Power Efficiency of Hypervisor and Container-based Virtualization

University of Amsterdam MSc. System & Network Engineering Research Project II

> Jeroen van Kessel 02-02-2016

> > Supervised by:

dr. ir. Arie Taal dr. Paola Grosso

Significance

Growing consumption of cloud services

Cisco claims: "by 2019, more than 86 percent of all workload will be processed by cloud data centers"

- More awareness on power consumption
- Container-based virtualization is an emerging technology

Docker became very popular in a relative short time

Related Work (1)

- Van der Poll [2015]
 - Power consumption of two open-source hypervisors, KVM and Xen
 - KVM as a more green solution than Xen.
- IBM research division [2014]
 - Performance comparison of virtual nodes ran by a hypervisor versus Linux containers
 - Docker had equal or faster performance compared to KVM
- Ericsson research division [2015] [1]

Empirical Investigation of **power consumption** of **virtualization platforms**

- Compared number of VMs and Containers
- Power impact of CPU, memory and HDD
- Used a Power Measurement Device
- Results: virtualization platforms behave similarly
- in idle state and in CPU/Memory stress test

Figure 1: Power Measurement Device

Related Work (2)

- Ericsson research division [2015] [2]
 - Performance comparison between traditional hypervisors and Linux containers
 - Containers achieve generally better performance compared to traditional VMs

Research Question (1)

Is there a **difference** in **power efficiency** under a **traditional hypervisor-based virtualization** versus **Linux containers**?

VMs and Containers

- Container virtualization is a lightweight alternative to hypervisor-based virtualization
- Container runs on top of the same shared host OS kernel
 - While VMs install a full Guest OS
- Containers do not isolate resources as well as hypervisors

Approach

Measurement Setup

	System Information
Model	IBM System x3550 M4 7914B3G Server (Firmware version 1.9)
Motherboard	IBM 00D3449
Power Supply	IBM Emerson 550W (80+ Platinum Certification)
Processors	$2 \mathrm{x}$ Intel Xeon E5-2609 v2 @ 2.50 GHz, 8 cores, 6.4 GT/s, 25 MB Cache
Memory	64 GiB (8 GiB x 8 Slots) Hynix DDR3 PC3 1333MHz 14900R, 13-12-B1
HDD	HP 146 GB 2.5-inch SCSI SAS, 3.0 GB/sec, 10,000 RPM

Table 1: IBM 1U Server Specifications

Running Ubuntu 15.10 x64

Measurement Sensors

(1) Power Usage Sensor

(2) Data Acquisition Interface Board

Measurement results

Synthetics Applications

Dominant Hardware Component	Benchmark Application
Processors	Intel Optimized LINPACK
Memory	sysbench
HDD	Bonnie++

Table 2: Dominant components and their synthetics benchmark applications

But first, IDLE is measured as a baseline

IDLE Power consumption (1)

Total IDLE Power consumption (2)

CPUs and Cores

CPU1

Experiment 2:

Experiment 1:

4 cores on CPU1

2 cores both CPU1 and CPU2

Power Consumption during LINPACK on Docker (1) and Xen (2)

(1) Docker: All 4 cores used on physical CPU1

(2) Xen: All 4 cores used on physical CPU1

Power Consumption during LINPACK on Docker (1) and Xen (2)

(1) Docker: 2 cores used of each CPU1 and CPU2

(2) Xen: 2 cores used of each CPU1 and CPU2

Total Power consumption of LINPACK CPU Docker and Xen

Energy efficiency during LINPACK (CPU intensive)

 $Power \ Efficiency = \frac{Average \ Compute \ Performance}{Average \ Power}$

19/26

Power Consumption during **sysbench** 350GiB memory transfer

Power Usage of all memory banks (1)

Power Usage of all memory banks (2)

Total Power efficiency during a **sysbench** 350GiB memory transfer

21/26

Power Consumption during **Bonnie++** (25GiB)

Total Power efficiency during **Bonnie++** 25GiB (Sequential Writes in Kb/sec)

Conclusion

Research question:

Is there a difference in power efficiency under a traditional hypervisor-based virtualization versus Linux containers?

Performance results match with the Ericsson research

Power Efficiency results:

CPU:

Docker is more efficient in terms of power

Memory, HDD (Writes) and IDLE:

Docker is more efficient but almost negligible

Future Work

- Benchmark multiple virtual nodes and containers
- Investigate the **energy footprint** of the **network** component
- Test other applications

Performance evaluation of **real life applications**

- Futher investigation of **other platforms** such as **LXC, KVM and VMware**
- Investigate energy impact of (Xen) Paravirtualization

Thanks for your attention