
On the feasibility of converting AMS-IX to an

Industrial-Scale Software Defined Internet Exchange Point

University of Amsterdam

System and Network Engineering
MSc Research Project

Authors Supervisors

Siem Hermans Ariën Vijn
siem.hermans@os3.nl arien.vijn@ams-ix.net

Jeroen Schutrup Joris Claassen
jeroen.schutrup@os3.nl joris.claassen@ams-ix.netJuly 29, 2016

Abstract
Software Defined Internet Exchanges (SDX)
promise to greatly increase the flexibility of
performing fine-grained interdomain traffic engi-
neering at Internet exchange points (IXP). This
novel concept combines participant’s traffic poli-
cies with Border Gateway Protocol (BGP) routing
information in OpenFlow constructs in order to
override commonly coarse BGP forwarding behav-
ior. Recent advancements in flow rule compression
algorithms have potentially made SDX applicable
at an industrial scale (iSDX). However, with the
constant and rapid growth of the AMS-IX plat-
form, concerns regarding the practical scalability
of iSDX remain present. In this paper, the deploy-
ment feasibility of iSDX with regard to the current
Brocade MLXe switch platform is evaluated and a
model for integrating iSDX in future iterations of
the AMS-IX platform is presented. Subsequently,
prior iSDX scalability claims are validated and
expanded upon. Limitations regarding the initial
experiments are identified and more extensive
experiments are conducted. This report reveals
that the currently employed switch platform is
incapable of supporting iSDX due to the lack
of sufficient flow tables. Although the policy
compression algorithm used by iSDX has made
great advancements with regard to prior iterations,
practical scalability of the concept is still heavily
constrained by current hardware capabilities. Cur-
rently, iSDX does not scale to the size of AMS-IX
without severely constraining the IXP members
in the number of policies they are allowed to define.

Keywords – Industrial scale, Software Defined
Networking, Internet exchange point, OpenFlow

1 Introduction 2

2 Research questions 2

3 Related work 3

4 Technical overview 4

4.1 The AMS-IX platform 4

4.2 Alternative technologies 4

4.3 iSDX technical concepts 5

5 Methodology 7

5.1 Experimentation design 7

5.2 Controller enhancements 8

5.3 Switch fabric connection 8

5.4 Test cases 9

5.5 Impact analysis 10

6 Deployment impact 10

6.1 Brocade MLXe platform 10

6.2 Migrating to iSDX 11

7 Scalability evaluation 13

7.1 Encoding scalability 13

7.2 Policy scalability 13

8 Discussion 14

8.1 Encoding scalability 14

8.2 Policy scalability 14

9 Conclusion 15

A Experimentation workflow 19

Contents

1

siem.hermans@os3.nl
arien.vijn@ams-ix.net
jeroen.schutrup@os3.nl
joris.claassen@ams-ix.net

1 Introduction

The Border Gateway Protocol (BGP) features a
relatively limited amount of possibilities for traffic
engineering (TE) [1, 2]. More specifically, inbound
traffic engineering is currently limited to attributes
such as the Multi-Exit Discriminator (MED), Au-
tonomous System (AS) Path prepending and BGP
Communities. However, these preferences only af-
fect aggregate traffic and don’t have to be re-
spected by the upstream BGP peer. As such, it
can be challenging to define and enforce policies
between neighbouring ASes. Furthermore, due to
lack of fine-grained traffic engineering mechanisms
it’s even harder to setup large scale application spe-
cific peering.

Feamster et al. [3] aim to alleviate these
problems by enhancing existing Internet exchange
points (IXP) with Software Defined Networking
(SDN) in order to create ’Software Defined Internet
Exchange Points’ (SDX). SDN is a relatively new
paradigm which primarily allows for programmatic
control of the network, centralized network man-
agement and increased flexibility. However, due to
the wide variety of interpretations of this technique
and the rapid adoption by major network vendors,
SDN has evolved from being a promising academic
concept to an ambiguous buzzword. With SDX, a
return is made to the original concept of SDN, in
which the control plane of the network is placed
in a centralized controller. For this purpose SDX
leverages the standard BGP route server at an IXP
which is augmented to incorporate an SDN control
plane. Each participant of the IXP is then provided
with an isolated segment of the controller in which
it can define its own fine-grained interdomain traf-
fic policies.

SDX as a whole is transparent to the participants
of the IXP. Members of the IXP already exchange
topology information with the route server. Addi-
tionally, as each participant has its own share of the
SDN controller, they can define traffic policies in
their slice of the IXP. Subsequently, these interdo-
main policies are combined with BGP route infor-
mation, validated, and translated into correspond-
ing OpenFlow forwarding rules which are installed
in the IXP switch fabric. This may change the way
IXPs operate, as deploying SDX would allow par-
ticipants more control over in- and outbound traffic
paths within the IXP. Example use cases of such an
IXP fabric are port-based application specific peer-
ing relationships, upstream Denial of Service (DoS)
prevention or load balancing over the IXP.

Initial iterations of the SDX controller struggled
with scalability as combining BGP route informa-
tion with a large amount of policies caused the re-
sulting set of forwarding rules to exceed current
hardware capabilities. However, recent develop-

ments by Gupta et al. exhibit new methods for
compressing forwarding table sizes by consolidat-
ing similar rules between participants[4]. These
enhancements have been incorporated in an open-
source ’industrial-scale’ SDX controller (iSDX).

Although iSDX claims to be ready for deploy-
ment on at industrial scale IXPs, we find the
scalability of this concept to be questionable. The
evaluation of Gupta et al. hinges on a relatively
limited amount of policy definitions between
participants of the IXP[4]. Additionally, the scala-
bility assessment is limited to 500 participants at
most. At the time of writing the amount of route
server peers at AMS-IX is rapidly approaching
the 700 mark. As such we seek to validate these
scalability claims at one of the world’s largest
IXPs. Additionally, we are interested in the
implications of incorporating this novel concept in
the platform of AMS-IX.

Contributions
The contributions of this research are twofold.
Primarily, this paper presents the first deployment
model for a large scale multi-hop iSDX infrastruc-
ture. Additionally, the practical scalability of the
iSDX controller and its compression methods is
validated for the environment of AMS-IX.

2 Research questions

The goal of this project is to answer the following
research question:

What is the feasibility of converting the
AMS-IX to an Industrial Scale Software
Defined Internet Exchange Point?

In order to further delimit the project, the main re-
search question has been divided into the following
sub-questions:

• What alternatives exist for defining enhanced
BGP policies when peering at Internet ex-
change points?

• How would applying iSDX affect the infras-
tructure of AMS-IX’s switch fabric?

• Can an iSDX environment scale at the same
rate as the amount of AMS-IX members?

With regard to the scalability validation, this re-
search project will exclusively assess the effect of
iSDX policies on the amount of OpenFlow entries
in the flowtable. The computation time required
to perform policy compression and the effect of fre-
quent BGP updates on the flows in memory are
beyond the scope of this project. Further scoping
of the project is discussed in more detail in Section
5.

2

3 Related work

Although the Border Gateway Protocol has histor-
ically had a number of shortcomings, it is still the
de facto routing protocol used in the core of the
Internet [1, 5, 6, 7, 8, 9, 10, 11]. Primarily the
available methods for performing (inbound) traf-
fic engineering in BGP have been limited. Vari-
ous proposals and Requests for Comments (RFC)
have been written [12] that aim to establish a more
robust and predictable interdomain routing proto-
col with fine-grained traffic engineering capabilities
[13]. Commonly, these capabilities are proposed in
the form of extensions to the BGP protocol, while
others propose a complete overhaul of the Inter-
net backbone as we know it today. The Routing
Control Platform (RCP) [8] for example aims to
completely replace external BGP in the Internet
backbone by creating a logically centralized plat-
form. In summary, it allows for performing en-
hanced traffic engineering based on granular route-
selection. Similarly, Interdomain Route Validation
(IRV) is a more generic concept that primarily fo-
cuses on improving on BGP’s security and can be
extended such that it supports traffic engineering
capabilities like load balancing [14]. FlowSpec on
the other hand extends BGP rather than aiming to
replace it. This extension allows peers to perform
traffic steering based on transport layer semantics
[2]. FlowSpec provides similar functionality to SDX
and is therefore discussed in more detail in Section
4.2.

Due to the ossification of the Internet, introduc-
ing new protocols or implementing radical changes
in existing protocols is hard if not impossible to
achieve on a large scale [7]. As such, regardless
of the potential gain in functionality, these and
other proposed BGP enhancements never achieved
far-reaching adoption [15, 16]. Internet exchange
points however commonly form an innovative neu-
tral party which interconnects large amounts of
Autonomous Systems (AS). Their unique position
in the Internet may allow for rapidly adopting
novel concepts without burdening individual par-
ticipants. Recently, deploying SDN at IXPs has
been subject to research [17, 18, 19]. The Atlantic-
Wave SDX for example is an experimental Soft-
ware Defined Internet Exchange among a number
of Universities in the United States [20]. Likewise,
Google was one of the first organizations to deploy
an all OpenFlow fabric at a commercial IXP in New
Zealand, named ’project Cardigan’ [21]. Addition-
ally, research efforts have been put into investigat-
ing IXP Route Servers functionality and their role
in the global Internet [22, 23].

In 2015, Gupta et al. [24] combined these prior
research efforts in their design of a Software De-
fined Internet Exchange (SDX). SDX aimed to im-

Figure 1: Prior scalability evaluation of SDX and iSDX
up to 500 participants with varying compression algo-
rithms [4]

prove on Google’s Cardigan project with regard to
scalability. In their concept, extensive traffic en-
gineering is enabled at IXPs by replacing the tra-
ditional Layer 2 switch fabric with an OpenFlow
fabric and extending the IXP route server with an
SDN controller. OpenFlow allows for performing
traffic steering via means of granular match/action
rules. The Toulouse Software Internet Exchange
(TouSIX) has applied a similar concept in practice
by replacing traditional protocols like the Address
Resolution Protocol (ARP) and the Neighbor Dis-
covery Protocol (NDP) with OpenFlow [25]. How-
ever, SDX extends further than that and allows
participants to define interdomain traffic policies
based on transport layer semantics. Besides im-
proved traffic engineering capabilities, introducing
OpenFlow on an IXP fabric opens up new possibil-
ities for a wide range of use cases. For example,
centralized controllers could allow for systemati-
cally detecting and eliminating BGP misconfigu-
rations, which otherwise could potentially have led
to route hijacks. Bailey et al. propose a validation
step in which the IXP route server validates route
announcements using Resource Public Key Infras-
tructure (RPKI) [26].

Although SDX improved scalability in compari-
son to project Cardigan, the flow table size required
for deploying SDX at an industrial scale still ex-
ceeded the limitations of current hardware capa-
bilities. According to initial scalability evaluations
of Gupta et al. as shown in Figure 1, scaling an
SDX up to 500 participants with a relatively lim-
ited amount of traffic steering policies required over
10 million unique flow entries in the switch fabric.
Extensive research has been put into identifying
scalability issues related to SDN and internetwork
routing [27, 28, 29, 30]. One of the latest advance-
ments in this field is the incorporation of a new flow
rule compression algorithm in SDX. This would al-
low SDX to achieve an industrial-scale (iSDX) [4],
whilst only requiring approximately 65000 unique
flow entries for the same amount of participants

3

Jan 2015 Mar 2015 May 2015 Jul 2015 Sep 2015 Nov 2015 Jan 2016 Mar 2016 May 2016
 400 400

 500 500

 600 600

 700 700

 800 800

Pa
rt

ic
ip

a
n
ts

 IPv4 Participants IPv6 Participants

Figure 2: Gradual growth pattern of the amount of AMS-IX participants

and policies. According to Gupta et al. iSDX is
currently ready to operate at the world’s largest
IXPs.

4 Technical overview

In order to set the stage for iSDX, this section
will first briefly delve into the target infrastruc-
ture of AMS-IX. Subsequently, the technical con-
cepts behind the controller and its components are
discussed. Furthermore, the custom addressing
scheme used by iSDX and the supported deploy-
ment formations are examined.

4.1 The AMS-IX platform

AMS-IX is a distributed Internet exchange point
which provides peering services in multiple in-
dependent parts of the world. These services
allow connected parties such as Internet Service
Providers (ISPs) and Content Delivery Networks
(CDNs) to exchange traffic between peers of
the IXP without requiring –commonly costly–
upstream transit. Additionally, peering through
an IXP is commonly performed to increase the
resilience of networks as the IXP can be used as a
backup path.

Growth pattern
The AMS-IX has seen a significant growth in the
number of participants in recent years. Over the
course of the past one and a half years both IP
versions have shown a steady growth pattern with
an increase of circa 100 participants. Therefore,
the applicability of iSDX at the AMS-IX is tightly
coupled to the practical scalability of the provided
controller. Gupta et al. [4] deemed SDX to
have reached an industrial scale at 500 unique
participants. However, as depicted in Figure 2, the
current amount of peering IPv4 participants at the
AMS-IX already greatly exceeds this number and
the amount of IPv6 participants is expected to do
so as well. Over the past years, AMS-IX has seen
a continuous growth in traffic demands and the
requirement for an increase in port capacity. In

order to cope with this increase in demand, AMS-
IX has periodically upgraded their infrastructure.
Due to the spine-leaf topology of the fabric, the
infrastructure allows for simple horizontal scaling.

Services
Although the demands for capacity have increased
tremendously over the past years, the core compo-
nents of an Internet exchange point have largely
remained the same. In its simplest form an IXP
consists of a network fabric and participant border
routers [31]. In order to exchange traffic with
other connected parties each participant connects
to the underlying switch fabric with one or more
ports. Then, it sets up either a bilateral BGP
session with another participant or establishes
a BGP connection to the IXP’s route server.
Primarily, AMS-IX provides a Layer 2 peering
Local Area Network (LAN) which allows large
amounts of independent Autonomous Systems
(ASes) to exchange routing information via BGP.
The current implementation of the peering plat-
form is based on a Multi Protocol Label Switching
(MPLS) and Virtual Private LAN Service (VPLS)
infrastructure, which is deployed on top of Brocade
MLXe series switches. This architecture allows for
a resilient and highly scalable infrastructure.

Route server
A substantial amount of IXP participants establish
an eBGP peering session with the route server and
exchange routing information. The route server
provides eBGP route reflection to all participants,
effectively multiplexing the routing information to
all peers. This is beneficial as it allow for creating
an extensive peering matrix with all other partici-
pants without requiring a full mesh of n(n − 1)/2
individual peering relationships [23].

4.2 Alternative technologies

Converting AMS-IX to an iSDX might require
a fundamental change in the operational model
of the IXP and the way in which the platform
is built. Furthermore, incorporating the concept
of iSDX would mean that the AMS-IX has to

4

start operating on higher network layers. From
a neutrality standpoint it would be preferable if
interdomain Traffic Engineering (TE) between
participants remains transparent to the IXP.
This section reviews FlowSpec its advantages and
disadvantages as it is a potential alternative to
iSDX.

BGP FlowSpec
As previously alluded to in Section 4, the most
promising alternative to iSDX for performing fine-
grained interdomain traffic engineering is the BGP
Flow Specification (FlowSpec). This is an exten-
sion to the BGP protocol which adds additional
Network Layer Reachability Information (NLRI)
containing traffic flow specifications. Originally
FlowSpec was designed to mitigate (distributed)
denial-of-service (DoS) attacks. However, the flex-
ibility of its match-action rules allows for extend-
ing this concept further, providing similar traffic
engineering functionality as OpenFlow. Similar to
Openflow matching, FlowSpec allows for matching
traffic based on header fields such as source and
destination addresses, L4 parameters and packet
characteristics such as length, fragment sizes and
so forth. These matching criteria can then for ex-
ample be propagated through a route server to a
large set of BGP peers. The receiving peers will
then convert the received NLRI into Access Con-
trol Lists (ACL) or Policy Based Routing (PBR)
entries. Subsequently, incoming traffic is filtered
according to the specified rule set.

On an architectural level, FlowSpec is largely
analogous to Software Defined Networks. A
FlowSpec environment consists of a central
controller, connected clients (BGP peers) and
optionally a route-reflector for scalability. The
controller component is responsible for sending or
injecting the FlowSpec NRLI entry. The client
(acting as a BGP speaker) receives that NLRI
and programs its Ternary Content Addressable
Memory (TCAM) to act on the instruction from
the controller. Similar to iSDX, participants
could be allowed to define policies in the cen-
tral controller via means of a web portal or
an Application Programming Interface (API).
Validation of the individual policy definitions
is handled by ensuring that the originator of
the flow specification matches the originator
of the best-matching unicast route for the desti-
nation prefix embedded in the flow specification [2].

Advantages
Deploying BGP FlowSpec over iSDX poses several
significant advantages for AMS-IX. Primarily, as
the intelligence is moved to the customer edge,
the IXP does not need to interfere with semantics
of layer three and above. This allows an IXP to

remain in a neutral position. Another advantage
of FlowSpec is the ease of implementation as
BGP constructs are well known. However, in this
scenario all participants on the IXP would have
to support BGP FlowSpec on their edge routers.
This is problematic as FlowSpec is currently
exclusively supported by Juniper, Cisco and Arbor
Networks[32].

Limitations
From an IXP perspective, FlowSpec is preferable
over deploying iSDX. However, some technical lim-
itations apply to FlowSpec. Contrary to Open-
Flow, FlowSpec does not allow for pipelining mul-
tiple flow specifications. Instead, when multi-
ple flow specifications match a certain Forward-
ing Equivalence Class (FEC), only the first match-
ing FlowSpec rule will be applied. Another major
downside is that the TCAM allocation for ACL,
PBR and firewall rules in edge routers is commonly
fairly limited. Cisco for example only supports up
to 3000 flow entries in TCAM for its top of the line
ASR edge router [33].

4.3 iSDX technical concepts

iSDX leverages OpenFlow to implement fine-
grained policy definitions in the IXP fabric.
OpenFlow was originally introduced as a method
for researchers to experiment with new networking
concepts. The standardization of the protocol by
the Open Networking Foundation and the great
interest of prominent network vendors has caused
the protocol to gain major traction in a wide
variety of environments. iSDX offers controller
software which enables IXP members to perform
traffic engineering on the fabric by leveraging
OpenFlow.

Main challenges
Previous iterations of SDX and initiatives like
Project Cardigan suffered from scalability issues
due to their inefficiency in calculating and merging
participants’ policies. This resulted in a flow table
becoming too large to fit in the TCAM of available
hardware. Also, frequent updates could overload
the fabric forwarding plane. Furthermore, com-
puting the forwarding table could take hours. The
main technical challenge iSDX aims to overcome
is to perform outbound traffic engineering for
aggregate prefixes, while preventing inflation of
OpenFlow policies. Consider two IXP members, A
and B. Participant A wants to steer HTTP traffic
to B, even for prefixes for which the BGP path
selection algorithm has decided B is not the default
next hop. Since B should only receive traffic for
prefixes it’s advertising, a simple OpenFlow rule
matching all HTTP traffic and outputting it to

5

B ’s port on the traffic is insufficient. That is to
say, this would cause B to also receive traffic for
alien destinations. Prior initiatives would create a
flow for every distinct prefix B announces. That
is, if B advertises four prefixes, a separate flow
for each prefix would be pushed to the fabric to
satisfy participant A’s needs. As this approach
entails scalability issues, iSDX improves on this
by virtualizing Data Link and Network Layer
reachability information.

Virtual addressing scheme
In order to overcome flow inflation while still al-
lowing to steer aggregate traffic and override BGP
behavior, iSDX encompasses a virtual addressing
scheme. By using an identical MAC destination ad-
dress for traffic belonging to the same FEC, steer-
ing can be performed for packets with the same IP
destination prefixes. Note that this approach al-
lows for overriding BGP forwarding behavior. Eth-
ernet source addresses are augmented when frames
enter the fabric. The augmented destination ad-
dresses are learned by the participant edge routers
by means of ARP. OpenFlow rules are used to
transform broadcast ARP traffic into unicast traf-
fic, which is then redirected to the participant’s
iSDX controller. Within the fabric, forwarding de-
cisions are made based on these augmented MAC
addresses.

The iSDX controller encapsulates the next-hop
AS for each FEC in the first 10 bits of the destina-
tion MAC address, and the set of ASes which are
also eligible for receiving traffic for this flow’s FEC
are encoded in the remaining part. Due to the
encoding mechanism, only 27 of these remaining
38 bits can be used to wrap this list of ASes. One
bit is used for every AS, which effectively limits
the number of ASes announcing the same prefix
to 27. If more than 27 bits are required, multiple
flows are created and a six bit bitmask value is
incremented for every distinct flow. iSDX aims to
map each FEC to a distinct virtual MAC. With an
increasing amount of participants and outbound
flows, the limited bit space may not be able to
address this information in a single MAC address.
In such an event, two virtual MACs are created
and hence the number of flows for this FEC will
increase. When no explicit flows are set-up for
a particular destination, the next-hop AS is used
to determine the egress port the frame should
be forwarded to. The set of authorized ASes is
used in combination with the bitmask to choose a
different egress AS hence, overriding default BGP
route selection. This scheme is solely used for
outbound TE.

Switch fabric formations
In its current form iSDX can be deployed in either

a multi-switch or in a multi-table formation. Since
flow matching is performed repeatedly for a sin-
gle frame, a mechanism is needed to forward traffic
between sets of flow rules. Also, distributing flows
over multiple tables is more efficient than repre-
senting them in a single forwarding table[4]. This is
discussed in more detail in Section 6.1. In Figure 3,
flow decisions in the iSDX fabric are depicted when
using a multi-table configuration. In this example,
participant A has set an outbound policy which for-
wards all traffic with TCP destination port 80 to
participant B, provided that B has advertised the
destination network to the IXP route server.

The Ethernet frame incoming to the fabric is sent
by A. For the sake of simplicity, network layer prop-
erties have been omitted from this example. A re-
ceived a virtual MAC address ::X as an answer to
its ARP request for this particular FEC. The input
table sets the source MAC address of this frame to
A’s augmented address. As participant A has set at
least one outbound policy, the frame is forwarded
to the output table. If A would not have had any
outbound flows defined the frame would directly be
forwarded to the inbound table, saving unnecessary
lookups in the outbound table. In the outbound ta-
ble the combination of Ethernet source, destination
and TCP destination are matched. Accordingly,
the destination MAC address is rewritten to partic-
ipant B’s virtual MAC address. Next, no inbound
flows are matched in its corresponding table, after
which the frame is ultimately forwarded to the out-
put table. Here, the augmented destination MAC
address is replaced by B’s authentic MAC.

SRC A, DST X

Outbound

SRC %:

VMAC
Translation

M: SRC A => 1

IXP Fabric (Virtual Chassis)

SRC 1: TCP 80 => N

SRC N: TCP 25 => 1

Main (out)

SRC A = 1 & TCP 80

=> SRC A = 2

Main (in)

M

A

In Port = #1

SRC ::01

M In Port = #2

A

Outbound

M

A

SRC = ::01, TP_DST 80

DST ::02

M -

-A

Inbound

M

A

SRC = ::01, TP_DST
22

à Drop

M -

-A

Main (out)

M

A

DST = ::01

DST à A

M DST = ::02

DST à BA

TCP_DST 80

#1

A B

#2

Main (in)

M

A

In Port = #1

SRC ::01

M In Port = #2

A SRC ::02

Main (out)

M

A

DST = ::01

DST ::0A

M DST = ::02

A DST ::0B

Inbound

A

SRC = ::01, TP_DST 22

 Drop

-

A -

M

M

Figure 3: Representation of the iSDX table pipeline
and its match/action behavior

Layout & Controller Elements
The iSDX controller software consists of multiple
components as depicted in Figure 4. When de-
ployed, participants would just like they’re doing

6

ExaBGP
Route Server

Route
Databases

XRS
BGP Relay

Participant 1 Participant N
Compute and

compress Forwarding
Table Entries per

participant

Multiplex BGP routes
to participant

controllers

Route Server peering
with participants and
forwarding routes to

XRS

REFMON
Fabric Manager

Aggregates per-
participant flows into

one flowtable

IXP Fabric
MLXe,

Open vSwitch,
...

1

2

3

4

5

Edge routers of
participants

containing IGP routes

Participant
N+1

TCP 80 => N TCP 25 => 1

TCP 21 => 4

SRC 1: TCP 80 => N

SRC N: TCP 25 => 1

SRC %: TCP BGP => RS

SRC %: ARP => PROXY

Figure 4: An overview of the original iSDX controller

Route
Databases

XRS
BGP Relay

Participant 1 Participant N
Compute and

compress Forwarding
Table Entries per

participant

Multiplex BGP routes
to participant

controllers

Redis
Flow Queue

Cache participant
flows

REFMON
Fabric Manager

Aggregates per-
participant flows into

one flowtable

1

2

3

4

AMS-IX Route Server
RIB dump

Participant
N+1

TCP 80 => N TCP 25 => 1

TCP 21 => 4

IXP Fabric MLXe,
Open vSwitch,

...

5

TCP 80 => N

SRC 1: TCP 80 => N

SRC N: TCP 25 => 1

SRC %: TCP BGP => RS

SRC %: ARP => PROXY

Figure 5: An overview of the modified iSDX controller

on a traditional IXP let their edge routers peer
with the Route Server of the IXP. ExaBGP is used
as Route Server as it provides granular control of
distributing routes by leveraging user-defined ex-
ternal scripts. Upon receiving a participant’s BGP
update, ExaBGP forwards the update exclusively
to the iSDX controller. The XRS is the component
receiving ExaBGP’s BGP updates. When receiv-
ing such an update, it’s multiplexed to all partic-
ipant controllers that are configured to peer with
the update’s originated IXP participant.

Flow computation can now be parallelized across
all IXP’s participant controllers. They each main-
tain their own RIB and set of flow rules. Based on
their contents, a participant controller (pctrl) com-
putes and forwards a set of flow table entries. As
iSDX uses MAC addresses to encapsulate forward-
ing information, the participant controllers also al-
ter the BGP next-hop to a virtual IP address. The
modified BGP update is then returned to the XRS
which in turn forwards it to the ExaBGP Route
Server. This way all participants on the IXP learn
each others routes. The computed flows are prop-
agated downstream to the Fabric Manager (Ref-
mon). Note that the connection between each par-
ticipant and the Refmon is not persistent, thus,
connection set-up and termination takes place for
every received BGP update at the Pctrl side. The
Refmon is based on the Ryu controller and lis-
tens for updates coming from the participant con-
trollers. On receiving flows, it aggregates them,
checks if they comply with BGP route advertise-
ments whereafter the flows are pushed to the IXP
fabric. In order to allow participants to communi-

cate with one another, a set of default forwarding
rules is installed in the fabric when the iSDX con-
troller starts. These rules allow participants to es-
tablish BGP peering sessions and allow ARP traffic
on the fabric.

5 Methodology

This section presents the methodology of the
project and discusses several enhancements made
to the iSDX controller. Additionally, the experi-
mentation environment is discussed and several dis-
tinct scalability test scenarios are defined.

5.1 Experimentation design

To perform the experiments we have been provided
with the raw IPv4 and IPv6 Routing Information
Base (RIB) dump of AMS-IX’s route servers. For
the scalability experiments the IPv4 dump will be
used exclusively as at the time of writing iSDX does
not yet support IPv6. Even though the participant
controllers do accept IPv6-like routes and return
flows on receiving such a BGP update, they also
do so when receiving arbitrary strings sent along
with the BGP prefix field. As such, route calcula-
tion within the pctrl can be deemed unreliable for
IPv6. And so are the computed flows, as they de-
pend on the participant controller its internal RIB.
Therefore, only the IPv4 RIB dumps of both route
servers were used for the experiments.

The IPv4 dumps contain ±200.000 peering
routes for ±150.000 unique prefixes. With regard

7

to ethical concerns, the data set used for the ex-
periments described in this report contains infor-
mation which can be traced back to specific partic-
ipants. As such this data set will not be publicly
provided. Still, reproduction of the experiments
can be performed by utilizing RIB dumps from the
RIPE Routing Information Service Raw Data ser-
vice [34]. A full workflow for reproducing the re-
sults in this paper has been included in Appendix
A.

The data set as provided by AMS-IX is not suffi-
cient to perform the extended scalability tests as
the RIB dump only contains information of 595
unique peering IPv4 participants. In order to test
for scalability beyond this number, additional IPv4
peering data is required. Therefore the data set is
extended with uniformly random generated partic-
ipants. Every generated participant is guaranteed
to have a unique AS number. Based on characteris-
tics of the original RIB dump, each of the fictitious
participants advertises five prefixes that is neither
a more specific to an already existing prefix in the
RIB dump, or vice versa. For the next hop, se-
quential addresses are distributed from the class C
private IP space. However, as on average one-fifth
of all participants of the route server peers have
a secondary port on the fabric, the generated par-
ticipants must also meet this average. Therefore,
approximately 20% of the artificial participants has
an additional next-hop hence, a second port on the
fabric. Extending the data set allows for extrapo-
lating beyond the current amount of peering par-
ticipants, while maintaining participant character-
istics. A limitation to this approach however, is
that it does not account for any future variation
in the number of ports per participant nor in the
amount of prefixes advertised by participants.

Hardware
The iSDX controller software is deployed on a
server provided by AMS-IX in a lab environ-
ment, containing 56GiB of Random Access Mem-
ory (RAM) and two Intel E5640 Quadcore CPU’s.
Furthermore a Brocade MLXe-8, MLXe-32, VDX
6740 and SLX 9850 were made available to connect
to the SDN controller. All of these switches include
support for the OpenFlow 1.3 specification.

5.2 Controller enhancements

In order to validate the flow table sizes for a set
of participants and at the same time simulate
traffic among participants, a disproportionate
amount of computing resources would be required.
To overcome the limited amount of available
computing resources, a number of modifications
were made to the iSDX controller implementa-
tion. These enhancements are depicted in Figure 5.

Eliminate traffic simulation
Since this research aims to validate the claims with
regard to the flow table size, there is no need to
actually simulate traffic among IXP participants.
Therefore the virtualized participant routers could
be left out of the simulation, saving resources.
However, as there’s still a need to process their
BGP advertisements down the iSDX pipeline, we
inject them directly into the XRS. Thus, omitting
the ExaBGP route server (Figure 5, step 1). In
summary, instead of launching a Quagga instance
for every IXP participant, mimicking their edge
router and advertising Interior Gateway Protocol
(IGP) routes to the ExaBGP route server, we
generate those BGP advertisements from the RIB
dump, and inject them directly into the XRS.

Queue participant flows
As discussed in Section 4, the connection between
each participant controller and the fabric manager
is not persistent thus, set-up and terminated for
each flow transmitted to the fabric manager. This
resulted in a storm of TCP connection initiations
which led to latency and stability issues when sim-
ulating over 300 participants. To enhance trou-
bleshooting and stability, this connection was re-
placed by a persistent connection between each pc-
trl and an in-memory data structure store, Redis.
All flows created by the participant controllers are
temporarily stored in a Redis list structure, func-
tioning as a queue. This way, outstanding flows
can easily be debugged, and new custom flows can
be inserted on the fly.

5.3 Switch fabric connection

At the time of writing, the iSDX controller1 solely
includes detailed instructions for integrating iSDX
with either Open vSwitch instances or switches
based on Broadcom chipsets. The original ex-
periments as performed by Gupta et al. make
use of Open vSwitches. On GitHub, additional
instructions are provided for using Quanta LY2
hardware switches. These whitebox switches are
built with Broadcom merchant silicon and thus re-
quire Broadcom’s OpenFlow Data Plane Abstrac-
tion (OF-DPA) layer to push flow rules to the
proprietary hardware tables. The Brocade MLXe
platform on the other hand uses Brocade’s in-
house MaxScale-160 Packet Processor chips which
allow for directly injecting OpenFlow rules into the
TCAM tables.

Ryu addresses the switches it manages by ref-
erencing their datapath identifiers. These identi-
fiers uniquely identify each switch in the Open-

1Industrial Scale Software Defined IXPs (iSDX) con-
troller: https://github.com/sdn-ixp/iSDX

8

https://github.com/sdn-ixp/iSDX

Scenario Up to IXP Participants
Flows to %

of participants/prefixes
Maximum no. of
policies per entity

1 ≤ 800 10 4
2 ≤ 800 10/30/50 4/8/16
3 ≤ 800 10 4

Table 1: Summary of all the described scalability experiments

Flow fabric. Due to the fact that the Brocade
MLXe switches are directly addressable, modifying
the datapath identifier in the Ryu configuration file
is sufficient to push OpenFlow rules to the desired
physical switch. During the course of performing
the experiments, Open vSwitches are used as a fall-
back scenario whenever the MLXe platform lacks
certain functionality.

5.4 Test cases

In order to evaluate the scalability of the iSDX
controller the results of Gupta et al. will be vali-
dated by reproducing the experiment as described
in [4]. Subsequently, a series of distinct test scenar-
ios is defined in which factors such as the amount of
peering participants, outbound policies and policy
parameters are varied. As we extend on the origi-
nal iSDX paper, and inbound policies don’t lever-
age the iSDX encoding scheme, we only simulate
outbound policies. Additionally, we are interested
in the effect of specifying policies on various net-
work layers as this may have an effect on the finite
amount of TCAM available [35]. Therefore, multi-
ple rulesets will be generated and evaluated.

With regard to the experiments, scaling up the
amount of participants inherently means that the
time required to perform a single measurement
increases exponentially. As such, all measurements
are performed for a total of five times. Due to
the nature of the experiments, the results can
exclusively vary between the boundaries as defined
in the test, meaning that outliers are non-existent.
Because there is no skew of results, all mea-
surements are averaged over their total amount
of runs. The exact workflow of performing the
scalability experiments and varying the testing pa-
rameters is described in more detail in Appendix A.

Experimentation constraints
Due to the instability of the iSDX controller
software, it was not possible produce reliable test
results for more than 400 participants. As the
iSDX developers have been contacted about these
issues and no solution has yet been found, only
the generated policies will be taken into account
for our experiments with over 400 participants,
instead of the compressed flows as calculated
by the iSDX controller. This limitation and its
impact on the results is discussed in Section 8.

Encoding scalability
As mentioned in Section 4.3 policy compression
efficiency is constrained in an event where more
than 27 distinct Autonomous Systems announce
the same prefix. In order to determine whether
this would cause any flow inflation for AMS-IX,
the first part of this research aims to identify these
prefixes. Therefore, the RIB dumps were analyzed
for duplicate announcements of the same prefix by
distinct ASes.

Scenario 1: Scalability validation
In the original iSDX paper, Gupta et al. [4]
perform scalability experiments in which each
participant has between one and four outbound
policies for 10% of the total participants. The
amount of participants is scaled up to 500 with
increments of 100 participants. As previously
discussed in Section 4.1, in order for iSDX to
properly scale for the AMS-IX, the amount of
participants should at least scale to around 800.
Therefore, this first test scenario will reproduce
the initial experiment and simultaneously extend
on the amount of participants following the growth
pattern as observed in Figure 2.

Scenario 2: Expansion of policies
The first test scenario solely varies the number
of peering participants. Due to the size of the
AMS-IX and their participants, the settings of
this scalability test might be too small-scale. In
order to determine the scalability limits of iSDX,
the number of policies each participant sets are
expanded. As shown in Table 1, each participant
sets up outbound policies to up to 50% of the other
IXP participants. For each selected participant,
up to 16 outbound TCP policies are created.
Although these could just as well be UDP policies,
we reproduce the scenario in the original iSDX
paper and create TCP-only policies.

Scenario 3: Granular policies
The previous scenarios defined flow rules for ag-
gregate traffic in which all traffic for a given TCP
destination port is forwarded to one participant.
Situations are imaginable in which a given par-
ticipant would for example forward HTTP traffic
(port 80) for a specific IP prefix to a certain partic-
ipant. Hereby overriding default BGP behavior for

9

a specific prefix and TCP destination port, while
leaving forwarding behavior for other traffic un-
touched. Figure 6 visualizes this scenario in more
detail, in which scenario one and two are drawn
on the right side, while traffic engineering based
on network layer characteristics is depicted on the
left side. The latter is tested in this scenario. Each
participant creates up to four outbound policies for
each prefix in 10% of the IXP prefixes.

Figure 6: Prefix-based peering scenario (left) and de-
fault iSDX behaviour (right)

5.5 Impact analysis

Introducing Software Defined Networking at an In-
ternet exchange point to enhance traffic engineer-
ing capabilities is a fairly novel concept. Therefore,
prior to performing the scalability experiments,
methods for deploying and migrating the IXP to
a Software Defined IXP will be discussed.

6 Deployment impact

As discussed in Section 4.1, the services of AMS-
IX are currently built on top of the Brocade MLXe
switch platform. With regard to a possible imple-
mentation of iSDX within the IXP, these switches
have a series of drawbacks which limit the feasibil-
ity of an IXP-wide deployment. Prior to presenting
the results of the scalability experiments, this sec-
tion discusses limitations with regard to the current
switch platform and goes into more detail on pos-
sible workarounds. Subsequently, it delves into the
impact of deploying iSDX at the AMS-IX. For a
full discussion of the experimentation results the
user is referred to Sections 7 and 8.

6.1 Brocade MLXe platform

Although iSDX introduces new functionality at
the IXP, it does not require support for exotic
OpenFlow match fields and actions. This is
important since a significant amount of OpenFlow
instructions described in the specification are
optional for hardware vendors to implement.
iSDX mainly requires support for matching and
modifying relatively simple layer 1 (logical) ports,
layer 2 and 3 source and destination addresses and
layer 4 source and destination ports. Additionally,
as described in Section 4.3, matching on the layer
2 destination with arbitrary bit masks is required
for traffic engineering. The core of AMS-IX’s net-
work is built around Brocade Networks MLXe-32
switches. The chassis used for the experiments
as described in Section 5.1 is deployed with the
NetIron R05.7.00 firmware. According to the
technical documentation as provided by Brocade,
this firmware version is fully capable of supporting
all the OpenFlow match and action fields required
to implement iSDX.

Flow installation
Initially, every flow table in the switch is empty
and does not contain any flow rules. Therefore the
controller will add a table-miss entry which defines
a series of actions to perform when not a single flow
entry in the table matches the traffic. The test en-
vironment of Gupta et al. makes use of a series
of Open vSwitches (OVS) to perform their exper-
iments. This is significant due to the fact that at
the time of writing, OVS does not fully support
the table-miss flow entry. To circumvent this lim-
itation, Ryu, part of the Refmon, injects a normal
flow entry with a low priority level and broadly de-
fined matching criteria, causing it to function as a
table-miss entry.

However, when attempting to create a session
with the Brocade MLXe this non-default behavior
causes problems. After a successful OpenFlow
handshake the controller attempts to add the
table-miss entry by means of a OFPT FLOW MOD

message. This causes the Brocade MLXe-32 switch
to respond with an OFPT ERROR, indicating that
the received flow modification is a malformed
packet. As this is unintended behavior, a support
case has been opened with Brocade to resolve
the non-standard behavior. A workaround is
to upgrade the firmware of the switch as the
issues perceived with regard to OpenFlow in the
NetIron R05.7.00 firmware are largely rectified in
the later R05.9.00 version. However, upgrading
the MLXe-32 switches would require upgrading
the current Management modules in the chassis
from version MR to MR2 which may be a costly
decision, considering the age of this platform.
Subsequently, preliminary tests were performed

10

on an MLXe-8 switch in the AMS-IX lab. This
switch was equipped with the correct firmware
and allowed for injecting the required flow rules in
TCAM. Listing 1 presents an example of a flow
rule as injected by iSDX.

c u r l −X POST −d ’ {
” dpid ” : 14721744138777133056 ,
” cook i e ” : 1 ,
” t a b l e i d ” : 0 ,
” p r i o r i t y ” : 10 ,
” f l a g s ” : 0 ,
”match” : {

” d l d s t ” : ”00 : 00 : 00 : 00 : 00 : 04/00 : 00 : 00
↪→ : 00 : f f : f f ” ,

” d l type ” : 2048 ,
” tp ds t ” : 4322 , ” i p p r o t o ” : 6

} ,
” a c t i o n s ” : [{

” type ” : ”SET FIELD” ,
” f i e l d ” : ” e t h d s t ” ,
” va lue ” : ”00 : 00 : 00 : 01 : 00 : 04”

}]
} ’ http : // l o c a l h o s t : 8080/ s t a t s / f l owent ry /

↪→ add

Listing 1: Injecting arbitrary flow rules in the MLXe
platform with Ryu

Table allocation
The MLXe switch platform used by the AMS-IX
was originally designed to be compliant with the
OpenFlow 1.0 specification. At that point in time,
multi-table pipeline processing was not yet present
in the specification. This means that the MLXe
switches only support a single OpenFlow flow ta-
ble in TCAM. This is a major limiting factor in
implementing iSDX at the IXP because, as dis-
cussed in Section 4.3, the lack of additional flow
tables limits the IXP to performing iSDX in the
highly inefficient multi-switch setup. Theoretically
it would be possible to deploy iSDX in a multi-
switch formation in which multiple MLXe chassis
are deployed to distribute the main, inbound and
outbound table over. However, this would require
a significant investment. Additionally, due to the
way the flow rules are set up by iSDX, all par-
ticipants would have to be coupled to the main
MLXe switch. Although the switches have been
made compliant with the OpenFlow 1.3 specifica-
tion, the use of multiple flow tables is optional.

To alleviate this problem, a series of abstrac-
tion layers have been developed which allow ear-
lier OpenFlow switches to perform multi-table pro-
cessing with legacy hardware. Pan et al. [36]
describe such a software abstraction in the form
of ’FlowAdapter’. This technique is placed be-
tween the SDN controller and the data plane of
the switch and translates incoming OpenFlow in-
structions from the controller to a format that is
conform the fixed hardware configuration of the un-
derlying switch. Inherently, the major drawback of
this proposed solution is that FlowAdapter has to

be implemented in the firmware of the switch. As
such, the vendor of the switch platform has to in-
corporate the software layer in its updates. Due
to the modular composition of an OpenFlow sys-
tem, this problem could also be solved on a higher
layer. Monsanto et al. [37] present Pyretic: an
abstract programming language which allows for
writing modular SDN applications. These abstract
languages are theoretically capable of combining
the in- and outbound policy definitions of all par-
ticipants into a single forwarding table. However,
due to the fact that there is only one flow table
available, the resulting set of flow rules would be a
Cartesian product of all the defined policies. Nat-
urally, this process is disproportionally costly with
regard to the available TCAM. Conclusively, the
current AMS-IX switch platform is severely lim-
ited due to the lack of multiple flow tables. In the
future the AMS-IX will utilize the new Brocade
SLX platform which does have support for multi-
ple flow tables. Due to the perceived limitations in
the MLXe platform, the scalability experiments as
described in Section 5 will be performed on Open
vSwitches.

6.2 Migrating to iSDX

iSDX was originally designed to be deployed on top
of a virtual chassis switch fabric. In such a setup
the underlying switch fabric functions as a single
logical entity. Brocade implements this functional-
ity under the name ’VCS’ and most major network
vendors offer similar technologies. Functioning as
such is beneficial to iSDX as each switch is aware of
all other chassis members output ports due to the
inter-switch communication. This allows the iSDX
controller to define OpenFlow rules for all known
output ports in the switch fabric. However, for its
operational model, AMS-IX heavily relies on the
capability of making a distinction between partic-
ipant’s traffic on the layer 2 network. Currently,
MPLS and VPLS are being deployed in order to
aggregate traffic with differing VLAN tags in a sin-
gle broadcast domain. This functionality would be
lost when a VCS is configured to simulate a layer
2 switch. An additional disadvantage is that vir-
tual chassis techniques are commonly vendor spe-
cific. Building an infrastructure based on VCS in
this case would inherently mean a vendor lock-in.
With regard to the future, this is obviously an un-
favorable scenario.

Therefore the current iteration of the AMS-IX
platform has been deployed as a multi-hop2

switch fabric based on MPLS and VPLS. In a
multi-hop setup the switches in the underlying

2Multi-hop in this scenario should not be confused with
multi-switch as described in Section 4.3. Also refer to Sec-
tion 4.1.

11

Figure 7: Deploying iSDX at the AMS-IX Provider Edge switches

platform are disjoint and each form a single entity
by themselves. This inherently means that the
iSDX controller can not directly define actions for
output ports on other switches, thus complicating
a deployment scenario for iSDX at the IXP. Given
these constraints, and the limitations of the current
MLXe switches, the following section proposes
a model which allows for integrating iSDX with
future iterations of the AMS-IX infrastructure.

Proposed deployment model
Although the current MLXe switch platform is
dated, deploying iSDX at AMS-IX in the future
would still be feasible. This is due to the fact
that the future Brocade SLX platform is being
released as OpenFlow-hybrid switches, meaning
that they support both an OpenFlow pipeline,
as well as a legacy forwarding pipeline. Based
on this capability, we envision a model in which
the edges of the current AMS-IX platform, the
Provider Edge (PE) switches, are controlled by
the iSDX controller whereas the core, the Provider
(P) switches maintain normal MPLS/VPLS for-
warding behavior. This model is also depicted in
Figure 7.

For example, consider a scenario in which AS
64514 wants to send traffic to AS 65412. In this
scenario Customer Edge router 1 (CE1) is the de-
fault next hop for AS65412. In order to send traffic
over the IXP, CE4 performs an ARP request for the
virtual next hop address of AS 65412 and receives a
virtual MAC address in return. Subsequently CE4
sends its traffic destined for CE1 towards PE4 with
a layer 2 destination of that VMAC address. On
PE4, traffic comes into an interface configured as
OpenFlow-hybrid, meaning that it supports both
OpenFlow traffic forwarding as well as normal traf-
fic forwarding. By default, all traffic that is not
shielded off by a specific series of Private VLANs is
handled by the OpenFlow pipeline. Thus, when the
traffic comes into PE4, it would be directed through
the main (in and out), outbound and inbound ta-

bles as defined by iSDX. When traffic leaves the
main outbound table, it will have the real physical
MAC address of CE1 in its Ethernet destination
header.

Because the P and PE switches are not deployed
as a virtual chassis, this would normally pose prob-
lems since PE4 has no knowledge of CE1’s real
MAC address. However, because VPLS is used to
simulate a layer 2 Ethernet broadcast domain, all
switches learn all MAC addresses of the connected
peers over the Virtual Circuits (VC). At this point
the switch still has to forward the traffic over the
MPLS/VPLS backbone. This can be achieved by
reconfiguring the output action in iSDX to send
traffic to the NORMAL reserved OpenFlow port.
This causes the traffic to be sent over the legacy
forwarding pipeline, thus resulting in PE4 to per-
form an MPLS label lookup for the physical MAC
address and subsequently switching the traffic over
the backbone. Although this is unconventional be-
haviour, it is defined as an optional feature in the
specification for OpenFlow-hybrid switches and is
supported by both Brocade switch platforms:

An OpenFlow-hybrid switch may also al-
low a packet to go from the OpenFlow
pipeline to the normal pipeline through
the NORMAL and FLOOD reserved ports
[38]

On the inside of the MPLS/VPLS backbone the
interfaces on the switches can be configured as nor-
mal ports. Because the iSDX policy is applied on
the edge, zero knowledge of OpenFlow is required
in the P switches. When traffic arrives at the op-
posing end’s PE -PE1 in this scenario- the MPLS
label will be popped and traffic is forwarded via
the hybrid port’s normal pipeline out towards CE1.

Advantages & disadvantages
The primary advantage of deploying the proposed
model is that with this setup the current MPLS/V-
PLS infrastructure can be retained whilst only the

12

Figure 8: Frequency of prefixes announced by unique Autonomous Systems on a logarithmic scale

edge of the network has to be modified to support
OpenFlow. All policy decisions are made on the
edge and the backbone can remain a ’simple’ for-
warding element. However, as of right now it is
not possible to separate the flow tables for the PE
switches based on the connected participants. As
such, performing OpenFlow rule matching on the
edge of the network inherently means that every
PE switch needs to be able to house the complete
iSDX flow table. Naturally, as the amount of poli-
cies per participant grows this becomes increasingly
more difficult. The implications of scaling up the
amount of policies on flow table sizes is evaluated
in more detail in Section 7. In the current AMS-IX
platform configuration, the edge of the network is
formed by the relatively less capable MLXe-8 and
MLXe-16 switches. Due to the large TCAM re-
quirements of iSDX, incorporating this concept in
future platform iterations would most likely require
the PE switches to be upgraded. Although not
yet possible, partitioning the flowtable such that it
would only contain the flows relevant to the con-
nected IXP participants of the switch in question
could greatly improve the deployment feasibility of
iSDX.

An adverse effect of the scenario as shown in Fig-
ure 7 is that combining both forwarding pipelines
results in a more costly lookup: after the OpenFlow
matching, an MPLS label lookup has to take place.
Arguably, a more elegant approach for integrating
iSDX would be to let the controller determine the
correct MPLS label and include the tagging of traf-
fic as an action in the OpenFlow pipeline. However,
this would require the controller to become aware of
the Label Forwarding Information Bases (LFIB) of
the PE switches in order to apply the correct label.
In such a scenario, consistency of the LFIBs and the
speed of the controller become significant factors
in traffic forwarding and network resilience. An-
other option would be to fully implement the cur-
rent MPLS/VPLS behaviour in OpenFlow. How-
ever, this would require all switches in the fabric to

support OpenFlow. Additionally, this would most
likely cause a significant inflation in the total num-
ber of flow rules in the fabric. Either way, both
of these latter approaches would require a signif-
icant modification of the iSDX controller whereas
the first model only requires modification of the
output action.

7 Scalability evaluation

This section presents the results of the test cases as
described in Section 5. Additionally, the AMS-IX
Route Server RIB is analyzed in order to determine
whether all prefixes could be supported by iSDX’s
hierarchical encoding.

7.1 Encoding scalability

According to the RIB dump of the AMS-IX Route
Servers, over 99% of all prefixes are advertised by
five or less Autonomous Systems. Of all prefixes
advertised by at least six ASes, only two percent is
advertised by more than 10 participants. Although
absolute numbers differ, these trends hold true for
both IPv4 and IPv6. As presented in Figure 8, two
prefixes exist for which more than 20 participants
announce a route.

7.2 Policy scalability

The results for every tested scenario as described
in the methodology are discussed in this section.

Case 1: Scalability validation
Figure 9 shows that up to 700 IXP participants, the
number of flows follow a slight exponential growth.
Whenever the number of IXP participants doubles,
the number of flows quadruples. In that sense,
the results for seven and eight-hundred participants
slightly deviate from this trend.

13

Figure 9: Scalability validation (Case 1)

Case 2: Expansion of policies
When doubling the number of outbound policies
per participant from four to eight, the number of
flows ending up in the fabric doesn’t. Doubling
from eight to 16 policies exhibits a similar trend.
Figure 10 also shows a linear growth when increas-
ing the percentage of participants each IXP mem-
ber creates outbound policies for.

Figure 11: Granular policies (Case 3)

Case 3: Granular policies
For prefix instead of participant based policy cre-
ation, the fabric will need to support up to tens
of millions of flows. Like in scenario one, the
amount of flows doubles on duplicating the num-
ber of IXP participants. Similar to the scalability
validation, the simulations concerning seven and
eight-hundred participants deviate from this trend.
Moreover, the trend witnessed in case two is also
visible in Figure 11, in which increasing the num-
ber of policies from four to eight doesn’t result in
a double amount of flows.

8 Discussion

The following sections analyze the experimentation
results and elaborates on whether these findings
affect the scalability of iSDX.

8.1 Encoding scalability

As there are no prefixes announced by more than
27 distinct Autonomous Systems, reachability in-
formation can be embedded in the MAC destina-
tion field using iSDX encoding. Although one pre-
fix exists for which the number of next-hop can-
didates nears the threshold, this does not consti-
tute an immediate scalability concern for deploying
iSDX. Hence, compression would be suboptimal for
this prefix exclusively.

8.2 Policy scalability

The results of the scalability validation shows
that we were able to reproduce thus validate the
original iSDX scalability claims. The divergence
observed in the experimentation results when
testing over 700 participants can be attributed
to rounding the average number of policies per
participants upwards. For this reason the devi-
ation is only observed for over 700 participants,
which is when the the fictitious participants come
into play. Furthermore, we noticed the amount
of flows did not double when the maximum
tolerated amount of outbound policies did. This is
caused by the way random numbers in a certain
range are generated, and may require background
information to fully comprehend the cause of this
problem. When an IXP member has selected
an X percent of IXP participants it wants to
create outbound policies for, it randomly creates
one up to Y outbound policies for each of the
participants in this set. With Y being either
four, eight or sixteen. When performing this
random selection a number of times, the average
number of created policies with Y being four,
is 2.5. Unlike one might expect, when doubling
Y, the average does not do so. Instead, when Y
doubles to eight, the average number of created
policies will be 4.5, which explains the observed
results. The growth observed when creating
prefix instead of participant based policies has
two causes. First is the number of prefixes being
about two orders of magnitude larger than the
number of IXP participants. Second is the use
of iSDX’s superset encoding scheme, which was
designed for compressing reachability information
for an aggregate of prefixes, instead of a single
prefix. Setting up prefix based policies basically
defeats the purpose of this encoding scheme. The
algorithm used in the initial SDX proposal would
be more suited to compress this type of policies,

14

0

500

1000

1500

2000

2500

3000

10% 30% 50% 10% 30% 50% 10% 30% 50% 10% 30% 50% 10% 30% 50% 10% 30% 50% 10% 30% 50% 10% 30% 50%

100 200 300 . 400 500 600 700 800

×
1

0
0

0
4 Policies 8 Policies 16 Policies

Number of IXP participants

T
o

ta
l a

m
o

u
n

t
o

f
fl

o
w

s

Figure 10: Expansion of policies (Case 2)

as it was designed to merge policies with identical
Network/Transport layer matching criteria.

Limitations
As described in the Methodology, the iSDX con-
troller cannot perform simulations for more than
400 IXP participants. Therefore it is impossible to
deduce whether policy inflation would take place
at an IXP with over 400 members. Thus, results
for over 400 participants represent an optimal
situation in which policy compression could be
performed at all times. With regard to future
growth, the assumption was made that with 800
participants the average number of announced pre-
fixes per IXP member will remain as it currently is.

Advancement
Performing iSDX policy compression on an IXP
with up to 400 participants works without in-
flation. It’s however questionable whether iSDX
could be considered industrial scale. Although the
AMS-IX has almost 600 participants peering with
its route server, larger Internet exchange points ex-
ist. Even if the iSDX policy compression would be
able to cope with the world’s largest IXPs, current
hardware is not capable to store such an amount
of OpenFlow rules in memory. For example, the
MLXe-32 can store 128.000 flows in its TCAM
[39]. Additionaly, its successor, the SLX platform
based on the Jericho chip, is expected to be able to
handle at least double. However, deploying iSDX
at this scale is still precarious. Unless an IXP
constrains their members in the amount of policies
they are allowed to apply, overflowing the TCAM
is a serious risk. This can result in traffic being
either forwarded to the controller or flooded over
all ports. On the other hand, limiting customers in
the way they setup their policies could bring harm
to the neutral status Internet exchange points have
acquired. Summarizing, scalability concerns when
deploying iSDX are mainly caused by OpenFlow

not yet being ready to be deployed at a large scale.

Closing figments
As mentioned previously, the controller is not able
to process flows for more than ±400 participants.
We found that this might be caused by a race con-
dition in the implementation of the participant con-
troller. The socket communicating to the XRS is
shared among multiple threads without implement-
ing a mutex. The iSDX developers have been con-
tacted regarding this issue, yet no solution has been
found. Also, when performing the experimenta-
tions we found a number of other limitations. First
is a queue in the Refmon that continually filled
up until it blocked, preventing us from simulating
more than ±100 participants. Moreover, the cur-
rent design of iSDX performs all traffic engineer-
ing based on the egress AS. If an IXP member has
multiple ports connected to the fabric, other par-
ticipants cannot differentiate between them. When
dealing with a variety of link speeds, one might
want to create an outbound policy to a multi-port
AS and steer traffic over the faster link. We’ve
been in contact with Prof. M. Canini from the
University of Louvain, who is working on project
ENDEAVOUR [40]. As part of this project, the
Umbrella controller is being developed, which aims
to improve on iSDX and also addresses the multi
egress port problem.

9 Conclusion

In this paper we have evaluated the feasibility of
converting the current AMS-IX infrastructure to a
Software Defined Internet Exchange Point. More
specifically, we assessed the effect of defining an in-
crementally increasing amount of interdomain traf-
fic policies on the number of generated OpenFlow
rules. Additionally we propose a model which al-
lows for iSDX to be transparently incorporated in
future iterations of the AMS-IX platform.

15

Due to the position of an IXP in the Internet,
iSDX is a unique concept with few comparable
technologies. The BGP FlowSpec extension pro-
vides similar features but lacks the transparency
towards participants that iSDX offers. However,
the scalability of iSDX is limited. Our experiments
indicate that for 800 unique IXP participants, in
a scenario where each participant defines between
one and four outbound policies for 10% of the to-
tal participants, approximately 160.000 unique flow
entries are required. The situation worsens when
prefix based policies. At that point tens of mil-
lions of unique flow entries are required to embody
the full set of traffic policies. Additionally, due to
current limitations with regard to multi-hop envi-
ronments, the state computed by iSDX needs to
be copied to all edge switches so as to ensure con-
sistent processing. As such, practical scalability
of the concept is still heavily constrained by cur-
rent hardware capabilities. In the future iSDX can
be integrated by performing iSDX forwarding de-
cisions on the edge of the network. By leverag-
ing both the OpenFlow and normal traffic pipeline
in OpenFlow-hybrid switches, iSDX can be im-
plemented whilst retaining the current MPLS/V-
PLS infrastructure. However, the current Brocade
MLXe switch platform employed by the AMS-IX
has been found to be incapable of integrating with
iSDX due to the lack of multiple flow tables.

Considering the time frame and limitations im-
posed by the scope of this project, we conclude on
the notion that iSDX in its current state does not
scale to the size of AMS-IX without policing the
amount of allowed policy definitions per partici-
pant. However, limiting this number would intrin-
sically impact the neutral position of AMS-IX as
an Internet exchange.

Future work

In this report we propose a model for deploying
iSDX in a multi-hop environment over an MPLS
backbone. However, native support for multi-hop
environments with proper division of the flow ta-
bles would allow the concept to take on a much
larger scale. Preliminary efforts in this area are be-
ing made in the ENDEAVOUR project [40], which
introduces a subcontroller named ’Umbrella’. Al-
though these efforts seem promising, thorough re-
search into the features and limitations of this ap-
proach is required. In the future it may be interest-
ing to evaluate the impact of defining interdomain
traffic policies in P4. P4 is a relatively new high-
level programming language [41] that shares many
of its characteristics with OpenFlow but suppos-
edly supports even more fine-grained matching cri-
teria. Due to the fact that the language is in its
early development stages, P4 has not been listed

as a viable alternative for iSDX in this report. Yet,
this new packet-processing method might be able
to overcome the scalability limitations perceived in
OpenFlow.

At the time of writing, the provided iSDX con-
troller is not yet suited for a production deploy-
ment. Moving forward we suggest a thorough re-
view of the current code base in order to eliminate
current stability issues. Additionally, the inclusion
of mission-critical features like IPv6 support is es-
sential for the adoption of iSDX as a whole. Lastly,
this paper primarily assessed the effect of policy
definitions on the amount of flows in the flowtable.
The computation time required to perform policy
compression and the effect of frequent BGP up-
dates on the flows in memory require further inves-
tigation to verify whether these aspects actually
scale to the size of the largest IXPs.

Acknowledgements

We would like to thank Ariën Vijn and Joris
Claassen for guiding us throughout the course of
the project and for proofreading our initial proposal
and the final report. Their rapid response times re-
garding technical questions and resource requests
allowed for a successful research project. Further-
more we would like to thank Eric Nghia Nguyen
Duy for providing us with Routing Information
Base dumps of AMS-IX’s route servers and Yan-
nick San-A-Jong for handing over additional infor-
mation regarding peering statistics of participants
on the platform. Lastly we thank all AMS-IX em-
ployees for their continuous hospitality and genuine
interest in our research project.

References

[1] B. Schlinker, K. Zarifis, I. Cunha, et al.,
“Peering: An as for us”, in Proceedings of the
13th ACM Workshop on Hot Topics in Net-
works, ACM, 2014, p. 18 (Cited on pages 2,
3).

[2] P. Marques, R. Raszuk, D. McPherson, et al.,
“Dissemination of flow specification rules”,
Arbor, 2009 (Cited on pages 2, 3, 5).

[3] N. Feamster, J. Rexford, S. Shenker, et al.,
“Sdx: A software defined internet exchange”,
Open Networking Summit, 2013 (Cited on
page 2).

[4] A. Gupta, R. MacDavid, R. Birkner, et al.,
“An industrial-scale software defined inter-
net exchange point”, in 13th USENIX Sym-
posium on Networked Systems Design and
Implementation (NSDI 16), 2016, pp. 1–14
(Cited on pages 2–4, 6, 9).

16

[5] N. Feamster, H. Balakrishnan, and J. Rex-
ford, “Some foundational problems in in-
terdomain routing”, in Proceedings of Third
Workshop on Hot Topics in Networks
(HotNets-III), Citeseer, 2004, pp. 41–46
(Cited on page 3).

[6] A. A. Stewart and M. F. Antoszkiewicz, “Bgp
route analysis and management systems”,
ArXiv preprint arXiv:0908.0175, 2009 (Cited
on page 3).

[7] V. Kotronis, X. Dimitropoulos, and B. Ager,
“Outsourcing the routing control logic: Bet-
ter internet routing based on sdn principles”,
in Proceedings of the 11th ACM Workshop on
Hot Topics in Networks, ACM, 2012, pp. 55–
60 (Cited on page 3).

[8] N. Feamster, H. Balakrishnan, J. Rexford, et
al., “The case for separating routing from
routers”, in Proceedings of the ACM SIG-
COMM workshop on Future directions in
network architecture, ACM, 2004, pp. 5–12
(Cited on page 3).

[9] A. Basu, C.-H. L. Ong, A. Rasala, et al.,
“Route oscillations in i-bgp with route reflec-
tion”, in ACM SIGCOMM Computer Com-
munication Review, ACM, vol. 32, 2002,
pp. 235–247 (Cited on page 3).

[10] T. G. Griffin, F. B. Shepherd, and G. Wil-
fong, “The stable paths problem and interdo-
main routing”, IEEE/ACM Transactions on
Networking (ToN), vol. 10, no. 2, pp. 232–
243, 2002 (Cited on page 3).

[11] R. Teixeira, A. Shaikh, T. Griffin, et al., “Dy-
namics of hot-potato routing in ip networks”,
ACM SIGMETRICS Performance Evalua-
tion Review, vol. 32, no. 1, pp. 307–319, 2004
(Cited on page 3).

[12] N. Feamster and H. Balakrishnan, “Verify-
ing the correctness of wide-area internet rout-
ing”, 2004 (Cited on page 3).

[13] N. Feamster, J. Winick, and J. Rexford,
“A model of bgp routing for network en-
gineering”, in ACM SIGMETRICS Perfor-
mance Evaluation Review, ACM, vol. 32,
2004, pp. 331–342 (Cited on page 3).

[14] G. Goodell, W. Aiello, T. Griffin, et al.,
“Working around bgp: An incremental ap-
proach to improving security and accuracy in
interdomain routing.”, in NDSS, 2003 (Cited
on page 3).

[15] T. G. Griffin and G. Wilfong, “A safe
path vector protocol”, in INFOCOM 2000.
Nineteenth Annual Joint Conference of the
IEEE Computer and Communications Soci-
eties. Proceedings. IEEE, IEEE, vol. 2, 2000,
pp. 490–499 (Cited on page 3).

[16] R. Mahajan, D. Wetherall, and T. An-
derson, “Interdomain routing with negotia-
tion”, Tech. Rep. CSE-04-06-02, University
of Washington, Tech. Rep., 2004 (Cited on
page 3).

[17] J. Mambretti, J. Chen, and F. Yeh,
“Software-defined network exchanges (sdxs):
Architecture, services, capabilities, and foun-
dation technologies”, in Teletraffic Congress
(ITC), 2014 26th International, IEEE, 2014,
pp. 1–6 (Cited on page 3).

[18] C. E. Rothenberg, R. Chua, J. Bailey, et al.,
“When open source meets network control
planes”, Computer, vol. 47, no. 11, pp. 46–
54, 2014 (Cited on page 3).

[19] A. Gupta, N. Feamster, and L. Vanbever,
“Authorizing Network Control at Software
Defined Internet Exchange Points”, 2016
(Cited on page 3).

[20] J. Chung, J. Cox, J. Ibarra, et al.,
“Atlanticwave-sdx: An international sdx to
support science data applications”, 2015
(Cited on page 3).

[21] J. P. Stringer, Q. Fu, C. Lorier, et al., “Cardi-
gan: Deploying a distributed routing fab-
ric”, in Proceedings of the second ACM SIG-
COMM workshop on Hot topics in software
defined networking, ACM, 2013, pp. 169–170
(Cited on page 3).

[22] R. Govindan, C. Alaettinoğlu, K. Varadhan,
et al., “Route servers for inter-domain rout-
ing”, Computer Networks and ISDN systems,
vol. 30, no. 12, pp. 1157–1174, 1998 (Cited on
page 3).

[23] P. Richter, G. Smaragdakis, A. Feldmann,
et al., “Peering at peerings: On the role of
ixp route servers”, in Proceedings of the 2014
Conference on Internet Measurement Con-
ference, ACM, 2014, pp. 31–44 (Cited on
pages 3, 4).

[24] A. Gupta, L. Vanbever, M. Shahbaz, et al.,
“Sdx: A software defined internet exchange”,
ACM SIGCOMM Computer Communication
Review, vol. 44, no. 4, pp. 551–562, 2015
(Cited on page 3).

[25] R. Lapeyrade, M. Bruyère, and P. Owezarski,
“Openflow-based Migration and Manage-
ment of the TouIX IXP”, in IFIP/IEEE In-
ternational Workshop on Management of the
Future Internet (MANFI’2016), 2016 (Cited
on page 3).

17

[26] J. Bailey, D. Pemberton, A. Linton, et al.,
“Enforcing rpki-based routing policy on the
data plane at an Internet Exchange”, in Pro-
ceedings of the third workshop on Hot topics
in software defined networking, ACM, 2014,
pp. 211–212 (Cited on page 3).

[27] S. H. Yeganeh, A. Tootoonchian, and Y. Gan-
jali, “On scalability of software-defined net-
working”, Communications magazine, IEEE,
vol. 51, no. 2, pp. 136–141, 2013 (Cited on
page 3).

[28] W. Braun and M. Menth, “Wildcard
compression of inter-domain routing ta-
bles for openflow-based software-defined net-
working”, in Software Defined Networks
(EWSDN), 2014 Third European Workshop
on, IEEE, 2014, pp. 25–30 (Cited on page 3).

[29] M. Canini, P. Kuznetsov, D. Levin, et al.,
“A distributed and robust sdn control plane
for transactional network updates”, in Com-
puter Communications (INFOCOM), 2015
IEEE Conference on, IEEE, 2015, pp. 190–
198 (Cited on page 3).

[30] T. Bu, L. Gao, and D. Towsley, “On char-
acterizing bgp routing table growth”, Com-
puter Networks, vol. 45, no. 1, pp. 45–54, 2004
(Cited on page 3).

[31] J. C. Cardona Restrepo and R. Stanojevic,
“A history of an internet exchange point”,
ACM SIGCOMM Computer Communication
Review, vol. 42, no. 2, pp. 58–64, 2012 (Cited
on page 4).

[32] L. Serodio, Traffic diversion techniques for
ddos mitigation using bgp flowspec, 2013
(Cited on page 5).

[33] Cisco. (2016). Cisco asr 9000 series ag-
gregation services router routing configura-
tion guide, [Online]. Available: http : / /

www . cisco . com / c / en / us / td / docs /

routers / asr9000 / software / asr9k _

r5 - 2 / routing / configuration / guide /

b _ routing _ cg52xasr9k / b _ routing _

cg52xasr9k_chapter_011.html (visited on
07/08/2016) (Cited on page 5).

[34] RIPE NCC, Ripe routing information ser-
vice raw data, https : / / www . ripe .

net / analyse / internet - measurements /

routing-information-service-ris/ris-

raw-data, 2016 (Cited on page 8).

[35] B. Owens, Openflow switching performance:
Not all tcam is created equal - packet push-
ers -, https : / / packetpushers . net /

openflow- switching- performance- not-

all-tcam-is-created-equal/, 2013. (vis-
ited on 06/01/2016) (Cited on page 9).

[36] H. Pan, H. Guan, J. Liu, et al., “The
flowadapter: Enable flexible multi-table pro-
cessing on legacy hardware”, in Proceedings
of the second ACM SIGCOMM workshop on
Hot topics in software defined networking,
ACM, 2013, pp. 85–90 (Cited on page 11).

[37] C. Monsanto, J. Reich, N. Foster, et al.,
“Composing software defined networks”, in
Presented as part of the 10th USENIX Sym-
posium on Networked Systems Design and
Implementation (NSDI 13), 2013, pp. 1–13
(Cited on page 11).

[38] Open Networking Foundation, OpenFlow
Switch Specification Version 1.3.0, ser.
ONF TS-006. 2012, pp. 10–11. (visited on
07/05/2016) (Cited on page 12).

[39] Brocade, Brocade mlx series routers - data
sheet, https://www.brocade.com/content/
dam/common/documents/content- types/

datasheet / brocade - mlx - series - ds .

pdf, 2013. (visited on 07/08/2016) (Cited on
page 15).

[40] M. Canini, S. Uhlig, M. Gusat, et al., En-
deavour: Towards a exible software-de ned
network ecosystem, https://github.com/
h2020-endeavour/endeavour/. (visited on
07/07/2016) (Cited on pages 15, 16).

[41] P. Bosshart, D. Daly, G. Gibb, et al., “P4:
Programming protocol-independent packet
processors”, ACM SIGCOMM Computer
Communication Review, vol. 44, no. 3,
pp. 87–95, 2014 (Cited on page 16).

18

http://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-2/routing/configuration/guide/b_routing_cg52xasr9k/b_routing_cg52xasr9k_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-2/routing/configuration/guide/b_routing_cg52xasr9k/b_routing_cg52xasr9k_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-2/routing/configuration/guide/b_routing_cg52xasr9k/b_routing_cg52xasr9k_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-2/routing/configuration/guide/b_routing_cg52xasr9k/b_routing_cg52xasr9k_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-2/routing/configuration/guide/b_routing_cg52xasr9k/b_routing_cg52xasr9k_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-2/routing/configuration/guide/b_routing_cg52xasr9k/b_routing_cg52xasr9k_chapter_011.html
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris/ris-raw-data
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris/ris-raw-data
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris/ris-raw-data
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris/ris-raw-data
https://packetpushers.net/openflow-switching-performance-not-all-tcam-is-created-equal/
https://packetpushers.net/openflow-switching-performance-not-all-tcam-is-created-equal/
https://packetpushers.net/openflow-switching-performance-not-all-tcam-is-created-equal/
https://www.brocade.com/content/dam/common/documents/content-types/datasheet/brocade-mlx-series-ds.pdf
https://www.brocade.com/content/dam/common/documents/content-types/datasheet/brocade-mlx-series-ds.pdf
https://www.brocade.com/content/dam/common/documents/content-types/datasheet/brocade-mlx-series-ds.pdf
https://www.brocade.com/content/dam/common/documents/content-types/datasheet/brocade-mlx-series-ds.pdf
https://github.com/h2020-endeavour/endeavour/
https://github.com/h2020-endeavour/endeavour/

A Experimentation workflow

Source Code: https://github.com/jeroen92/iSDX

For each experiment the maximum amount policies and the percentage of participants to set up a flow
to can be set using two shell variables. This experiment creates random flows in the fabric according to
the specified settings for 100 to 800 participants, each round incrementing the amount of participants
with 100. In the end, the amount of generated flows for each round are collected and outputted in CSV
format to the console. The experiment was ran for each combination of mesh (10, 30, 50) and maximum
policies (4, 8, 16).

maxpo l i c i e s=4
mesh=10
for i in $ (seq 1 8) ; do . / routeToJson . py ” $ i ”00 /home/ vagrant /iSDX /home/ vagrant ”$mesh”

↪→ ” $maxpo l i c i e s ” >> . / s2−”$mesh”−” $maxpo l i c i e s ” ; done ; sudo rm /home/ vagrant /iSDX/
↪→ examples / test−mtsim/ p o l i c i e s /p ∗ ; cat . / s2−”$mesh”−” $maxpo l i c i e s ” | grep −oP ’(?<=L
↪→ :) [\d]+ ’ | awk ’BEGIN{nrs=””}{ nrs=nrs$0 ” , ”}END{ pr in t nrs } ’ ; cat . / s2−”$mesh”−”
↪→ $maxpo l i c i e s ” | grep −oP ’(?<=M:) [\d]+ ’ | awk ’BEGIN{nrs=””}{ nrs=nrs$0 ” , ”}END{
↪→ pr in t nrs } ’

Listing 2: Generating flow rules for the given configuration and extracting the amount of total flows

The following code was used to generate the same set of flows as the above snippet, but also allowed
to connect to the OpenvSwitch in order to query the flows that were pushed into the fabric.

python /home/ vagrant /iSDX/ s c r i p t s / routeToJson . py 100 /home/ vagrant /iSDX /home/ vagrant 10
↪→ 4

Listing 3: Generating flow rules for the given configuration and pushing them into the OpenFlow fabric

19

https://github.com/jeroen92/iSDX

	Introduction
	Research questions
	Related work
	Technical overview
	The AMS-IX platform
	Alternative technologies
	iSDX technical concepts

	Methodology
	Experimentation design
	Controller enhancements
	Switch fabric connection
	Test cases
	Impact analysis

	Deployment impact
	Brocade MLXe platform
	Migrating to iSDX

	Scalability evaluation
	Encoding scalability
	Policy scalability

	Discussion
	Encoding scalability
	Policy scalability

	Conclusion
	Experimentation workflow

