynamically choosing a path from
application to application. First, an attempt was made to use the DIF allocation file to register one
application to multiple DIFs at the same time. This caused the stack to crash. This is probably
due to the fact that the IRATI libraries are not able to process multiple DIF assignments for one
application at the same time, when using the da.map file. A second attempt was made by issuing
the -d flag of the rina-echo-time application, to specify to which DIF the rina-echo-time application
needs to be registered. According to IRATI developer Eduard Grasa, the implementation of IRATI
supports multiple registrations, but the IRATI applications do not exploit this capability yet.
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The developers agreed to add the function that allows for registering multiple DIFs to the rina-
tools, and specially the rina-echo-time application. Using this extra capability, it is now possible to
actually test if registering an application to multiple DIFs works. Initially, it was only possible to
either map the applications to a specific DIF using the da.map file or by explicitly stating at which
DIF one wants to register an application (e.g. rina-echo-time -l -d specificdif.DIF ). The developers14

released the fix through the pristine-1.5 branch under commit 9e8218015. The kernel and user parts
needed to be recompiled using the pristine-1.5 stack, therefore, new VMs were created to be sure
that the newest kernel was installed. Another test was performed with the patched RINA tools to
see if the IRATI implementation would now be able to connect to a multihomed server. With the
change in the rina-tools, it is possible to use the -d flag with multiple DIFs, separated by a comma,
as shown in Listing 4.8.

Listing 4.6: rina-echo-time client 1
root@multi1 :/home/koen# rina -echo -time -c 4 -d providerAInternet.DIF
6902(1467986643)#librina.logs (DBG): New log level: INFO
6902(1467986643)#librina.nl -manager (INFO): Netlink socket connected to local port 6902
Flow allocation time = 38.375 ms
SDU size = 20, seq = 0, RTT = 5.2941 ms
SDU size = 20, seq = 1, RTT = 16.758 ms
SDU size = 20, seq = 2, RTT = 16.083 ms
SDU size = 20, seq = 3, RTT = 1.568 ms
SDUs sent: 4; SDUs received: 4; 0% SDU loss
Minimum RTT: 1.568 ms; Maximum RTT: 16.758 ms; Average RTT :9.9258 ms; Standard deviation:

7.6571 ms

Listing 4.7: rina-echo-time client 2
root@multi1 :/home/koen# rina -echo -time -c 4 -d providerBInternet.DIF
7167(1467986656)#librina.logs (DBG): New log level: INFO
7167(1467986656)#librina.nl -manager (INFO): Netlink socket connected to local port 7167
Flow allocation time = 62.392 ms
SDU size = 20, seq = 0, RTT = 54.72 ms
SDU size = 20, seq = 1, RTT = 1.6436 ms
SDU size = 20, seq = 2, RTT = 34.567 ms
SDU size = 20, seq = 3, RTT = 10.775 ms
SDUs sent: 4; SDUs received: 4; 0% SDU loss
Minimum RTT: 1.6436 ms; Maximum RTT: 54.72 ms; Average RTT :25.426 ms; Standard deviation:

23.958 ms

Listing 4.8: rina-echo-time server
root@multi5 :/home/koen# rina -echo -time -l -d providerAInternet.DIF ,providerBInternet.DIF
5131(1467986629)#librina.logs (DBG): New log level: INFO
5131(1467986629)#librina.nl -manager (INFO): Netlink socket connected to local port 5131
5131(1467986629)#rina -echo -time (INFO): Application registered in DIF providerAInternet.DIF
5131(1467986629)#rina -echo -time (INFO): Application registered in DIF providerBInternet.DIF
5131(1467986643)#rina -echo -app (INFO): New flow allocated [port -id = 4]
5131(1467986646)#rina -echo -app (INFO): Flow torn down remotely [port -id = 4]
5131(1467986656)#rina -echo -app (INFO): New flow allocated [port -id = 5]
5131(1467986659)#rina -echo -app (INFO): Flow torn down remotely [port -id = 5]

14 Special thanks to Eduard Grasa
15 https://github.com/IRATI/stack/commit/9e82180ecf728eb8ce64891c9a6067d3916d4868
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As shown in Listing 4.8, the rina-echo-time application is registered to two separate DIFs, providerAIn-
ternet.DIF and providerBInternet.DIF. The two DIFs use each a different port-id to distinguish the
different connections to the node and application. After spinning up the server side, one can connect
to the client, either via providerAInternet.DIF or providerBInternet.DIF. As shown in Listings 4.6
and 4.7, a connection is made using the rina-echo-time client over a specified DIF. When the client
is starting, the server will detect a new connection request and will create a new flow for this traffic.
When the application is finished sending traffic, the flow will be removed from the flow table. These
flows are shown in Listing 4.9. These flows are from the RIB on VM5 in the topology.

Listing 4.9: IPCP RIB of VM5
Name: /fa/flows/key =17-5; Class: Flow; Instance: 51
Value: * State: 2
* Is this IPC Process the requestor of the flow? 0
* Max create flow retries: 1
* Hop count: 3
* Source AP Naming Info: rina.apps.echotime.client :1::
* Source address: 17
* Source port id: 5
* Destination AP Naming Info: rina.apps.echotime.server :1::* Destination addres: 21
* Destination port id: 4
* Connection ids of the connection supporting this flow: +
Src CEP -id 0; Dest CEP -id 0; Qos -id 1
* Index of the current active connection for this flow: 0

Name: /ipcManagement/irm/underflows/portId =2; Class: UnderlayingFlow; Instance: 32
Value: Local app name: providerAInternet .5.IPCP -1--Remote app name: providerAInternet .3.IPCP

-1--
N-1 DIF name: upstream.DIF; port -id: 2
Flow characteristics: Jitter: 0; Delay: 0
In order delivery: 0; Partial delivery allowed: 1
Max allowed gap between SDUs: -1; Undetected bit error rate: 0
Average bandwidth (bytes/s): 0; Average SDU bandwidth (bytes/s): 0
Peak bandwidth duration (ms): 0; Peak SDU bandwidth duration (ms): 0

[...]

Name: /fa/flows/key =17-6; Class: Flow; Instance: 57
Value: * State: 2
* Is this IPC Process the requestor of the flow? 0
* Max create flow retries: 1
* Hop count: 3
* Source AP Naming Info: rina.apps.echotime.client :1::
* Source address: 17
* Source port id: 6
* Destination AP Naming Info: rina.apps.echotime.server :1::* Destination addres: 21
* Destination port id: 5
* Connection ids of the connection supporting this flow: +
Src CEP -id 0; Dest CEP -id 0; Qos -id 1
* Index of the current active connection for this flow: 0

Name: /ipcManagement/irm/underflows/portId =3; Class: UnderlayingFlow; Instance: 32
Value: Local app name: providerBInternet .5.IPCP -1--Remote app name: providerBInternet .3.IPCP

-1--
N-1 DIF name: upstream.DIF; port -id: 3
Flow characteristics: Jitter: 0; Delay: 0
In order delivery: 1; Partial delivery allowed: 1
Max allowed gap between SDUs: -1; Undetected bit error rate: 0
Average bandwidth (bytes/s): 0; Average SDU bandwidth (bytes/s): 0
Peak bandwidth duration (ms): 0; Peak SDU bandwidth duration (ms): 0
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Because the application is registered to a node, it does not matter to which DIF it is connected to,
or to which DIFs it is connected. At this point, it is not possible to simply run a rina-echo-time
client without specifying through which DIF it should connect. It would be nice when one does not
have to specify over which connection the client should connect. However, it might not be preferable
if a client randomly connects to any available DIF. In the future, this might be part of (e.g.) the
access policies one can have inside a DIF.

As shown in this chapter, the IRATI Demonstrator is a very handy tool to quickly test topologies
and quickly test connectivity within the network. For actual tests the compiled IRATI stack is
more preferable, because the compiled stack did not run out of memory during the experiments
and turned out to be more stable for tests. As proven by the experiments, the IRATI stack does
support the multihoming capabilities, but the applications do not fully exploit this feature yet. Due
to the patch of the rina-echo-time application, one can test the multi-registration feature, albeit
fairly limited. In the next chapter, the results of the experiments will be discussed.
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Chapter 5

Discussion

This chapter will discuss the results of the experiments described in the previous chapter.

5.1 IRATI Demonstrator

The IRATI Demonstrator turned out to be a very useful tool to quickly generate a small RINA test
network. As shown in Chapter 4, the IRATI Demonstrator seems to suffer from a memory problem.
The VMs will keep consuming RAM in a linear fashion until there is not enough RAM available to
keep everything up and running. Basically, the whole VM, including the IPC processes will stop
functioning. Since the IRATI Demonstrator should be used for quick testing, this is not a very big
problem. During the experiment, it simply did what it should do: showing that the test topology
would work in a compiled IRATI environment. For future researchers it would be nice if the IRATI
Demonstrator did not show the behaviour constantly increasing the memory consumption.
As shown in the experiments, the IRATI Demonstrator was able to create a multi-DIF topology. The
DIFs were enrolled correctly and, in principle, the connectivity between applications over multiple
nodes could be tested. However, to get a better view on performance, the compiled stack would be
more realistic, because it has more resources to do the processing of information.

5.2 Compiled IRATI stack

In order to compile the IRATI stack, one needs a lot of patience, since there are quite some re-
quired packages needed before one can compile the IRATI stack. Compiling the kernel and all the
user space parts (libraries, RINA-tools, etc.) take the most time of all. It takes easily up to three
hours to finish the compiling and installation of the IRATI stack (without configuring it). It would
save a lot of time if the IRATI kernel, libraries and applications are available through the package
repository.

Unfortunately, a lot of documentation seems to be outdated. Since Klomp & van Leur’s research
in January 2016, a lot of improvements have been made to the code of the IRATI stack. Unfortu-
nately, some vital parts of the wiki are not updated. It would be really helpful for future research if
the documentation of IRATI would be updated. The outdated documentation gave some problems
when trying to go through the tutorials listed on the wiki. An example would be the way of commu-
nicating with the IPC console. It turned out that in the meantime, the way of interacting with the
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IPC console changed from using a Telnet connection, to a socket file. Another thing that changed
is the configuration syntax. Some tutorials are using an older version of the IRATI stack, and
therefore, at least one of the tutorials does not work anymore. During this project, there was not
enough time to try and fix the tutorial using the new configuration syntax. For future researchers it
would be very convenient if the configuration files for the tutorials are updated to the newest syntax.

Klomp & van Leur describe in their research that the IRATI Wireshark, which is available on
the IRATI GitHub page, was not able to clearly view the traffic flows due to the inability of the
Wireshark dissectors to automatically adjust to the IRATI configurations. During the experiments,
the IRATI Wireshark was tried to see if it is working now. Unfortunately, there has not been any
activity in the IRATI Wireshark repository since the 6th of March 2015. When writing this report,
it is therefore still not entirely possible to easily view the traffic flows, without the need of manually
changing the Wireshark dissectors.

One of the main goals of this project was to see if multihoming is possible using the current IRATI
stack. At the moment, it seems that the multihoming capabilities of RINA are not fully integrated
yet into the IRATI stack. Since the mapping between applications and DIFs is done statically at
this point in time, one cannot entirely speak of multihoming. For now, one still needs to specify
to which DIF one wants to connect. By request, one of the developers of the IRATI stack, Eduard
Grasa, made a patch for the RINA-echo-time application, so it is capable of registering the server
to multiple DIFs simultaneously. The RINA tools in the pristine-1.5 branch are updated to include
this patch. As shown in the experiments, it is now possible to connect to a multihomed RINA-
echo-time server. However, the RINA tools are still incapable of automatically selecting which DIF
to use when connecting to, for instance, a RINA-echo-time server. According to the developers,
the H2020 ARCFIRE project is going to research and develop a dynamic DIF allocator to create
this feature for the IRATI stack. Meanwhile, the PRISTINE project will focus on developing and
improving the routing capabilities of the IRATI stack to make the routing for multihoming and
mobility as efficient as possible.

Throughout the report, mobility is also mentioned a couple of times, but not really tested during
the experiments. During an email conversation with one of the developers, it became clear that at
this moment, there has been no tests with IRATI and mobility. Especially the H2020 ARCFIRE
project is going to research and test the mobility capabilities of IRATI in the near future. For this
moment, they will focus on WiFi only, since there are no other technologies for mobility supported
yet.
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Chapter 6

Conclusion

The current Internet faces quite some challenges and one of these challenges is the multihoming
problem. Throughout the years a lot of effort has been put in solutions for multihoming, but none
of them actually tries to solve the root of the problem.
The Recursive InterNetwork Architecture (RINA) is a new computer network architecture where
networking is seen as Inter-Process Communication (IPC). The architecture tries to solve many of
the current Internet’s problems, including multihoming. By design RINA supports multihoming,
mobility, security, and much more. Where in the current Internet only the interfaces are named,
RINA also names the nodes and the applications. This would solve the multihoming problem in
theory, since the node and the application are identifiable by their own address and not both by the
interface name.
One of the major implementation projects is the IRATI project. They are working on implementing
the RINA architecture and making enhancements to the specification. As shown by the experiment
executed during this research, it is not possible to use the multihoming capabilities of RINA using
the current IRATI stack version. At this time the mapping between applications and DIFs is
done statically. Therefore, one cannot speak of multihoming entirely, since dynamically assigning
applications to DIFs is not yet implemented. However, it is now possible to register the RINA-echo-
time server to multiple DIFs at the same time to facilitate the multihoming capabilities. Therefore,
RINA is capable of doing multihoming, however, the current IRATI applications are not fully capable
of exploiting the multihoming capabilities yet.
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Chapter 7

Future Work

When using the IRATI Demonstrator, the VMs seem to have a memory problem. The memory con-
sumption goes linearly up, until the VMs completely crash. Since the compiled IRATI stack does
not seem to experience this behaviour, it is likely that there is something wrong with the disk image
used by the IRATI Demonstrator. It is not a very big problem, since it should be used for quick
topology tests. However, it would be worth it for the developers to fix this, probably, small problem.

Currently, the DIF allocation is still static. However, the dynamic DIF allocator will be developed
somewhere in the coming two years. It would be very interesting to see, if the topology used in this
research project would work without the need of manually assigning DIFs to an application.

During the experiments, mobility has not been one of the priorities to look into. In the coming two
years, the H2020 ARCFIRE project is going to research and develop features for the IRATI stack,
concerning mobility. When they would finish their project, it would be interesting to see if this
would scale in a realistic topology.
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Appendix A

Compiling and Installing the IRATI
stack

In order to compile the IRATI stack, a special IRATI kernel needs to be compiled and a couple of
applications and libraries need to be compiled and installed. A description of how the kernel and
the user space packages need to be compiled and installed is described on the IRATI wiki [22].
The Getting Started page is a bit outdated (Debian 7.0 was used for the wiki, during the research
Debian 8.5 was used). The following required packages were installed:

• kernel-package

• libncurses5-dev

• autoconf

• automake

• libtool

• pkg-config

• git

• g++

• openjdk-7-jdk

• maven

• libssl-dev

• protobuf-compiler

• libprotobuf-dev

• libnl-genl-3-dev

• libnl-3-dev

• libpcre3-dev

In the Getting Started page it is mentioned that one needs to add the testing repository. Since
Debian 8 is used, one does not need to do this any longer.
Another required package needs to be build from source, namely swig. In this research, version
3.0.10 was used:

Listing A.1: Compiling and Installing Swig
koen@vm1:∼$ http :// prdownloads.sourceforge.net/swig/swig -3.0.10. tar.gz
koen@vm1:∼$ tar -xzvf swig -3.0.10. tar.gz
koen@vm1:∼$ cd swig -3.0.10
koen@vm1:∼$ ./ configure
koen@vm1:∼$ make
koen@vm1:∼$ sudo make install
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When all the required packages are installed, the repository of the stack can be cloned:

Listing A.2: Cloning IRATI stack (master branch)
koen@vm1:∼$ git clone git :// github.com/IRATI/stack.git

During tests, it turned out that the master was behind the branch of PRISTINE, which is still
actively maintained. Later results showed that the pristine-1.5 branch was more stable. To clone
that specific branch the following command needs to be run:

Listing A.3: Cloning IRATI stack (pristine-1.5 branch)
koen@vm1:∼$ git clone -b pristine -1.5 git :// github.com/IRATI/stack.git

Klomp & van Leur [37] found out that by default the debugging option is enabled, which results in
the disks being filled up with debugging information. To avoid that, the debugging option needs to
be disabled.

Listing A.4: Configuring the kernel options
root@vm1 :/home/koen# cd stack/
root@multi1 :/home/koen/stack#
root@multi1 :/home/koen/stack# cd linux
root@multi1 :/home/koen/stack/linux# make menuconfig

In the RINA menu, one needs to make sure to disable the debugging option and save the .config
file afterwards before compiling the kernel.
Since everything is now ready for compilation and installation of the stack, one needs to run the
following script, which will take care of the compiling and installing of the kernel and the user parts:

Listing A.5: Compiling and Installing the Kernel and User parts
root@vm1 :/home/koen# cd stack/
root@multi1 :/home/koen/stack#
root@multi1 :/home/koen/stack# ./install -from -scratch
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Appendix B

Configuration Experiment #1: IRATI
Demonstrator

This appendix contains the configuration file for the IRATI Demonstrator (multihoming.conf) and
how the IRATI Demonstrator is used:

Listing B.1: multihoming-topology.conf
# This config is for multihoming use case

# R1 ----- R2 ----- R3 ---- R5
# | |
# | |
# -------- R4 ----- |

# 100 is a shim -eth -vlan DIF , with nodes 1 and 2
eth 100 0Mbps 1 2

# 200 is a shim -eth -vlan DIF , with nodes 2 and 3
eth 200 0Mbps 2 3

# 400 is a shim -eth -vlan DIF , with nodes 1 and 4
eth 400 0Mbps 1 4

# 300 is a shim -eth -vlan DIF , with nodes 4 and 3
eth 300 0Mbps 3 4

# 500 is a shim -eth -vlan DIF , with nodes 3 and 5
eth 500 0Mbps 3 5

# DIFs
dif providerAAccess 1 400
dif providerAAccess 4 400

dif providerBAccess 1 100
dif providerBAccess 2 100

dif providerARegional 4 300
dif providerARegional 3 300

dif providerBRegional 2 200
dif providerBRegional 3 200

dif upstream 3 500
dif upstream 5 500
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dif providerAInternet 1 providerAAccess
dif providerAInternet 4 providerAAccess providerARegional
dif providerAInternet 3 providerARegional upstream
dif providerAInternet 5 upstream

dif providerBInternet 1 providerBAccess
dif providerBInternet 2 providerBAccess providerBRegional
dif providerBInternet 3 providerBRegional upstream
dif providerBInternet 5 upstream

To create the needed configuration files for the IPC manager and the DIFs, one needs to run the
following commands:

Listing B.2: Generating configuration files and starting VMs using IRATI Demonstrator
# Generating the configuration files
root@stockholm :/home/koen/demonstrator# ./gen.py -m 512 -c multi3.conf

# Generating the necessary virtual bridge interfaces and spinning up the VMs
root@stockholm :/home/koen/demonstrator# ./up.sh

# Accessing VMs
root@stockholm :/home/koen/demonstrator# ./ access.sh <name_of_vm >

# Stopping the VMs and removing the virtual bridge interfaces
root@stockholm :/home/koen/demonstrator# ./down.sh

This is the configuration for the application mapping (da.map):

Listing B.3: da.map
{

"applicationToDIFMappings ": [
{

"difName ": "providerBInternet.DIF",
"encodedAppName ": "rina.apps.echotime.server -1--"

},
{

"difName ": "providerBInternet.DIF",
"encodedAppName ": "rina.apps.echotime.client -1--"

}
]

}
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Appendix C

Configuration Experiment #2: VMs
with compiled IRATI stack

In this Appendix all the configurations used for the IRATI stack VMs are described.

C.1 Configuration for the IPC manager

The following Listings describe the configuration files for all the IPC managers for every separate
VM. These files describe the configuration for the different DIFs and which IPC processes to create.
The files are generated by the IRATI Demonstrator and are slightly changed to match the interfaces
on the full-Debian VMs.

Listing C.1: ipcmanager.conf for Node 1
{

"configFileVersion" : "1.4.1" ,
"localConfiguration" : {

"installationPath" : "/bin",
"libraryPath" : "/lib",
"logPath" : "/var/log",
"consoleSocket" : "/var/run/ipcm -console.sock",
"pluginsPaths" : ["/ lib/rinad/ipcp"]

},
"difConfigurations ": [

{
"name": "100" ,
"template ": "shimeth .1.100. dif"

},
{

"name": "400" ,
"template ": "shimeth .1.400. dif"

},
{

"name": "providerBAccess.DIF",
"template ": "normal.providerBAccess.dif"

},
{

"name": "providerAAccess.DIF",
"template ": "normal.providerAAccess.dif"

},
{

"name": "providerAInternet.DIF",
"template ": "normal.providerAInternet.dif"
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},
{

"name": "providerBInternet.DIF",
"template ": "normal.providerBInternet.dif"

}
],
"ipcProcessesToCreate ": [

{
"apInstance ": "1",
"apName ": "eth.1. IPCP",
"difName ": "100"

},
{

"apInstance ": "1",
"apName ": "eth.2. IPCP",
"difName ": "400"

},
{

"apInstance ": "1",
"apName ": "providerBAccess .1. IPCP",
"difName ": "providerBAccess.DIF",
"difsToRegisterAt ": [

"100"
]

},
{

"apInstance ": "1",
"apName ": "providerAAccess .1. IPCP",
"difName ": "providerAAccess.DIF",
"difsToRegisterAt ": [

"400"
]

},
{

"apInstance ": "1",
"apName ": "providerAInternet .1. IPCP",
"difName ": "providerAInternet.DIF",
"difsToRegisterAt ": [

"providerAAccess.DIF"
]

},
{

"apInstance ": "1",
"apName ": "providerBInternet .1. IPCP",
"difName ": "providerBInternet.DIF",
"difsToRegisterAt ": [

"providerBAccess.DIF"
]

}
]
}

}

Listing C.2: ipcmanager.conf for Node 2
{

"configFileVersion" : "1.4.1" ,
"localConfiguration" : {

"installationPath" : "/bin",
"libraryPath" : "/lib",
"logPath" : "/var/log",
"consoleSocket" : "/var/run/ipcm -console.sock",
"pluginsPaths" : ["/ lib/rinad/ipcp"]

},
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"difConfigurations ": [
{

"name": "100" ,
"template ": "shimeth .2.100. dif"

},
{

"name": "200" ,
"template ": "shimeth .2.200. dif"

},
{

"name": "providerBRegional.DIF",
"template ": "normal.providerBRegional.dif"

},
{

"name": "providerBAccess.DIF",
"template ": "normal.providerBAccess.dif"

},
{

"name": "providerBInternet.DIF",
"template ": "normal.providerBInternet.dif"

}
],
"ipcProcessesToCreate ": [

{
"apInstance ": "1",
"apName ": "eth.1. IPCP",
"difName ": "100"

},
{

"apInstance ": "1",
"apName ": "eth.2. IPCP",
"difName ": "200"

},
{

"apInstance ": "1",
"apName ": "providerBRegional .2. IPCP",
"difName ": "providerBRegional.DIF",
"difsToRegisterAt ": [

"200"
]

},
{

"apInstance ": "1",
"apName ": "providerBAccess .2. IPCP",
"difName ": "providerBAccess.DIF",
"difsToRegisterAt ": [

"100"
]

},
{

"apInstance ": "1",
"apName ": "providerBInternet .2. IPCP",
"difName ": "providerBInternet.DIF",
"difsToRegisterAt ": [

"providerBAccess.DIF",
"providerBRegional.DIF"

]
}

]
}

Listing C.3: ipcmanager.conf for Node 3
{
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"configFileVersion" : "1.4.1" ,
"localConfiguration" : {

"installationPath" : "/bin",
"libraryPath" : "/lib",
"logPath" : "/var/log",
"consoleSocket" : "/var/run/ipcm -console.sock",
"pluginsPaths" : ["/ lib/rinad/ipcp"]

},
"difConfigurations ": [

{
"name": "200" ,
"template ": "shimeth .3.200. dif"

},
{

"name": "300" ,
"template ": "shimeth .3.300. dif"

},
{

"name": "500" ,
"template ": "shimeth .3.500. dif"

},
{

"name": "providerBRegional.DIF",
"template ": "normal.providerBRegional.dif"

},
{

"name": "providerARegional.DIF",
"template ": "normal.providerARegional.dif"

},
{

"name": "upstream.DIF",
"template ": "normal.upstream.dif"

},
{

"name": "providerAInternet.DIF",
"template ": "normal.providerAInternet.dif"

},
{

"name": "providerBInternet.DIF",
"template ": "normal.providerBInternet.dif"

}
],
"ipcProcessesToCreate ": [

{
"apInstance ": "1",
"apName ": "eth.1. IPCP",
"difName ": "200"

},
{

"apInstance ": "1",
"apName ": "eth.2. IPCP",
"difName ": "300"

},
{

"apInstance ": "1",
"apName ": "eth.3. IPCP",
"difName ": "500"

},
{

"apInstance ": "1",
"apName ": "providerBRegional .3. IPCP",
"difName ": "providerBRegional.DIF",
"difsToRegisterAt ": [

"200"
]
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},
{

"apInstance ": "1",
"apName ": "providerARegional .3. IPCP",
"difName ": "providerARegional.DIF",
"difsToRegisterAt ": [

"300"
]

},
{

"apInstance ": "1",
"apName ": "upstream .3. IPCP",
"difName ": "upstream.DIF",
"difsToRegisterAt ": [

"500"
]

},
{

"apInstance ": "1",
"apName ": "providerAInternet .3. IPCP",
"difName ": "providerAInternet.DIF",
"difsToRegisterAt ": [

"providerARegional.DIF",
"upstream.DIF"

]
},
{

"apInstance ": "1",
"apName ": "providerBInternet .3. IPCP",
"difName ": "providerBInternet.DIF",
"difsToRegisterAt ": [

"providerBRegional.DIF",
"upstream.DIF"

]
}

]
}

Listing C.4: ipcmanager.conf for Node 4
{

"configFileVersion" : "1.4.1" ,
"localConfiguration" : {

"installationPath" : "/bin",
"libraryPath" : "/lib",
"logPath" : "/var/log",
"consoleSocket" : "/var/run/ipcm -console.sock",
"pluginsPaths" : ["/ lib/rinad/ipcp"]

},
"difConfigurations ": [

{
"name": "300" ,
"template ": "shimeth .4.300. dif"

},
{

"name": "400" ,
"template ": "shimeth .4.400. dif"

},
{

"name": "providerARegional.DIF",
"template ": "normal.providerARegional.dif"

},
{

"name": "providerAAccess.DIF",
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"template ": "normal.providerAAccess.dif"
},
{

"name": "providerAInternet.DIF",
"template ": "normal.providerAInternet.dif"

}
],
"ipcProcessesToCreate ": [

{
"apInstance ": "1",
"apName ": "eth.1. IPCP",
"difName ": "300"

},
{

"apInstance ": "1",
"apName ": "eth.2. IPCP",
"difName ": "400"

},
{

"apInstance ": "1",
"apName ": "providerARegional .4. IPCP",
"difName ": "providerARegional.DIF",
"difsToRegisterAt ": [

"300"
]

},
{

"apInstance ": "1",
"apName ": "providerAAccess .4. IPCP",
"difName ": "providerAAccess.DIF",
"difsToRegisterAt ": [

"400"
]

},
{

"apInstance ": "1",
"apName ": "providerAInternet .4. IPCP",
"difName ": "providerAInternet.DIF",
"difsToRegisterAt ": [

"providerAAccess.DIF",
"providerARegional.DIF"

]
}

]
}

Listing C.5: ipcmanager.conf for Node 5
{

"configFileVersion" : "1.4.1" ,
"localConfiguration" : {

"installationPath" : "/bin",
"libraryPath" : "/lib",
"logPath" : "/var/log",
"consoleSocket" : "/var/run/ipcm -console.sock",
"pluginsPaths" : ["/ lib/rinad/ipcp"]

},
"difConfigurations ": [

{
"name": "500" ,
"template ": "shimeth .5.500. dif"

},
{

"name": "upstream.DIF",
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"template ": "normal.upstream.dif"
},
{

"name": "providerAInternet.DIF",
"template ": "normal.providerAInternet.dif"

},
{

"name": "providerBInternet.DIF",
"template ": "normal.providerBInternet.dif"

}
],
"ipcProcessesToCreate ": [

{
"apInstance ": "1",
"apName ": "eth.1. IPCP",
"difName ": "500"

},
{

"apInstance ": "1",
"apName ": "upstream .5. IPCP",
"difName ": "upstream.DIF",
"difsToRegisterAt ": [

"500"
]

},
{

"apInstance ": "1",
"apName ": "providerAInternet .5. IPCP",
"difName ": "providerAInternet.DIF",
"difsToRegisterAt ": [

"upstream.DIF"
]

},
{

"apInstance ": "1",
"apName ": "providerBInternet .5. IPCP",
"difName ": "providerBInternet.DIF",
"difsToRegisterAt ": [

"upstream.DIF"
]

}
]

}

C.2 Other configuration files

When all the configuration files are included in the appendices of this report, the report will become
rather long. Therefore, only the important configuration files are included in the appendices. These
configuration files and all other configuration files are located at the following location:
https://github.com/koenveelenturf/irati-test-rp2.

C.3 Setting up VLANs

In order to run the IRATI stack, a Bash script was created for every separate VM to set up the
VLANs on the interfaces and to load the shim-eth-vlan, rina-default-plugin, and normal-ipcp kernel
modules. These modules make sure that VLAN-over-Ethernet connections can communicate with
the IRATI stack and that the actual IPC module is loaded. The following Listings show the scripts.
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Listing C.6: VM1: setup-vm1.sh
#!/ bin/bash
ip link add link eth1 name eth1 .100 type vlan id 100
ip link set dev eth1 up
ip link set dev eth1 .100 up

ip link add link eth2 name eth2 .400 type vlan id 400
ip link set dev eth2 up
ip link set dev eth2 .400 up

modprobe shim -eth -vlan
modprobe rina -default -plugin
modprobe normal -ipcp

Listing C.7: VM2: setup-vm2.sh
#!/ bin/bash
ip link add link eth1 name eth1 .100 type vlan id 100
ip link set dev eth1 up
ip link set dev eth1 .100 up

ip link add link eth2 name eth2 .200 type vlan id 200
ip link set dev eth2 up
ip link set dev eth2 .200 up

modprobe shim -eth -vlan
modprobe rina -default -plugin
modprobe normal -ipcp

Listing C.8: VM3: setup-vm3.sh
#!/ bin/bash
ip link add link eth1 name eth1 .200 type vlan id 200
ip link set dev eth1 up
ip link set dev eth1 .200 up

ip link add link eth2 name eth2 .500 type vlan id 500
ip link set dev eth2 up
ip link set dev eth2 .500 up

ip link add link eth3 name eth3 .300 type vlan id 300
ip link set dev eth3 up
ip link set dev eth3 .300 up

modprobe shim -eth -vlan
modprobe rina -default -plugin
modprobe normal -ipcp

Listing C.9: VM4: setup-vm4.sh
#!/ bin/bash
ip link add link eth1 name eth1 .400 type vlan id 400
ip link set dev eth1 up
ip link set dev eth1 .400 up

ip link add link eth2 name eth2 .300 type vlan id 300
ip link set dev eth2 up
ip link set dev eth2 .300 up

modprobe shim -eth -vlan
modprobe rina -default -plugin
modprobe normal -ipcp
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Listing C.10: VM5: setup-vm5.sh
#!/ bin/bash
ip link add link eth1 name eth1 .500 type vlan id 500
ip link set dev eth1 up
ip link set dev eth1 .500 up

modprobe shim -eth -vlan
modprobe rina -default -plugin
modprobe normal -ipcp
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Appendix D

Enrolling DIFs

In both experiments, DIFs are enrolled in a special order to connect nodes to each other. In this
appendix the enrollment codes are described and the IPC process lists are shown. When the IRATI
Demonstrator is used, the enrolling of DIFs is done automatically by the provided scripts. To run
the enroll-to-dif command, one needs to connect to the IPC Console using the following command:
socat - UNIX:/var/run/ipcm-console.sock.

Listing D.1: Enrolling DIFs
# vm3
enroll -to -dif 4 providerBRegional.DIF 200 providerBRegional .2. IPCP 1
enroll -to -dif 5 providerARegional.DIF 300 providerARegional .4. IPCP 1

# vm1
enroll -to -dif 3 providerBAccess.DIF 100 providerBAccess .2. IPCP 1
enroll -to -dif 4 providerAAccess.DIF 400 providerAAccess .4. IPCP 1

# vm3
enroll -to -dif 6 upstream.DIF 500 upstream .5. IPCP 1
enroll -to -dif 7 providerAInternet.DIF providerARegional.DIF providerAInternet .4. IPCP 1

# vm1
enroll -to -dif 5 providerAInternet.DIF providerAAccess.DIF providerAInternet .4. IPCP 1

# vm5
enroll -to -dif 3 providerAInternet.DIF upstream.DIF providerAInternet .3. IPCP 1

# vm3
enroll -to -dif 8 providerBInternet.DIF upstream.DIF providerBInternet .5. IPCP 1

# vm2
enroll -to -dif 5 providerBInternet.DIF providerBRegional.DIF providerBInternet .3. IPCP 1

# vm1
enroll -to -dif 6 providerBInternet.DIF providerBAccess.DIF providerBInternet .2. IPCP 1

D.1 IPC Process Lists

This section shows the IPC process lists per VM. These lists are the same for both experiments.
As shown below, the different DIFs that are stacked on top of each other are registered to the
DIF below. The eth DIFs are the special shim DIFs that are connected over a VLAN interface for
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connecting the VMs to each other. To run the list-ipcps command, one needs to connect to the IPC
Console using the following command: socat - UNIX:/var/run/ipcm-console.sock.

Listing D.2: IPC Process List for VM1
IPCM >>> list -ipcps
Current IPC processes (id | name | type | state | Registered applications | Port -ids of

flows provided)
1 | eth .1. IPCP :1:: | shim -eth -vlan | ASSIGNED TO DIF 100 | providerBAccess .1.IPCP -1-- |

1
2 | eth .2. IPCP :1:: | shim -eth -vlan | ASSIGNED TO DIF 400 | providerAAccess .1.IPCP -1-- |

2
3 | providerBAccess .1. IPCP :1:: | normal -ipc | ASSIGNED TO DIF providerBAccess.DIF |

providerBInternet .1.IPCP -1-- | 4
4 | providerAAccess .1. IPCP :1:: | normal -ipc | ASSIGNED TO DIF providerAAccess.DIF |

providerAInternet .1.IPCP -1-- | 3
5 | providerAInternet .1. IPCP :1:: | normal -ipc | ASSIGNED TO DIF providerAInternet.DIF |

- | -
6 | providerBInternet .1. IPCP :1:: | normal -ipc | ASSIGNED TO DIF providerBInternet.DIF |

- | -

Listing D.3: IPC Process List for VM2
IPCM >>> list -ipcps
Current IPC processes (id | name | type | state | Registered applications | Port -ids of

flows provided)
1 | eth .1. IPCP :1:: | shim -eth -vlan | ASSIGNED TO DIF 100 | providerBAccess .2.IPCP -1-- |

2
2 | eth .2. IPCP :1:: | shim -eth -vlan | ASSIGNED TO DIF 200 | providerBRegional .2.IPCP -1--

| 1
3 | providerBRegional .2. IPCP :1:: | normal -ipc | ASSIGNED TO DIF providerBRegional.DIF |

providerBInternet .2.IPCP -1-- | 3
4 | providerBAccess .2. IPCP :1:: | normal -ipc | ASSIGNED TO DIF providerBAccess.DIF |

providerBInternet .2.IPCP -1-- | 4
5 | providerBInternet .2. IPCP :1:: | normal -ipc | ASSIGNED TO DIF providerBInternet.DIF |

- | -

Listing D.4: IPC Process List for VM3
IPCM >>> list -ipcps
Current IPC processes (id | name | type | state | Registered applications | Port -ids of

flows provided)
1 | eth .1. IPCP :1:: | shim -eth -vlan | ASSIGNED TO DIF 200 | providerBRegional .3.IPCP -1--

| 1
2 | eth .2. IPCP :1:: | shim -eth -vlan | ASSIGNED TO DIF 300 | providerARegional .3.IPCP -1--

| 2
3 | eth .3. IPCP :1:: | shim -eth -vlan | ASSIGNED TO DIF 500 | upstream .3.IPCP -1-- | 3
4 | providerBRegional .3. IPCP :1:: | normal -ipc | ASSIGNED TO DIF providerBRegional.DIF |

providerBInternet .3.IPCP -1-- | 7
5 | providerARegional .3. IPCP :1:: | normal -ipc | ASSIGNED TO DIF providerARegional.DIF |

providerAInternet .3.IPCP -1-- | 4
6 | upstream .3. IPCP :1:: | normal -ipc | ASSIGNED TO DIF upstream.DIF | providerAInternet

.3.IPCP -1--, providerBInternet .3.IPCP -1-- | 5, 6
7 | providerAInternet .3. IPCP :1:: | normal -ipc | ASSIGNED TO DIF providerAInternet.DIF |

- | -
8 | providerBInternet .3. IPCP :1:: | normal -ipc | ASSIGNED TO DIF providerBInternet.DIF |

- | -
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Listing D.5: IPC Process List for VM4
IPCM >>> list -ipcps
Current IPC processes (id | name | type | state | Registered applications | Port -ids of

flows provided)
1 | eth .1. IPCP :1:: | shim -eth -vlan | ASSIGNED TO DIF 300 | providerARegional .4.IPCP -1--

| 1
2 | eth .2. IPCP :1:: | shim -eth -vlan | ASSIGNED TO DIF 400 | providerAAccess .4.IPCP -1-- |

2
3 | providerARegional .4. IPCP :1:: | normal -ipc | ASSIGNED TO DIF providerARegional.DIF |

providerAInternet .4.IPCP -1-- | 3
4 | providerAAccess .4. IPCP :1:: | normal -ipc | ASSIGNED TO DIF providerAAccess.DIF |

providerAInternet .4.IPCP -1-- | 4
5 | providerAInternet .4. IPCP :1:: | normal -ipc | ASSIGNED TO DIF providerAInternet.DIF |

- | -

Listing D.6: IPC Process List for VM5
IPCM >>> enroll -to -dif 3 providerAInternet.DIF upstream.DIF providerAInternet .3. IPCP 1
DIF enrollment succesfully completed

IPCM >>> list -ipcps
Current IPC processes (id | name | type | state | Registered applications | Port -ids of

flows provided)
1 | eth .1. IPCP :1:: | shim -eth -vlan | ASSIGNED TO DIF 500 | upstream .5.IPCP -1-- | 1
2 | upstream .5. IPCP :1:: | normal -ipc | ASSIGNED TO DIF upstream.DIF | providerAInternet

.5.IPCP -1--, providerBInternet .5.IPCP -1-- | 2, 3
3 | providerAInternet .5. IPCP :1:: | normal -ipc | ASSIGNED TO DIF providerAInternet.DIF |

- | -
4 | providerBInternet .5. IPCP :1:: | normal -ipc | ASSIGNED TO DIF providerBInternet.DIF |

- | -
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Appendix E

Memory Script

This appendix describes the script that was used to save the available RAM of the VM to a log file.
This script was automatically launched during boot of the VMs in the IRATI Demonstrator and
the VMs with the compiled IRATI stack.

Listing E.1: memory.sh
#!/ bin/sh
i=0
while [ 1 ]
do

echo $i" "‘free -m | awk ’/^Mem/ {print $4}’‘ >> /var/log/memory.log
i=$((i+1))
sleep 1

done
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