
Restoring TCP sessions with a DHT

Peter Boers
peter.boers@os3.nl

Wednesday 3rd August, 2016

Abstract
Traditionally web scale applications use various
load balancing techniques to maintain TCP ses-
sions. Usually this means sharing all TCP session
information over a number of load balancing appli-
ances. This model is unsustainable in very large
infrastructures. Our research proposes a novel
method of maintaining TCP session integrity. It
sets out to investigate if storing TCP session in-
formation can be done in a Peer-to-Peer, Distrib-
uted Hash Table, overlay network. By evaluating
a proof of concept, we conclude that storing TCP
session information in a DHT, might provide a reli-
able and scalable solution to maintain TCP session
integrity in the event of network failures.

1 Introduction
With the ever increasing amount of nodes in net-
works there comes an ever increasing demand on
the management of the network. How does one
make it possible to keep a dynamic environment
with thousands of Virtual Machines (VM) and vari-
ous services online, clustered and balanced. In their
recent draft RFC about their network architecture,
Facebook has indicated a trend in network design
and implementation [1].
The trend these days is to move towards IP based

networks. Large parties such as Facebook are start-
ing to rely on protocols such as the well established
Border Gateway Protocol v 4 (BGP) as an Interior
Gateway protocol instead of OSPF or IS-IS [1, 2].
In their networks each host is takes part in the
BGP protocol to announce routes into the network.
With this new network model there might be an
opportunity to use the protocol properties of BGP
and its protocol extensions, to create inherent re-
dundancy in the Network layer.
With Web-Scale infrastructure, load balancing

is becoming an issue as they need more and more
bandwidth to be able to handle the throughput of
these large infrastructures.
Typical load balancing devices operate in Act-

ive/Passive mode and use technologies such as

Virtual Router Redundancy Protocal (VRRP) to
maintain high availability. Furthermore load balan-
cers share information about sessions to make sure
TCP session are consistent. As they are mostly
located at the edge of a network, they can create
bottlenecks and single points of failure.

The technical report by Facebook indicates that
the wish is to remove the load balancer at the edge
of the network and do more traffic engineering and
balancing on the network itself [1]. Equal Cost
Multi Path routing (ECMP) is a protocol that to-
gether with Anycast will be able to do this. All
hosts that are part of the service will announce
their membership of the Anycast group and ECMP
will be used to be able to do a more fine grained
balancing over the network[3].

Anycast has been adopted by the global Root
Domain Name System (DNS) zones to create a
highly available infrastructure which is transpar-
ent to the users of the DNS service [4]. It is well
known that it works well with stateless communica-
tion such as DNS, but that it is more difficult to use
with stateful connections such as the Transmission
Control Protocol(TCP).

In moving towards this Anycast and ECMP ar-
chitecture, there is still a problem that needs to be
solved. In the case that ECMP gets recalculated
through an event on the network due to a failure or
a reconfiguring of paths, a TCP session still needs
to reach the right Anycast host to maintain con-
sistency. This research will target this problem and
discuss a possible solution for this problem.

Distributed Hash Tables (DHT) have long since
been used to store information in a distributed way.
As web scale architecture handles vast numbers of
TCP sessions, if load balancing is removed from the
edge of the Networks to the hosts, there must be
a way in which hosts can look up TCP session in-
formation in the case that a host receives an invalid
TCP session due to a topology change. We propose
to use a DHT to store TCP session information and
design a proof of concept, which we use to compare
to more traditional load balancing methods.

1

2 Research Questions
Section 1 has defined the problem and hinted to-
wards a solution here we state the direction of the
research and help scope the project:
How can a DHT be leveraged to maintain TCP

session state in the case of a failure in a Large BGP
networks with thousands of hosts [1]?

• What technical requirements are needed to
maintain the TCP session in the case of a fail-
ure?

• Does using a DHT to look up invalid sessions
provide enough performance so that the ses-
sion can continue?

3 Related Work
In the past there have been a number of efforts
into researching the feasibility of using Anycast as
a method to establish stateful resiliency in the net-
work layer. What follows are a number of contri-
butions about Anycast, load balancing in general
and scaling in large systems. The following related
work establishes a context and gives information
about a number of solutions that already exist to
establish scalable networks and load balancing.

3.1 Network Protocols
The TCP protocol is the workhorse of Internet
traffic. It is a stateful protocol that ensures a co-
herent end-to-end bytestream, from one application
to another[5]. Research has been done to com-
bine Anycast with TCP for load balancing solu-
tions. The prime method that a number of these re-
searches have proposed is an extension to the TCP
protocol [6]. Miura et al propose a modification of
the TCP protocol so that it can handle the chan-
ging of the TCP socket tuple. This would make
it possible that Anycast can be used for the initial
set up of the connection and then the connection
would be established on a different unique Internet
Protocol(IP) address of the server. Even though it
is well thought out in theory, in practice this has
not been implemented. We believe that in search-
ing a solution to the research questions, we need to
find a solution that does not necessitate a protocol
change as this greatly lowers the chance of it ever
being implemented.
Weber et al evaluated potential methods of set-

ting up Anycast in IP version six (IPv6) networks
as Anycast was designed into the protocol [7]. In
their survey they also touch upon the problems that
exist when using a stateful protocol. In previous
papers it was stated that using the source rout-
ing option in the IPv4 header could be an option.
However as this is no longer recommended by the

Internet Engineering Task Force (IETF). Due to
security reasons it has been stripped from the pro-
tocol [8].

3.2 Load balancing
Load balancing is typically the area of distributed
systems research. There are a number of papers
that describe how this can be used in combina-
tion with Anycast. Castro et al, experimented with
Anycast and Chord to create a group in which re-
sources were shared [9]. They used it to be able to
schedule jobs, manages storage and manage band-
width.

A comparative study from 2010 also establishes
the fact that the load balancing model of today
where a small number of instances are responsible
for the distribution of load is not going to be feas-
ible in the near future [10]. In their paper they
mention a number of different approaches to load
balancing in cloud computing where the cloud is
self aware and can balance the load, within the ap-
plication, between instances.

Research into combining load balancing and
DHT has been mainly done to improve the load dis-
tribution in a Peer to Peer (P2P) network. [11] pro-
poses a method for nodes in a p2p ring to become
proximity aware and balance the load between close
neighbors.

3.3 Distributed Systems
This research looks towards the field of distrib-
uted systems research to help find solutions to the
problem of scaling. The area of distributed system
computing may provide a number of solutions and
strategies which could be employed. Examples are
DHT implementations and scaling strategies.

3.3.1 Distributed Hash Tables

Performance of DHT networks has also been widely
scrutinised. As the scale of a network increases
the look ups will inherently take longer however
they always take O = log(n) time where n is the
amount of nodes in a network [12]. This achieves
predictable scaling, however the question is if it
is feasible to incorporate this with handling TCP
sessions.

Chord is one of the most well know examples of
a DHT, however the globally used Bittorrent net-
work has adopted the Kademlia protocol as DHT
overlay [13]. This Peer-to-Peer overlay network is
easier to implement in software compared to Chord
as it makes use of the XOR operation whilst cal-
culating routing tables. Both systems achieve the
same search efficiency and are both a viable choice
to implement in our design.

2

3.3.2 Scaling

The report by Facebook and Arista networks[1],
the writers indicate that a key feature in their
design is that the network need to be horizont-
ally scalable. Our solution to the load balancing
challenge must meet the same requirements to be
a viable solution otherwise it will not be usable.
To help define how to scale in large systems we

fall back on Distributed Systems scaling theory by
Tannenbaum and van Steen [14]. In their book they
describe that scaling can be done in various ways,
but that you can identify a number of areas that
can be used to categorise types of scaling. Prime
examples of this are; Administrative scaling, Geo-
graphical scaling, Functional scaling, etc.
In conjunction with categories of scaling they

also state that two scaling strategies exist; scal-
ing up and scaling out[14]. Scaling up means buy-
ing bigger and better hardware, a strategy advised
and employed by vendors of traditional load bal-
ancers. Scaling out means buying more identical
devices and connecting them together to solve a
capacity problem. Our solution needs to be com-
patible with the latter scenario as this is the growth
strategy that Facebook and Arista propose in their
report [1].

4 Traditional load balancing
solutions

The design of load balancing solutions is very much
a problem of handling scale. What is the right
design for the amount of hosts and traffic that you
need to handle? Depending on the scale Distrib-
uted systems theories will come into play regarding
the maintenance of a consistent view of the network
and application. Load balancing architectures can
be done on many layers in the OSI stack. They can
be done on network layer, transport layer and even
on the application layer. When looking at solu-
tions on the network and transport layer we see
the following options that sysadmins have for their
infrastructure.

4.1 Hardware load balancing
Consider the traditional approach to load balan-
cing as shown in Figure 1 on layer 3/4. Here we
see the Internet represented by the cloud, an edge
router and then two hardware load balancers in
the box with the dotted line who are in sync with
each other. They provide a balancing solution for
a number of back end servers that are able to reach
both balancers through the network. For the out-
side world and the inside world the two balancing
nodes seem like they are one single unit.

These boxes share a session table and have some
sort of keep alive mechanism which will trigger a
fail over from the active unit if it fails. If the
appliances work correctly during a fail over, the
users and the servers will not know that anything
happened. This system is limited by the amount
of bandwidth that the appliances are able to sup-
port and the amount of sessions that you can track
in the session table. The obvious solution to scale
this, is to buy bigger load balancers and increase
their capacity. So called scaling up[14].

These appliances can implement a number of dif-
ferent algorithms that will attempt to share the
load of incoming requests over the available hosts
in its balancing pool. Examples of these algoritms
are: Round Robin and Weighted Least Connec-
tions [15].

Figure 1: Load balancing with an active (dark
blue)/passive(light blue) setup. This setup scales
up to n hosts depending on the capacity of the Load
Balancers

Next to various load balancing algorithms the
balancers are also capable of using techniques such
as TLS offloading, compression, proxying, cach-
ing and TCP connection marshaling. The latter
meaning that a balancers will marshal multiple ex-
ternal connections through one single connection to
a backend device.

4.2 Software load balancing
The previously section describes solutions that are
available in hardware and describes appliances that
can be bought and used. However there are also
a great deal of possibilities of installing software
load balancers. Prime examples are Linux Vir-

3

tual Server(LVS)1 and HAProxy2. LVS can be
used similar to hardware solutions. This package
of Linux can be installed in a virtual machine or
on a bare-metal server and can function as a load
balancer for a cluster.
LVS can be configured in an active/passive mode

where the high available pair shares a virtual IP
address and is able to fail over if a keep alive timer
has timed-out. As you can see from the description
LVS functions as a traditional load balancer, and
only works on layers 3 and 4 in the OSI model.
HA proxy is another well known software load

balancer in Linux which can work on layer 3 and
4, but is really designed to proxy services who use
the HTTP protocol. It is optimized to provide good
performance towards high traffic sites and can be
tuned towards a specific application. It is often
used together with LVS. HAProxy is able to do the
application level balancing and LVS takes care of
the Layer 3 balancing.
Another example is a package called “con-

ntrackd”, which synchronises the connection track-
ing table between high available hosts. Often this
is uses together with “keepalived” as configured to-
gether they can do similar things as LVS [16].

4.3 Scaling traditional architectures
The above examples operate on the premise that
there are either one or more appliances that are
active at one point in time. Secondly, that all appli-
ances in the load balancing cluster share the same
view of the network and that they are transparent
towards the application and user.
By adding various technologies such as compres-

sion and offloading they attempt to make the ap-
plication more resilient and reduce the amount of
traffic on the network so that the appliances can
scale better.
In doing so, these appliances and software pack-

ages are becoming more and more complex, as they
need to be able to handle a wide variety of situ-
ations. Further more by letting the load balancers
do such a wide variety of tasks, debugging problems
on the network become more difficult and if a fail-
ure occurs on the balancer, this may have serious
ramifications.

4.3.1 How to handle more connections?

Even though appliances that do balancing are get-
ting more and more efficient, at one point one
needs to scale even more. This can be done by
adding more appliances and creating an active/act-
ive setup with tens of nodes. These nodes will all

1http://www.linuxvirtualserver.org
2http://www.haproxy.org

be aware of each others states and back end serv-
ers and provide a consistent view of the application
they are trying to balance to the outside world.

By operating on the philosophy that all nodes in
the network need to know the complete state and
have the complete state in their own memory, it
is easy to see that in Large Scale Networks with
thousands of hosts, this is not possible anymore. It
simply will cost too many resources to keep track
of all this information and to make sure that all
nodes have the same view.

Furthermore a second reason this does not scale
is the fact that the network topology as shown in
Figure 1 requires a lot of investment to upgrade.
Lets assume that as your applications grows your
balancer is no longer able to handle the traffic and
incoming connections. If you are running an act-
ive/passive setup as shown in the figure, you will
need to buy two new appliances instead of one. In
the case of a failure of one of the nodes the other
must be able to take over all of the traffic seam-
lessly, meaning that simply buying one new device
will not be good enough as the fail over device will
not be able to handle all of the normal traffic.

Alternatively if we assume that the setup is act-
ive/active, this means that we would need to buy
one or more appliances to come back to a state
which is acceptable for the network. Depending
on the architecture and failure domain, a 2 node
active/active setup may never operate above 50%
capacity as if one fails the other must be able to
handle all traffic if the network is to survive. Man-
aging scaling in this scenario requires carefull plan-
ning and fore thought.

4.4 Handling Failures
Traditional load balancers handle failures differ-
ently depending on which layer they operate. In
general, when a load balancer detects a failure on
one of the real servers, it will make the failed node
inactive and no longer forward any traffic to it. De-
pending on the type of load balancer and how it is
configured, TCP sessions will be seamlessly handed
to a new server or it may need to be reestablished.

5 New Network Design
As stated in the previous Section 4 the more tra-
ditional solutions to scaling a large network as-
sume that all load balancing nodes are equal and
that all states need to be synchronised between
the members of the load balancing group. Due to
the aforementioned problems considering scalabil-
ity and complexity, the draft RFC by Facebook and
Arista tries to tackle the problem in a new way
where their mantra in creating a network design is
defined as follows:

4

http://www.linuxvirtualserver.org
http://www.haproxy.org

‘Environments of this scale have a unique set of
network requirements with an emphasis on opera-
tional simplicity and network stability [1].’

5.1 Using proven tech - Routing
The solutions that Facebook and Arista propose for
the network design form the basis of the scenario
and tests of this research. In their design they as-
sume that the network topology is based upon layer
3. By doing this they alleviate many problems that
Layer 2 has, when it is necessary to scale up and
out. At one point traditional layer 2 without en-
hancements, will no longer handle the traffic within
one single broadcast domain, especially with thou-
sands of hosts. This means that in the new design,
all nodes on the network take part in the routing
protocol of choice, which in this case is EBGP.
They have chosen this design and protocol to en-

able the network to scale faster horizontally and
because BGP is relatively simple to setup and use.
OSPF and IS-IS are widely used as Interior Gate-
way routing protocols but have much more pro-
tocol overhead, and are more difficult to configure
and debug. Figure 2 shows an example topology as
proposed in the RFC design.

Figure 2: This is the topology on which the ex-
periments were conducted. The interconnects are
shown and the Anycast group with their unique
identifiers.

By using the design in Figure 2 it is easy to see
how this would scale horizontally. If you need more
ports or bandwidth, the only thing you need to
do is add more spines and leaves. This allows the
network to scale with exactly the amount of ports
and traffic that the device you just added to the

network allows, meaning it is very predictable and
cost effective.

5.1.1 All nodes are Routers

In the past traditional designs of networks have
chosen to have a minimum amount of routers due
to the fact that it is very costly to buy appliances
that support these routing protocols. However, re-
cently vendors such as Cumulus Networks are able
to deliver white label boxes to customers. These
devices are able to run an operating system like
Linux and have specific optimized network drivers
for performance [17].

This enables users to install an open source rout-
ing daemons like Quagga. The Quagga daemon is a
lightweight program that has implemented various
network protocol standards[18]. Overnight it has
become possible to run a routing protocol cheaply
on all sorts hardware without a user having to pay
for license fees.

The architecture of Figure 2 has now become
possible.

5.1.2 BGP unnumbered

To alleviate management problems in a network
such as this, it is necessary to make make sure that
routers are added to the BGP topology easily. The
BGP protocol depends on the setup of a session
with a neighbor[19]. When this is done correctly it
will be able to share routing information through
this session. Normally, this requires manual in-
put and management. An extension to the BGP
protocol by Cisco, allows administrators to setup
BGP sessions automatically by making use of cer-
tain intricacies of IPv6; Neighbor Discovery(ND)
and Router Advertisements(RA)[20].

Simply put, this extension relies on the fact that
each interface of a router will automatically config-
ure a Link-Local IPv6 address with StateLess Ad-
dress AutoConfiguration (SLAAC). To make sure
that duplicate addresses are not chosen, the ND
protocol is used and by then making use of RAs
the routers are able to setup a BGP session and
share routes on the IPv6 local link. Figure 3 gives
a good overview of how it works.

5.1.3 Link state detection

It is well known that IGP protocols such as IS-
IS and OSPF are capable of detecting Link state
changes and rerouting packets very efficiently, BGP
however is not as good at doing this in a standard
configuration. Normally it sends keep alive mes-
sages every 30 seconds or so to its neighbor and
changes its routes according to the information this
generates.

5

Figure 3: The implementation of BGP unnumbered
according to RFC-5549[20]

In this topology this is not fast enough. However
together with the BGP unnumbered configuration
it is possible to make BGP detect link failures by
binding it to a specific interface. Therefore if the
Kernel detects a Link State change on the interface,
BGP will update its routes accordingly and thereby
trigger a topology change on the network[21]. This
is called setting up Interface Scoped BGP sessions.

5.2 Load Balancing
Now that the topology has changed, the new design
no longer allows for the traditional load balancing
solution on Layers 3 and 4. If an administrator
would choose to do this he/she would greatly com-
promise future ability to scale out horizontally. The
question of sharing load across the servers however
remains. The RFC by Facebook and Arista states
that load balancing will be done on network level
using the principles of Anycast and Equal Cost
MultiPath (ECMP) routing.

5.2.1 Anycast

The Anycast principle has been used to great ef-
fect in the global DNS root server infrastructure,
enabling DNS requests to be routed towards the
closest root DNS server according to the length
of the path to the IP address. The theory being,
that if the same IP address is announced to the
network from multiple locations, routers will auto-
matically choose the route to said IP address over
the least amount of hops[19]. In the case of DNS
this makes sure that requests are serviced from the
nodes closest to the requester and it makes sure
that the load can be evenly spread throughout the
infrastructure.
The new network design will make use of these

characteristics. All servers in the network shown in
Figure 2 (the bottom layer) take part in an Anycast
group. Each server announces a specific loopback
address to the world on which it hosts a service.
In this case it is the address “192.168.0.1.” How-

ever when one looks closely at the topology, you
can see that the amount of hops from the Internet
represented by the cloud at the top of Figure 2, to
a Server, is always three hops. This is regardless
of the route a packet takes in the network and as-
suming that packets always take the shortest route
from the Internet to a Server.

Facebooks and Aristas use of Anycast represents
the membership of the server in a specific group. It
enables a server to become available in a group of
servers that are hosting a specific application, by
announcing an Anycast IP address to the network.

5.2.2 ECMP

The previous paragraph showed that the locality
of a node no longer influences the route a packet
takes on the network to a server, as all paths are of
equal length. Instead, the path of a packet is ma-
nipulated by making use of ECMP[22]. The name
of this protocol extension already suggests that it
can be used in a case such as this, as the routes
from Internet to Server flow along multiple paths
of equal cost.

In principle ECMP calculates routes by hashing
the source of a packet and then choosing the path
that it needs to take. All results of the hash are
mapped to certain buckets and if the result of the
hash falls into a certain bucket, the router knows
what the next hop of the packet will be. Figure 4
shows a schematic representation of how ECMP
works. Incoming packets are mapped to a certain
bucket and then forwarded to the corresponding
next-hop.

Figure 4: A reprensentation of the hashbuckets in
the ECMP protocol

ECMP can be manipulated on routers by adding
a weight to an outgoing interface. This means that
administrators can easily control and balance the
load of traffic on the network over all hops and serv-
ers on the network. It allows a very fine grain con-
trol of the flows and is just as effective as the means
of distributing load that traditional solutions use.

6

5.3 Handling Failures
In this design, when a failure occurs on the network,
or if an administrator cycles a router on the net-
work, ECMP will recalculate the routes according
to the the available interfaces towards the destina-
tion. However, traditional solutions allow for TCP
session state synchronisation across the load balan-
cing appliances. It makes sure that the integrity of
the TCP session remains intact when the connec-
tion is passed on to the next node. The client only
notices a minimal hiccup, but is still able to access
the service.
The new design does not cater for this, because

when ECMP recalculates, the TCP session will be
forwarded to a different server. It will not recog-
nize the session and will send a TCP Reset (RST)
message to the client as per the protocol standard.
In doing so the clients TCP session is terminated,
which depending on the use case is something that
is undesirable.

5.3.1 Maintaining the TCP session integ-
rity

As the new network solution no longer has a limited
amount of nodes over which session states need to
be synchronised, it is not realistic to expect that all
TCP sessions are synchronised across the platform.
If this would be done it would cause an quadratical
growth in network management traffic every time
a node is added. Such a network can be described
as a fully connected network (complete graph) [23].
This does not scale, for obvious reasons.
As stated in the Research Questions in Section 2

we propose to solve this scaling problem by imple-
menting a Distributed Hash Table solution to store
the TCP session identifiers to help maintain the
TCP session state.

6 New load balancer design
The new network design requires a new way of
maintaining TCP session state across a very large
network. Section 5 makes it clear that the old solu-
tion of synchronising state between all nodes in the
Anycast group is infeasible due to the problem that
traffic overhead increases quadratically, every time
a new node is added to the network.
This Section defines what a scalable solution is

for this problem, it states what protocols are in-
volved and finally shows the design of a system that
can solve the problem.

6.1 Distributed systems
Scaling has been a much discussed subject in the
research community. In the past M.Hill asserted
that saying that something is scalable does not even

mean anything [24], however in recent years the
consensus is that scalability is a key requirement
in the area of Distributed systems and can be split
up into a number of different elements[14].

In their RFC Facebook and Arista talk about
wanting to achieve horizontal scalability [1]. This
can be seen as a form of functional and load scalab-
ility. Of course there are many other aspects of
scalability that come into the network design as
proposed. However, if one looks purely at achiev-
ing the most efficient design then functional and
load scalability definitions match the closest.

The theory of distributed systems resides around
creating applications that through a middelware
layer, can communicate with each other to allow
more nodes and systems to work together for co-
ordination and communication purposes. In this
way the middelware helps the infrastructure to
achieve the goal of the application, by combining
the efforts of all nodes without one having to know
or do everything [14].

6.1.1 Maintaining state

As we have seen, the challenge that this research
tries to solve is the question of how to maintain
TCP session state across thousands of servers. We
believe that the most efficient way of doing this is
by using the principles defined by distributed sys-
tems. If one looks at the topology you see that all
nodes in the Anycast group are equal participants
without a centralised coordinator. This makes the
Anycast group an ideal candidate to use the Peer-
To-Peer (P2P) overlay model. P2P overlays oper-
ate on the premise that all nodes in the network are
equal participants and have equal resources [25].

6.2 Distributed Hash Table
A discovery that lead to a great change in how
files and information is shared on the Internet is
the introduction of the Distributed Hash Table,
Chord [12]. First introduced in 2001 it sets out to
create a way in which P2P overlays are able to store
and share information on the network. In their
model, they propose an efficient way of searching a
piece of data on a P2P overlay which is made out
of a ring of nodes. Simply put, by mapping pieces
of information to a key, and making all nodes on
the overlay responsible for a part of the key space,
they can combine all the resources of the P2P over-
lay and not have to store duplicate information.

DHT implementations come in various shapes
and sizes and this research uses the Kademlia pro-
tocol to implements its DHT [13]. The reason for
this is due to the fact that it has been widely ad-
opted in P2P networks. A notable example being
the Bitorrent network [26]. The Kademlia search
algorithm enjoys wider adoption as it makes use of

7

the XOR operation to calculate where the inform-
ation is located on the network. The maintenance
of routing tables and calculation of routes is there-
fore less costly compared to the Chord implementa-
tion [27]. The search algorithm implemented by the
Kademlia protocol achieves a predictable search in
the following order:

O(n) = log(n)

If the node on the network does not have the in-
formation located at its own location, it can find
the information in log(n) hops, where n is the
amount of nodes in the DHT network.

6.2.1 Maintaining state

To facilitate the storage of information in the P2P
overlay we propose to use an implementation of a
DHT. In this way we do not need to replicate in-
formation to all nodes on the DHT, but we do make
sure that the information can be looked up in an
efficient and predictable way. Ensuring this will
mean we can make assertions over how scalable the
new load balancing design is.

6.3 Transmission Control Protocol
The Transmission Control Protocol (TCP) is the
defacto standard for providing reliable, end to end
data transport over the Internet. TCP is imple-
mented directly above layer 3 on the OSI stack
and provides an interface for the application to
transport a byte stream over a network. The TCP
protocol can be best described as a state machine
with a role for the client and a role for the server.
The states of the machine describe the life cycle of
TCP session setup, data transfer and session tear
down. By sending sequence numbers and acknow-
ledgements the client and the server ensure a reli-
able transfer of data from one point to the next [5].
Figure 5 shows the states that a TCP session can
have at have in a certain instant.

6.3.1 Tracking TCP connections

A TCP connection is defined as the relationship
between a socket on the client side of the connection
and a socket on the server side of the connection.
A socket is a tuple which combines an IP address
and a port number. The IP address identifies the
interface on which a packet arrives and the port
number identifies the process to whom the inform-
ation is addressed. Together the client and server
sockets are the TCP 4-tuple [29].
TCP connections can be tracked by the Linux

Kernel and this provides information about the
status of a TCP session between a client and a
server [30]. On the server side this can be used
to see if the TCP session is valid. In the case of an

CLOSED

LISTEN

SYN_SENTSYN_RCVD

ESTABLISHED

FIN_WAIT_1

FIN_WAIT_2

CLOSE_WAIT

CLOSING
LAST_ACK

TIME_WAIT

Passive open Close

SYN/SYN + ACK Send/SYN

Timeout/RST
Close

Active open/SYN

SYN/SYN + ACK

Close/FIN

ACK SYN + ACK/ACK

Close/FIN FIN/ACK

ACK

ACK

FIN +
ACK-
/ACK

FIN/ACK

ACK

Close/FIN

ACK

Timeout after two maximum
segment lifetimes (2*MSL)

Figure 5: The TCP state machine for the server
and client. The server is the left side of the picture
and the client is represented by the right side of the
picture [28].

erroneous packet, the server will send the client a
RST message. This means the socket becomes free
on the server side and the client will need to re-
initiate the connection. The connection tracking
system detects validity of a session by looking at
the acknowledged bytes in the TCP header. If the
acknowledged bytes is greater than zero, the pro-
tocol knows that the packet is not the first packet
of a session and therefore invalid.
In our proof of concept we need to act upon such

a misplaced session. Instead of directly sending a
RST message to the client we need to lookup the
session on the DHT to see if it can be associated
with a different node in the Anycast group. If so,
we can forward the packet to the correct host. Oth-
erwise, we act as the protocol dictates and send the
RST message anyway.

6.3.2 Maintaining State

To maintain session state we propose that every
new session to the Anycast group is stored by the
server on the DHT. As you can see in Figure 2,
servers announce two loopback addresses; One is
the Anycast address and the other is their unique
IPv4 address. The information stored on the DHT
represents a TCP 4-tuple. The client socket will
act as a key and the unique loopback address
and port serves as the value.
Figure 6 clearly shows how a search on the DHT

8

{ "20.1.1.1:1234" : "10.0.0.2:80" }

Figure 6: This is an example in JSON of the in-
formation that will be stored in the DHT.

would work, in the case of an erroneous session.
When an unknown connection is received, the TCP
client socket information is used as a key to look
up the identifier of the correct node.

6.4 Combining all elements
When combining the previous information we pro-
pose the following design to solve the problem of
maintaining TCP session states across thousands
of nodes in an Anycast group. The proof of concept
will be made up of the following elements:

• A network Topology implemented according to
the new design.

• A group of servers taking part in a Kademlia,
DHT overlay network.

• A group of web servers who listen on an Any-
cast address and look up and store TCP ses-
sion information in the provided DHT.

Figure 7, Figure 8 and Figure 9 show the different
interactions that happen between client, server and
Kademlia network.

Figure 7: This shows the applications running on
the server. The DHT is listening on UDP port 7000
and uses this to listen to messages on the overlay.
At the same time it is hosting a web application on
port 80 on the Anycast address.

6.4.1 Summary

The proposed design can in theory achieve hori-
zontal scalability. When implemented well it is
possible to add and delete nodes from the network
without having to explicitly inform every other
node on the network. Nodes join the web server
group by announcing the Anycast address and can
join the DHT by knowing one single other node in
the DHT.

Figure 8: This shows the interactions between cli-
ent, web server and Kademlia network when fol-
lowing a normal flow. We see that upon session
establishment asynchronously the session is stored
on the DHT network.

As the DHT search is very predictable this means
administrators can calculate maximum search
times that are needed to look up invalidated ses-
sions.

7 Method
The new network design as laid out in Section 5
shows how load balancing will be done on a Large
BGP network. However a question remains about
how to make sure you can preserve hundreds of
thousands of TCP session states across such a large
network. This Section will lay out a scenario which
we will test and evaluate to see if the Research ques-
tions can be answered. The test scenario and res-
ults will be gathered by building a proof of concept.

7.1 Proof of concept

The design of the load balancer as elaborated upon
in Section 6 was implemented with the scripting
language python 2.7. It was implemented in such
a way as to make sure that TCP requests were not
blocked by look ups in the DHT, to approach a real
world scenario as close as possible. This means that
the web server was running in one thread and the
DHT in another thread.

9

Figure 9: This figure shows what happens in
the event that an erroneous packet is sent to the
web server. When you follow the arrows in anti-
clockwise direction you see that the server will look
up the client socket, forward the packet to the ori-
ginal server and the original server will service the
session. This keeps happening until TCP session
termination.

7.1.1 Web server

The web server was implemented by using the
socket library provided by python. It served a
simple binary file towards any connection that con-
nected to it. All new connections to the web server
are asynchronously entered into the DHT.

7.1.2 DHT

The Kademlia protocol is implemented by using a
library available on Github. The overlay is setup
by starting the network with a single root node and
from that point adding nodes to it by bootstrap-
ping from one of the existing nodes on the Kadem-
lia network. The bootstrapping process makes sure
the node can find its correct place in the overlay.
All communication between nodes on the overlay is
done using UDP.

7.1.3 Sniffer and Forwarder

If the server detects a wrong packet it looks up
the correct destination in the DHT overlay, un-
packs the IP header, removes the Anycast address,
inserts the correct destination IP, recalculates all
checksums and sends the packet towards the cor-

rect node. The look up on the DHT overlay is only
done once as subsequent look ups can be done by
using a local cache. Figure 10 shows the changes
to the ip header to reroute the traffic to the right
node. The value in red is the value that is stored
with the client TCP session key on the DHT.

Figure 10: This shows the changes that are made
in the IP header on each host when an incorrect
packet arrives.

7.2 The Scenario
The scenario of this research assumes there is a
network with four servers connected to a number
of routers that allow access towards the Internet.
The servers in this topology represent machines
that host a number of web services on TCP port
80. Together these servers take part in a Distrib-
uted Hash Table overlay network and announce the
shared Anycast address that hosts the web service
with BGP. A visualisation of the topology is seen
in Figure 2. Furthermore we assume that it is con-
figured and set up as described in Section 5, the
new network design.

7.2.1 Testing the proof of concept

During testing we assume the role of a visitor of
the Anycast site, who is downloading a large file.
The goal is to ensure that we have an active and
valid TCP session during the time of the testing
and that we are able to ensure TCP session con-
tinuity if the test is successful. Prerequisites for
this test are that time is synchronised in the topo-
logy and that the DHT overlay and web server are
started successfully.

We define the following metrics as being relevant.
Combining them will tell us what the performance
is of the DHT:

10

https://github.com

• Setting time: This is defined as the time it
takes to set a key-value pair on the DHT over-
lay. It is measured from the moment when a
packet is sent on the network to the moment
it receive an acknowledgement packet.

• Detection time: This is defined as the time
it takes for the network to detect a link failure
on the BGP topology, up to the moment the
overlay reacts to an ECMP rerouted packet.
According to the design this means the over-
lay will react to the first ECMP rerouted TCP
packet.

• Look up time: This is defined as the time it
takes for a node to look up a key value pair
on the DHT overlay network. It is the time it
takes to send a question and receive a result
from the network.

To measure these metrics we established the fol-
lowing procedure:

1. From one of the exit nodes of the topology es-
tablish a TCP session on the Anycast address
to download the file.

2. Collect the time stamps that are printed before
and after storing the TCP session in the DHT.
This is the DHT “setting time.”

3. Simulate a link failure on the network by
manually shutting down an interface over
which the traffic is flowing.

4. Let ECMP recalculate the path of the traffic so
it will be forwarded to the next Anycast node.

5. Collect the time stamp in the system log for
when the Kernel detects interface shutdown
and compare it with the time that is printed
just before the script looks up an entry in the
DHT. This is the total “link state detection
time.”

6. Collect the time stamp before and after the
session look up on the DHT, this is the “look
up time” of the network.

7. Verify the TCP packet is forwarded correctly
and the TCP session is still active.

These steps were repeated a number of times to
calculate an average time for the three metrics so
we can analyse if the results are predictable and
consistent.

7.2.2 Comparing to traditional solutions

With the results gathered in the testing phase, we
can compare the achieved performance to three
traditional load balancers available on the market

today. Traditional balancers use health checks and
timeout timers to measure availability of nodes in
their group. Depending on the timer thresholds
they are configured to act in a certain way.

What follows are a number of definitions that
will help understand how traditional load balancers
work.

• Health Check: A traditional load balancer
can be configured to check the functionality
of an application or simply the response to an
ICMP request to judge if a node is responsive.

• Check interval: A load balancer will perform
the health check at regular intervals. This can
be configured with the “Check interval.”

• Attempts: Upon failure of a check, a bal-
ancer can be configured to make a number of
further attempts before it will take action.

• Timeout timer: When a check fails, the
“timeout timer” defines the maximum amount
of time a balancer may wait before it needs to
take action.

A combination of the aforementioned definitions
are used to configure load balancers to detect a
failure. This is fundamentally different compared
to the new design as it depends on different types
of inputs and not on a stray TCP session

Table 1 shows how these checks can be con-
figured in the case of three vendors of traditional
load balancers; Amazon Webservices software bal-
ancer [31], Kemp Technologies hardware appli-
ance[32], f5 networks hardware appliance [33].

7.3 Hardware and software used
The topology was built using certain hardware and
software. This section briefly explains the hard-
ware and software that has been used to conduct
the experiments.

7.3.1 Hardware and Operating Systems

The topology was created by making use of Vir-
tual Machines (VMs) with the Virtual Box pro-
vider. The topology needed to be capable to
run 16 VMs. To be able to run this with some
speed we used a hardware node with the following
specifications; two, Six-Core AMD Opteron(tm)
Processor 2435, with 64GB of RAM and a RAID
1 setup of two 60GB SAS hard drives. This
node was running a fully patched Ubuntu 14.04.4
LTS operating system with Virtual Box version
4.3.36

The Virtual Machines could be split up
into two types: Servers and Routers. The
server machines had the following specifications;
One Core of the Six-Core AMD Opteron(tm)

11

Product Health check Check Interval Attempts Timeout timer

AWS ICMP/TCP/HTTP 30 (5) 2 (1) 5
Kemp ICMP/TCP/HTTP 9 (3) 2 (1) 4
f5* ICMP/TCP/HTTP 5 - 16

Table 1: The health check configuration offered by three major vendors. All values represented are default
values. Known minimum values are shown in between “()”.
f5*: The timeout setting should be three times the Interval setting, plus 1 second [33]. f5 do not configure
attempts.

Processor 2435, with 400MB of RAM and a lo-
gical volume of around 4 GB. The server VMs ran
a fully patched version of Ubuntu 14.04.4 LTS.

The router VMs have the same hardware spe-
cifications, but run Cumulus Linux 3.0.0.

7.3.2 Software Installed

The hardware node uses Vagrant3 and Ansible4

to spin up the VMs that run the topology. The
source of VagrantFile and packages were provided
by Cumulus Linux and are available in https:
//github.com/packetninja. The server VMs re-
quired the following python packages to run the
proof of concept which was responsible for creating
the prototype: pydht, pynetfilter_conntrack,
ipy. The source of the proof of concept is
available here: https://github.com/pboers1988/
dhtsession. The following Linux package was also
installed from the repositories to run the code:
libnetfilter-conntrack3

7.3.3 Settings to run the topology

The Linux Kernel does not track incoming con-
nections with a vanilla install. To enable connec-
tion tracking the easiest solution was to create an
iptables rule which instructed Linux to track all
incoming connections in the connection tracking
table:

iptables -I INPUT -m state --state
NEW,RELATED,ESTABLISHED,INVALID,
UNTRACKED -j ACCEPT

↪→

↪→

As some of the logic of the python script de-
pended on certain states of the TCP session it was
necessary to make it fast enough to be able to in-
tercept the states of the session in the connection
tracking table. As the TCP stack is very efficient in
Linux we needed to introduce a delay on the net-
work card to help the script cope with the speed
and make it able to handle the logic. The delay was

3An interpreter that is able to read definition files and
interface with a number of VM managers to automate the
provisioning of VMs

4A configuration management tool based on python

introduced on both links towards the leaf nodes in
the topology with the tc tool:

tc qdisc add dev eth1 root netem delay
10ms↪→

Lastly, default TCP behaviour dictates that all
connections that come in an interface, who are not
recognized, will receive a TCP reset (RST) packet
back. For our experiment we disabled the TCP
RST packets as this would mean the client would
close their socket while we were trying to reroute
the traffic to the correct destination. The following
iptables rule was used to achieve this goal:

iptables -A OUTPUT -p tcp --tcp-flags RST
RST -j DROP↪→

8 Results
In this section we provide the results of testing
the proof of concept according to the definitions
we stated in Section 7, “setting time,” “detection
time” and “look up time.” We gathered data over
a number of tests. Last of all we show if the Proof
of concept worked as expected.

8.1 Setting time
The setting time is defined as the time it takes
to set a key-value pair on the DHT overlay of 4
nodes. It is measured by checking the time dif-
ference between the moment setting begins and an
okay is returned. Figure 11 shows the results of 15
measurements.

8.2 Detection time
The detection time is defined as the time between
the moment a router detects a link failure and the
moment a rerouted packet is searched on the DHT.
This time encompasses the recalculation of ECMP
and may also include a number of retransmissions
by the client, as the some packets may have been
dropped during the link failure. Figure 12 shows
the results of 10 measurements.

12

https://github.com/packetninja
https://github.com/packetninja
https://github.com/pboers1988/dhtsession
https://github.com/pboers1988/dhtsession

●

0.200 0.202 0.204 0.206 0.208

Setting on the DHT

Seconds

Attempts 15

Figure 11: This plot shows the time in seconds that
it takes to set the Key - Value pair on the DHT.

1.0 1.2 1.4 1.6 1.8 2.0

Detection Time

Seconds

Attempts 10 +

Figure 12: This plot shows the time in seconds that
it takes between the failure of a link and detection.

8.3 Look up time
This is the time that is needed to look up a key
on the network. It is measured from the moment
the search starts until the result is received and
can be processed. Figure 13 shows the results of 11
measurements.

0.1000 0.1005 0.1010 0.1015 0.1020

Looking up on the DHT

Seconds

Attempts 11 +

Figure 13: This plot shows the time in seconds that
it takes for a node to look up a key on the DHT.

8.4 Proof of concept
The last step of the proof of concept has not yet
been implemented. Our python script is able to
look up sessions and forward them to the correct
node, however the correct node is not able to re-
cognise the packet for reasons we discuss later in
the report (Section 9). Unfortunately this means
the TCP session does not continue when the packet
gets forwarded. Even though the proof of concept
is not complete, this did not have impact on the
gathering of the measurements, as those steps are

implemented correctly.

9 Discussion
In this section we discuss the results of the research
and point out some areas that need further invest-
igation and work. In particular some areas of the
proof of concept still need work to really see if this
solution is viable.

9.1 Proof of concept
The proof of concept has been designed and built
in a short space of time and at the point of testing
was under active development. The design of the
concept indicates that the last step of the chain
is to reestablish the TCP session at the original
node. This should happen when a packet is for-
warded from the temporary node, who looked up
a stray TCP session in the DHT. As the destin-
ation IP is changed during the forwarding phase
from the Anycast address to the unique IPv4 ad-
dress of the original node, the original node does
not recognise the packet(Figure 10). In its connec-
tion tracking table the server sees a relationship
between the Anycast address and the client socket
and not the unique Ipv4 address and the client. It
therefore treats the packet just as it would treat a
regular misplaced TCP session and sends a TCP
RST towards the client, completely defeating the
purpose of the new design.

It should be relatively trivial to capture these
packets and forward them to the local Anycast ad-
dress, or perhaps to encapsulate the original Any-
cast packet through TCP or UDP and transport it
in that way from the temporary node to the original
node, however this has not been implemented and
is as yet untested. This is unfortunate as it makes
any judgement about the success of this proof of
concept up for debate.

9.2 TCP Protocol
Even though the complete proof of concept is not
finished at the time of writing, most of the elements
of the design have been successfully implemented.
Furthermore the results show that it is not neces-
sary to make an intrinsic change in the TCP stack,
unlike Miura et al [6]. This design does not step out
of the bounds that the TCP protocol requires and
this research focuses more on how to implement it.
Our solution states that before a TCP RST is sent,
there needs to be a check to see if the session exists
on a different node by looking that up on the DHT.

We believe that this model is very achievable,
because the only change necessary needs to be done
on the server side and is completely transparent
to the client. Only changing implementation on

13

the server side is much easier then changing things
on the client and server side. With this design it
should be possible to make the solution transparent
for the TCP client.

9.3 Timing Results

In comparing the various timing results to more
traditional solutions, we see that on the very small
scale experiment that our solution is much faster.
Our solution can achieve the rerouting of TCP
packets within two seconds, this is much faster
than the theoretical minimum of traditional solu-
tion, which is between 5 and 10 seconds. The res-
ults also show that setting, detection and look up
with this system is very predictable and consistent.
Where traditional solutions rely on methods such
as ICMP to check if a node is still alive, our method
reacts to a misplaced packet and forwards this ac-
cordingly. This is inherently much faster than wait-
ing until certain arbitrary timers in health checks
have failed. Our model assumes that when a packet
is rerouted this means that a failure has occurred
and a problem needs to be solved.

9.3.1 Scaling

Previously nodes could look up results in memory
which is obviously very fast, however in our case
network delay needs to be taken into account as we
often need to query another node in the DHT over-
lay. Even though this may sound like a perform-
ance cost, our solution is very scalable. The net-
work latency together with the fixed search amount
of log(n) that the DHT provides, means that look
up time can be calculated exactly. These attrib-
utes are predictable which means admins can make
choices about how far they would like to scale.

9.3.2 Calculating look up times

From the measurements gathered we can define the
successful look up time in relation to the amount
of nodes in the network to make it a predictable
model. Let n be the amount of nodes in the net-
work, then look up time T is dependant on the av-
erage look up time on every node L and the amount
of nodes that need to be visited during a search on
the DHT log(n).

T (n) = L · log(n)

L in this case contains the average network
latency and search time of one hop. T provides
a means to estimate the look up time of a key on
the DHT overlay when a network increases in size.

9.3.3 Implement as a native application

As mentioned in Section 7 to make the applica-
tion work we needed to induce artificial delay on
the link. Furthermore, the pydht library was only
evaluated in a rudimentary way. We believe that
an implementation in a native binary of the proof
of concept needs to be made to ensure the accur-
acy of the timing results. The measurements in
this research are more of an indication to see if the
network performs in a consistent manner.

9.4 Robustness
The robustness of this solution is still very much
debatable. Our test case was to see if one TCP
stream could be rerouted. In the case of a net-
work outage, or in the case that multiple links fail
simultaneously, there will be many more TCP ses-
sions that need to be looked up within a very small
time frame. It remains to be seen if a solution
such as this is suitable for HTTP traffic. In previ-
ous research it has been shown that the longevity
of a HTTP TCP session decreases logarithmically
depending on the bandwidth between client and
server [34]. A HTTP session could already be com-
plete by the time a session is stored on the DHT.

It is well known and confirmed by research that
with packet loss TCP performance is reduced sig-
nificantly [35]. It could be easier to just setup a
new session instead of trying to save the existing
session.

9.5 Open issues
Quite obviously this solution still has to be tested
on a larger scale with many TCP sessions and it re-
mains to be seen if this solution will achieve what
is necessary to recover those TCP sessions. The
conclusions of this research are based on observa-
tions in a very small scale in a virtual environment
whilst trying to recover one TCP session.

Secondly the last step in the chain, the reestab-
lishing of the TCP session between the original
node and the client has not been tested. This is
of course the ultimate goal of the design and still
needs to be implemented.

Lastly the integrity of the DHT needs to be
tested: this research has not looked at how DHTs
react to constant setting and removal of data.

10 Conclusion
This research has designed a new solution to TCP
session integrity management in Large Scale BGP
networks. In building the proof of concept, we
have shown that a DHT could be used to store
TCP session information and provide a means for

14

a large cluster to spread out all the session in-
formation across a large network. Secondly on a
small scale, the presented solution outperforms tra-
ditional solutions. It does not wait for timeout
timers, like traditional solutions, but reacts on
TCP packets who are rerouted by ECMP that are
not recognized by new host on which they arrive.
Our design does not require any change in the

TCP protocol, but could be made to work by chan-
ging some implementation logic on the server side.
The client side of the TCP session can connect and
interact with the server in a normal way. This
makes eventual implementation much more achiev-
able as it is transparent to the client.
Finally, the measured results indicate that in the

case of one TCP session our solution performs in
a very predictable manner. Even though we be-
lieve that the proof of concept is a relatively naive
implementation which could benefit from a num-
ber of improvements, the look up results show that
it is predictable and consistent. Along with the
fact that DHT search performance scales efficiently,
we think this model could be a viable solution for
maintaining TCP session integrity on Large BGP
networks.

11 Future Work
To continue effort in this area of research we
identify the following opportunities:

• Finishing of the proof of concept by making
sure the TCP session is restored.

• The testing of the proof of concept on a larger
scale with more TCP sessions and more servers
in the Anycast group.

• Measure realistic web traffic and see if the
DHT is robust enough to handle typical bursty
HTTP traffic.

• Convert the python script to a native binary
or driver and measure the performance.

Acknowledgements

I would like to thank Attila de Groot for provid-
ing the initial idea and infrastructure to conduct
this research. Secondly, Rama Darbha and Pete
Lumbis of Cumulus networks for their feedback and
patience during the course of the project.

References
[1] P. Lapukhov, A. Premji and J. Mitchell.

Use of BGP for routing in large-scale
data centers. Tech. rep. Technical report,
IETF, 2016. url: https://datatracker.ietf.
org/doc/draft - ietf - rtgwg- bgp- routing-
large-dc/.

[2] Office of the Secretary-General. Chapter
Two: Understanding Telecommunication
Network Trends. 2011. url: https://www.
itu . int/osg/ spu/ ip/chapter_ two .html
(visited on 30/05/2016).

[3] C. Hopps. Analysis of an Equal-Cost
Multi-Path Algorithm. Tech. rep. Tech-
nical report, IETF, 2000. url: https ://
tools.ietf.org/html/rfc2992.

[4] Wikipedia. Anycast — Wikipedia, The
Free Encyclopedia. [Online; accessed 1-
June-2016]. 2016. url: https : / / en .
wikipedia.org/wiki/Anycast.

[5] Wikipedia. Transmission Control Pro-
tocol — Wikipedia, The Free Encyclope-
dia. [Online; accessed 1-June-2016]. 2016.
url: https : / / en . wikipedia . org / wiki /
Transmission_Control_Protocol.

[6] Hirokazu Miura et al. ‘Server load bal-
ancing with network support: Active any-
cast’. In: Active Networks. Springer, 2000,
pp. 371–384.

[7] Scott Weber and Liang Cheng. ‘A survey
of anycast in IPv6 networks’. In: Com-
munications Magazine, IEEE 42.1 (2004),
pp. 127–132.

[8] Valter Popeskic. Source-based routing in
IPv4 and IPv6 networks. 2015. url: http:
/ / howdoesinternetwork . com / 2014 /
source-based-routing.

[9] Miguel Castro et al. ‘Scalable application-
level anycast for highly dynamic
groups’. In: Group Communications
and Charges. Technology and Business
Models. Springer, 2003, pp. 47–57.

[10] Martin Randles, David Lamb and A
Taleb-Bendiab. ‘A comparative study into
distributed load balancing algorithms for
cloud computing’. In: Advanced Informa-
tion Networking and Applications Work-
shops (WAINA), 2010 IEEE 24th In-
ternational Conference on. IEEE. 2010,
pp. 551–556.

[11] Yingwu Zhu and Yiming Hu. ‘Efficient,
proximity-aware load balancing for DHT-
based P2P systems’. In: Parallel and dis-
tributed systems, ieee transactions on 16.4
(2005), pp. 349–361.

15

https://datatracker.ietf.org/doc/draft-ietf-rtgwg-bgp-routing-large-dc/
https://datatracker.ietf.org/doc/draft-ietf-rtgwg-bgp-routing-large-dc/
https://datatracker.ietf.org/doc/draft-ietf-rtgwg-bgp-routing-large-dc/
https://www.itu.int/osg/spu/ip/chapter_two.html
https://www.itu.int/osg/spu/ip/chapter_two.html
https://tools.ietf.org/html/rfc2992
https://tools.ietf.org/html/rfc2992
https://en.wikipedia.org/wiki/Anycast
https://en.wikipedia.org/wiki/Anycast
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://howdoesinternetwork.com/2014/source-based-routing
http://howdoesinternetwork.com/2014/source-based-routing
http://howdoesinternetwork.com/2014/source-based-routing

[12] Ion Stoica et al. ‘Chord: A scalable peer-
to-peer lookup service for internet ap-
plications’. In: ACM SIGCOMM Com-
puter Communication Review 31.4 (2001),
pp. 149–160.

[13] Petar Maymounkov and David Mazieres.
‘Kademlia: A peer-to-peer information
system based on the xor metric’. In: Inter-
national Workshop on Peer-to-Peer Sys-
tems. Springer. 2002, pp. 53–65.

[14] Andrew S Tanenbaum and Maarten Van
Steen. Distributed systems - Principles
and Paradigms. Prentice-Hall, 2015.

[15] Wikipedia. Load balancing (computing) —
Wikipedia, The Free Encyclopedia. [On-
line; accessed 1-June-2016]. 2016. url:
https : //en .wikipedia . org/wiki /Load_
balancing_(computing).

[16] Pablo Neira Ayuso. Conntrackd. 2016.
url: http://conntrack-tools.netfilter.org/
conntrackd.html (visited on 28/06/2016).

[17] Cumulus Networks. Routing on the Host:
An Introduction. 2016. url: https : / /
support.cumulusnetworks.com/hc/en-us/
articles/216805858-Routing-on-the-Host-
An-Introduction (visited on 28/06/2016).

[18] Paul Jakma. Quagga Routing Suite. 2016.
url: http://www.nongnu.org/quagga/.

[19] Wikipedia. Border Gateway Protocol —
Wikipedia, The Free Encyclopedia. [On-
line; accessed 1-June-2016]. 2016. url:
https://en.wikipedia.org/wiki/Border_
Gateway_Protocol.

[20] F. Le Faucheur and E. Rosen. Advertising
IPv4 Network Layer Reachability Inform-
ation with an IPv6 Next Hop. Tech. rep.
Technical report, IETF, 2009. url: https:
//tools.ietf.org/html/rfc5549.

[21] Cumulus Networks. Managing Un-
numbered Interfaces. 2016. url: https :
/ / docs . cumulusnetworks . com/display /
DOCS / Border + Gateway + Protocol+ -
+BGP#BorderGatewayProtocol - BGP -
ConfiguringBGPUnnumberedInterfaces.

[22] Wikipedia. ECMP — Wikipedia, The Free
Encyclopedia. [Online; accessed 1-June-
2016]. 2016. url: https ://en.wikipedia.
org / wiki / Equal - cost _ multi - path _
routing.

[23] Wikipedia. Network Topology — Wikipe-
dia, The Free Encyclopedia. [Online; ac-
cessed 1-June-2016]. 2016. url: https :
/ / en . wikipedia . org / wiki / Network _
topology.

[24] Mark D Hill. ‘What is scalability?’ In:
ACM SIGARCH Computer Architecture
News 18.4 (1990), pp. 18–21.

[25] Wikipedia. Peer-To-Peer — Wikipedia,
The Free Encyclopedia. [Online; accessed
1-June-2016]. 2016. url: https : / / en .
wikipedia.org/wiki/Peer-to-peer.

[26] Wikipedia. Kademlia — Wikipedia, The
Free Encyclopedia. [Online; accessed 1-
June-2016]. 2016. url: https : / / en .
wikipedia.org/wiki/Kademlia.

[27] Jakob Jenkov. Peer Routing Table. 2014.
url: http://tutorials . jenkov.com/p2p/
peer-routing-table.html.

[28] Ivan Griffin. TCP state machine. 2016.
url: http : / /www . texample . net / tikz /
examples/tcp-state-machine/.

[29] Wikipedia. Network Socket — Wikipedia,
The Free Encyclopedia. [Online; accessed
1-June-2016]. 2016. url: https : / / en .
wikipedia.org/wiki/Network_socket.

[30] P Ayuso. ‘Netfilter’s connection track-
ing system’. In: LOGIN: The USENIX
magazine 31.3 (2006).

[31] Amazon. Elastic Load Balancing
- Configure Health Checks. 2016.
url: http : / / docs . aws . amazon .
com / ElasticLoadBalancing / latest /
DeveloperGuide / elb - healthchecks . html
(visited on 28/06/2016).

[32] Kemp Technologies. Frequently Asked
Questions. 2016. url: https : / / support .
kemptechnologies.com/hc/en-us/articles/
203863135-Web-User-Interface-WUI-#_
Toc450210533 (visited on 28/06/2016).

[33] f5 solutions. Manual Chapter: Configuring
Monitors. 2016. url: https://support.f5.
com/kb/en- us/products/big - ip_ ltm/
manuals / product / ltm_ configuration _
guide _ 10 _ 0 _ 0 / ltm _ appendixa _
monitor_types.html#1172375 (visited on
28/06/2016).

[34] Joachim Charzinski. ‘HTTP/TCP con-
nection and flow characteristics’. In: Per-
formance Evaluation 42.2 (2000), pp. 149–
162.

[35] Anurag Kumar. ‘Comparative perform-
ance analysis of versions of TCP in a local
network with a lossy link’. In: IEEE/ACM
Transactions on Networking (ToN) 6.4
(1998), pp. 485–498.

16

https://en.wikipedia.org/wiki/Load_balancing_(computing)
https://en.wikipedia.org/wiki/Load_balancing_(computing)
http://conntrack-tools.netfilter.org/conntrackd.html
http://conntrack-tools.netfilter.org/conntrackd.html
https://support.cumulusnetworks.com/hc/en-us/articles/216805858-Routing-on-the-Host-An-Introduction
https://support.cumulusnetworks.com/hc/en-us/articles/216805858-Routing-on-the-Host-An-Introduction
https://support.cumulusnetworks.com/hc/en-us/articles/216805858-Routing-on-the-Host-An-Introduction
https://support.cumulusnetworks.com/hc/en-us/articles/216805858-Routing-on-the-Host-An-Introduction
http://www.nongnu.org/quagga/
https://en.wikipedia.org/wiki/Border_Gateway_Protocol
https://en.wikipedia.org/wiki/Border_Gateway_Protocol
https://tools.ietf.org/html/rfc5549
https://tools.ietf.org/html/rfc5549
https://docs.cumulusnetworks.com/display/DOCS/Border+Gateway+Protocol+-+BGP#BorderGatewayProtocol-BGP-ConfiguringBGPUnnumberedInterfaces
https://docs.cumulusnetworks.com/display/DOCS/Border+Gateway+Protocol+-+BGP#BorderGatewayProtocol-BGP-ConfiguringBGPUnnumberedInterfaces
https://docs.cumulusnetworks.com/display/DOCS/Border+Gateway+Protocol+-+BGP#BorderGatewayProtocol-BGP-ConfiguringBGPUnnumberedInterfaces
https://docs.cumulusnetworks.com/display/DOCS/Border+Gateway+Protocol+-+BGP#BorderGatewayProtocol-BGP-ConfiguringBGPUnnumberedInterfaces
https://docs.cumulusnetworks.com/display/DOCS/Border+Gateway+Protocol+-+BGP#BorderGatewayProtocol-BGP-ConfiguringBGPUnnumberedInterfaces
https://en.wikipedia.org/wiki/Equal-cost_multi-path_routing
https://en.wikipedia.org/wiki/Equal-cost_multi-path_routing
https://en.wikipedia.org/wiki/Equal-cost_multi-path_routing
https://en.wikipedia.org/wiki/Network_topology
https://en.wikipedia.org/wiki/Network_topology
https://en.wikipedia.org/wiki/Network_topology
https://en.wikipedia.org/wiki/Peer-to-peer
https://en.wikipedia.org/wiki/Peer-to-peer
https://en.wikipedia.org/wiki/Kademlia
https://en.wikipedia.org/wiki/Kademlia
http://tutorials.jenkov.com/p2p/peer-routing-table.html
http://tutorials.jenkov.com/p2p/peer-routing-table.html
http://www.texample.net/tikz/examples/tcp-state-machine/
http://www.texample.net/tikz/examples/tcp-state-machine/
https://en.wikipedia.org/wiki/Network_socket
https://en.wikipedia.org/wiki/Network_socket
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/elb-healthchecks.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/elb-healthchecks.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/elb-healthchecks.html
https://support.kemptechnologies.com/hc/en-us/articles/203863135-Web-User-Interface-WUI-#_Toc450210533
https://support.kemptechnologies.com/hc/en-us/articles/203863135-Web-User-Interface-WUI-#_Toc450210533
https://support.kemptechnologies.com/hc/en-us/articles/203863135-Web-User-Interface-WUI-#_Toc450210533
https://support.kemptechnologies.com/hc/en-us/articles/203863135-Web-User-Interface-WUI-#_Toc450210533
https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/ltm_configuration_guide_10_0_0/ltm_appendixa_monitor_types.html#1172375
https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/ltm_configuration_guide_10_0_0/ltm_appendixa_monitor_types.html#1172375
https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/ltm_configuration_guide_10_0_0/ltm_appendixa_monitor_types.html#1172375
https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/ltm_configuration_guide_10_0_0/ltm_appendixa_monitor_types.html#1172375
https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/ltm_configuration_guide_10_0_0/ltm_appendixa_monitor_types.html#1172375

	Introduction
	Research Questions
	Related Work
	Network Protocols
	Load balancing
	Distributed Systems
	Distributed Hash Tables
	Scaling

	Traditional load balancing solutions
	Hardware load balancing
	Software load balancing
	Scaling traditional architectures
	How to handle more connections?

	Handling Failures

	New Network Design
	Using proven tech - Routing
	All nodes are Routers
	BGP unnumbered
	Link state detection

	Load Balancing
	Anycast
	ECMP

	Handling Failures
	Maintaining the TCP session integrity

	New load balancer design
	Distributed systems
	Maintaining state

	Distributed Hash Table
	Maintaining state

	Transmission Control Protocol
	Tracking TCP connections
	Maintaining State

	Combining all elements
	Summary

	Method
	Proof of concept
	Web server
	DHT
	Sniffer and Forwarder

	The Scenario
	Testing the proof of concept
	Comparing to traditional solutions

	Hardware and software used
	Hardware and Operating Systems
	Software Installed
	Settings to run the topology

	Results
	Setting time
	Detection time
	Look up time
	Proof of concept

	Discussion
	Proof of concept
	TCP Protocol
	Timing Results
	Scaling
	Calculating look up times
	Implement as a native application

	Robustness
	Open issues

	Conclusion
	Future Work

