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Abstract

SDIO peripherals are used to extend the capabilities of SDIO aware hosts. In
order to connect peripherals to hosts, SDIO uses a universal bus in a similar fashion
as USB does. In 2014 a new attack exploiting the universality of USB, known as
BadUSB, was demonstrated. As SDIO presents similarities with USB, an attack
through SDIO might be possible. Our research explores SDIO as an attack vector
and shows that it could be used to exploit SDIO aware hosts. Hence, presenting
a new attack vector on devices such as laptops, tablets and PDAs. Our research
comprises several phases. We start by performing an in-depth analysis of the SDIO
standard to gain knowledge about its protocols and requirements. We then examine
the communication between SDIO peripherals and SDIO aware hosts. Based on
the results of the latter phase, we define potential attack paths and determine
prerequisites for an attack to be successful. Finally, we present two methods for
developing a malicious SDIO peripheral to exploit SDIO aware hosts.
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1 Introduction

SDIO (Secure Digital Input Output) is an extension to the SD (Secure Digital)
specification maintained by the SD Association to cover I/O functions [2]. It may be
used by compliant devices, such as PDAs and laptops, to extend their capabilities.
Among others, these capabilities include Bluetooth, GPS, camera and WLAN.

In 2014 a new attack exploiting the universality of USB, known as BadUSB, was
demonstrated by Karsten Nohl and Jakob Lell [3]. They showed that firmware is
often not signed by USB vendors, thus it can subsequently be rewritten for malicious
intent: self-replicating viruses, command injection and rogue DHCP servers were
among the demonstrated attacks. As these ‘BadUSB’ devices have the appearance
of a regular USB storage device, an unwitting user may wrongly perceive the device
as innocuous and subsequently insert it into a host system.

Analogous to USB, SDIO is a universal bus that can be used by a variety of
peripherals. The universality of SDIO poses a potential risk similarly to USB.
Despite the impact of BadUSB in computer security, and its apparent similarities
with SDIO, SDIO seems not to be perceived as an attack vector thus far.

In this report we research SDIO as a new peripheral attack vector. We will eval-
uate on the feasibility of SDIO-based attacks and discuss their potential impact.

1.1 Research Questions

In this report, the following research question will be answered: Could SDIO be
used as a new attack vector on SDIO aware hosts?

In order to answer this question adequately, we focused on the following sub-
questions:

• What are the characteristics of an ‘SDIO aware’ host?

• What communication protocols are supported by SDIO peripherals?

• What malicious interactions could be performed on an SDIO aware host?

• How could a malicious SDIO peripheral be developed?

• What are the similarities and differences between SDIO and USB from a
security perspective?

1.2 Related Work

In BadUSB - On Accessories that Turn Evil Karsten Nohl and Jakob Lell
demonstrated how firmware of USB devices could be rewritten for malicious in-
tent [3]. They showed how malicious USB devices can reconfigure hosts’ network
settings, inject keystrokes and spread self-replicating viruses.

Moreover, they conclude that many other USB capabilities are potentially ex-
ploitable. Analogous to USB, SDIO is a universal bus that can be used by a variety
of peripherals. The universality of SDIO poses a potential risk similarly to USB.

In Exploration and Exploitation of an SD Memory Card Andrew Huang and
Sean Cross demonstrate that firmware of microSD cards can be rewritten to per-
form arbitrary code execution on the peripheral itself. They succeeded in reverse
engineering the firmware a specific microSD card from a testbed of many [4]. They
were able to reverse engineer most of the microcontroller’s specific functions, en-
abling them to develop novel applications for the controller [5].
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Despite performing a MitM attack on the flash memory, their research does not
encompass attacks against the host machine nor does it cover SDIO-based attacks.

In A Microcontroller-based HF-RFID Reader Implementation for the SD-Slot
Andreas Loeffler and Andreas Deisinger describe an RFID reader system based on
an emulated file system to be used in SD-capable systems [6]. They developed a
prototype that could interact with applications on the host through its SD slot,
by means of the SD protocol. However, in contrast to the adoption of SDIO, their
work shows an approach that utilises SD storage only.

1.3 Scope

In this report we research the capabilities of SDIO as a new peripheral attack
vector. The attack described in this report is considered to apply to SDIO aware
hosts assuming the presence of the required drivers. This includes compliant PDAs
and laptops among other devices.

The main focus of the research will be on Linux hosts. Publicly available infor-
mation about SDIO is limited for all operating systems, which introduces difficul-
ties in preliminary research. Open source operating systems (e.g. Linux) allow for
source code modification, which eases experimental tasks such as kernel and driver
debugging.

During our research we focused on generic SDIO and SDIO WLAN drivers.
WLAN seems to be the most prevalent application of SDIO and is expected to be
generally incorporated in SDIO aware hosts. Moreover, WLAN is a standardised
SDIO interface included in the SD specifications in the Wireless LAN Simplified
Addendum document [7]. This might allow for a malicious SDIO WLAN card to
interact with a variety of WLAN drivers.

Despite this focus, our research is not limited to WLAN over SDIO. The re-
sults and principles discussed can be applied to other SDIO capabilities, such as
Bluetooth and GPS.

1.4 Testbed

Our experiments were conducted on an HP EliteBook 840 G1 laptop incorporat-
ing an SDIO compliant card reader and a Raspberry Pi 2 Model B exposing SDIO
pins. We loaded the laptop with Ubuntu 16.04 to accommodate driver debugging
while the Raspberry Pi was loaded with Raspbian Jessie 8.

The SDIO WLAN adapters ATWILC1000-SD from Atmel Corporation [8] and
ESP8266 from Espressif Systems [9] were used in our experimentation.

The ESP8266 differs from the ATWILC-1000 as it does not have the SDIO card
form factor. This means it needs to connect to a host’s SDIO bus via its pins. Both
the ATWILC1000-SD and the ESP8266 peripherals are shown in Figure 1.

The ATWILC-1000 loads its firmware from the host as it does not have non-
volatile storage to store it. In contrast, the ESP8266 allows for two different ways
of loading firmware. One of the options is loading firmware from the host (via
SDIO for example). However, the default method used in this device consists of
loading the firmware that is located in the flash chip it incorporates.

The ESP8266 does not normally expose its SDIO pins, as it uses them to load
its firmware from the flash chip. Therefore, we desoldered the flash chip to expose
these SDIO pins. This allowed us to connect the device to the host’s SDIO bus,
and be able to load firmware on the device from the host by means of SDIO.
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For firmware analysis we investigated the Wilc1000 firmware used in ATWILC-
1000 peripherals and the SD8686 V9 firmware used in Marvell Libertas 88W8686
microcontrollers [10].

Fig. 1: ATWILC1000-SD (top) and ESP8266 (bottom)

1.5 Report Structure

We start by describing the methodology used for conducting the research in
Chapter 2. In Chapter 3, we discuss two attack scenarios and illustrate the potential
impact of SDIO-based attacks.

We continue by analysing the SDIO protocol and elaborate on its details in
Chapter 4. This chapter explores SDIO inner workings, relevant components and
underlying communication protocols.

Chapter 5 presents a summary of the key components for both SDIO hosts
and SDIO peripherals. In Chapters 6 and 7 we elaborate on SDIO hosts and
SDIO peripherals respectively. We describe how hosts and peripherals interact and
elaborate on system requirements for successful exploitation.

In Chapter 8 we describe two approaches in developing a malicious SDIO pe-
ripheral. We also discuss enabling technologies for developing these peripherals.

Chapter 9 evaluates SDIO-based attacks taking into account different dimen-
sions. In Chapters 10, 11 and 12 we discuss our results, answer our research ques-
tions and provide recommendations to mitigate SDIO-based attacks.

Finally, in Chapters 13 and 14 we describe our ethical considerations and pro-
pose future work based on our results.
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2 Methodology

This methodology outlines the course of our research, which is divided into
several phases. In the first phase we researched several scenarios in which SDIO
could be used as an attack vector. We then examined the relevant specifications
provided by the SD Association to understand the SDIO standard. In this context,
communication protocols described by the Physical Layer Specification [11] such
as SPI and SD, and higher-level specifications like WLAN [7] were explored. This
allowed us to have a more comprehensive understanding of how SDIO peripherals
are constituted and to understand their internal operation.

In the second phase, we focused on the host-peripheral interaction. We first cre-
ated a high level model that illustrates the components of both host and peripheral
on a per layer basis. The model was used to further revise SDIO attack scenarios.
We then modified the host’s kernel modules to include debugging statements. This
allowed us to determine the requirements of the host when interacting with SDIO
peripherals.

In the last phase, we identified two approaches for developing a malicious SDIO
peripheral in order to exploit SDIO drivers on the host. The first approach in-
volves designing and building a new SDIO peripheral. The second approach takes
advantage of an existing SDIO peripheral and aims at modifying its firmware. To
assess the feasibility of the second approach we examined the firmwares’ entropy
in order to detect encryption. For this purpose we used the Linux applications Ent
and Binwalk. In addition, we inspected enabling technologies and techniques for
deploying both approaches.
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3 Attack Scenarios

This research studies whether the universality of SDIO could be exploited in a
similar fashion as BadUSB. In this sense, no application vulnerability on the host
itself will be exploited. The objective of this attack is to exploit an unmodified host
using legitimate interaction with a malicious SDIO peripheral. In this context, the
peripheral will interact with legitimate drivers on the host and misuse them for
ulterior purposes. Each interaction is perceived as legitimate by the host, yet un-
intended by the user. The attack focuses on the interactions between the firmware
of the SDIO peripheral (which is modified for malicious intent), and the genuine
drivers installed on the host.

An SDIO compliant host incorporates a general purpose SDIO connector, which
is intended to handle a range of capabilities as defined by the SD Association.
SDIO peripherals with different capabilities may be plugged into a universal SDIO
connector. Host systems probe the peripheral to load the corresponding manufac-
turer’s drivers. This inherent characteristic of SDIO gives an adversary flexibility,
as a malicious peripheral may identify itself as any other peripheral offering legiti-
mate functionality. Moreover, no security measures enabling the host to verify the
authenticity of the peripheral seem to exist.

Each SDIO capability (e.g. WLAN, Bluetooth, GPS) increases the attack sur-
face, as higher-level applications on the host base decisions on information origi-
nating from SDIO peripherals. Sections 3.1 and 3.2 describe the exploitation of
two capabilities, WLAN and Bluetooth respectively.

Throughout this report, we consider a peripheral that identifies itself as a le-
gitimate SDIO peripheral, yet concealing functionality that might harm the host
system, as malicious.

3.1 Rogue DHCP Server

In this scenario an SDIO peripheral replies with a malicious DHCPOFFER to
the host’s DHCPDISCOVER message. The peripheral may reply with multiple
DHCP Options, one of which is DHCP option 6 for DNS servers. When exploited,
the host will be configured to use the DNS server specified in the DHCPOFFER
message. The DNS server is also malicious and provides forged IP addresses for
looked up hostnames.

When the host performs a DNS lookup of a hostname, the response from the
DNS server will include a forged IP. A connection will then be made from the
host to that IP address instead of the genuine IP address. This attack targets all
communication that relies on hostnames, such as web and e-mail.

Figure 2 illustrates this scenario. When the malicious WLAN peripheral is
inserted into the host, the host requests its network configuration through DHCP.
The peripheral configures the host to use a malicious DNS server (e.g. 9.9.9.9).
Consequently, when the host looks up a web page (e.g. bank.os3.nl), it will connect
to a web server maintained by the adversary. This can be used to obtain sensitive
information such as credentials.

We identified two approaches in performing this attack. In the first approach,
an SDIO WLAN peripheral is used to act as a WiFi adapter (which is the default
functionality for such an SDIO device). The firmware of the SDIO peripheral is
then extended to add more functionality. In this situation, the peripheral emulates
the underlying infrastructure to configure a host’s network settings (e.g. an AP
and DCHP server). This way, when the SDIO peripheral is connected to the host,
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Fig. 2: Rogue DHCP Server through SDIO WLAN Card

it does not only present a WiFi adapter but also the connection made with the fake
AP it is emulating. The host will start interacting with the emulated components as
if they were on a physical network. This allows the malicious DHCP server (being
emulated by the peripheral), to configure the host to use a DNS server under the
control of the adversary, instead of a legitimate one. This approach allows the
adversary to exploit an existing network connection (e.g. Ethernet) without the
need of connecting the peripheral to a real network, as this will be emulated by the
malicious peripheral’s software.

In the second approach, the SDIO peripheral is an actual WiFi adapter, only
modified to intercept and alter certain network packets, such as DHCPOFFER
messages. This approach does not require the adversary to emulate an infrastruc-
ture, as it is using an existing one. However, the peripheral needs to be connected
to an AP which might be less feasible to exploit.

Targeting a host’s network configuration through SDIO is appealing for several
reasons. First of all, WLAN is a common capability of SDIO peripherals. Most
SDIO kernel modules are developed for WLAN peripherals, which increases the
host’s attack surface. Secondly, network settings are configured by daemons in
the background. An unwitting user may be unaware of any malicious action by
the peripheral. Thirdly, an adversary may serve forged IP addresses for a range
of hostnames, while serving genuine IP addresses for others. This will cause the
network to function normally from the user’s perspective for many cases, making
the attack more difficult to detect.

3.2 Keystroke Injection

In this scenario a keyboard is emulated by the peripheral to execute arbitrary
commands. While the SD Association does not standardise an SDIO keyboard
interface, it does specify a Bluetooth interface. Consequently, any device that uses
Bluetooth could be emulated, including Bluetooth keyboards and mice.

Moreover, different Bluetooth peripherals may be emulated sequentially. This
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might be used to navigate the mouse to open an application and subsequently inject
keystrokes.

Depending on the emulated device, Bluetooth attacks might be more obtrusive
as compared to attacks described in the previous section (Section 3.1). The user
may notice unusual behaviour, such as a moving mouse or commands appearing on
the terminal. Moreover, connected Bluetooth devices are shown in the (graphical)
interface of operating systems such as Windows and Ubuntu.

Karsten Nohl and Jakob Lell demonstrated the impact of keystroke injection
using USB. They used this technique to spawn a Meterpreter shell and spread
self-replicating viruses on a host system, without alarming any virus scanners [3].
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4 SDIO

SDIO (Secure Digital Input Output) is an extension of the SD specification to
include I/O functions [2]. The SDIO specification defines requirements that SDIO
peripherals should comply with to provide hosts with capabilities such as Blue-
tooth, GPS and WLAN. Figure 3 shows a more comprehensive set of capabilities
as envisioned by the SD Association.

Fig. 3: SDIO Card Types [12]

SDIO and SD storage have the same physical specification; they use the same
pinout and bus to communicate with hosts. Distinctions are made in the protocol as
SDIO peripherals may implement and respond differently to certain commands as
compared to SD storage devices. Details regarding SDIO peripherals are discussed
in Chapter 7.

The SDIO specification encompasses three different SD card form factors:

• Full Size SDIO: compatible with host sockets designed for SD memory
cards.

• Mini SDIO: compatible with host sockets designed for miniSD memory
cards.

• Micro SDIO: compatible with host sockets designed for microSD memory
cards.

Compatibility with a specific form factor differs per host. For instance, Full
Size SDIO is supported by HP EliteBook 840 G1 laptops, while Micro SDIO is
supported by the Opticon H21 PDA and Mini SDIO is supported by the H16 [13]
[14].

The specification describes physical properties of each form factor such as ap-
pearance and pinout. The SDIO protocol is loosely coupled with these form factors
so it remains the same among all of them.
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Figure 4 shows the pins of a Full Size SDIO memory card.

Fig. 4: SD Memory Card Shape and Interface (modified from [11])

The SDIO specification defines two card types:

• SDIO Card: this card incorporates an I/O controller only.

• Combo Card: this card incorporates an I/O and Memory controller.

SDIO cards may implement any SDIO capability, while combo cards may imple-
ment any SDIO capability and provide SD storage as well. In addition, combo
cards may be used as an SDIO only or SD Memory only card after initialisation.

SD storage peripherals such as the Transcend TS16GWSDHC10 card [15], pro-
vide a WiFi hotspot to connect with and access its storage wirelessly through a web
interface. Applications on these peripherals (e.g. web interface) may contain arbi-
trary code execution vulnerabilities [16], which may seemingly be used to exploit
its SD interface and perform attacks on hosts systems. However, peripherals as
such do not implement SDIO to provide a wireless hotspot. They use a hardware
module capable of providing this functionality independently of the host and only
use the SD(IO) pins for power supply.

SDIO cards can only function if the host system supports their I/O functions,
which is the case for several PDAs [17]. However, currently there are a number
of SDIO compliant hosts other than PDAs. Ubiquitous hosts, such as laptops
and tablets, can also be equipped with SDIO slots. While other devices, such as
Raspberry Pi boards, use GPIO pins to provide an SDIO interface. Appendix B
shows the pinout for GPIO as an interface to SDIO for the Raspberry Pi 2.

The SD Association provides a simplified version of the SDIO specification to be
used without a license [2]. However, a license is required for the complete specifica-
tion, which comprises more details about commands, data formats and interrupts
used in SDIO implementations. Our research is based on publicly available infor-
mation such as the simplified specifications provided by the SD Association, as
we did not obtain a license for any of the specifications mentioned throughout the
report.

Moreover, the SDIO specification relies on other specifications maintained by
the SD Association. Figure 5 shows these related specifications. An example is the
Physical Layer Specification [11] which provides implementation details on regular
SD memory cards, as well as mandatory communication protocols.
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Fig. 5: SDIO Related Specifications [2]

4.1 SDIO Stack

As aforementioned, limited information regarding SDIO is available. This ob-
structs preliminary research as there is no general overview of compliancy. To
illustrate how the SDIO standard is constituted, we developed a model based on
available information in the specifications. This SDIO Stack model presents three
different layers, each of them providing a higher level of abstraction as they stack.
The model is displayed in Figure 6.

The lowest layer of the stack represents the physical layer of SDIO. It is re-
sponsible for handling low level details such as supported voltage ranges and bit
transfer modes [11]. The second layer handles the SDIO protocol in itself, defining
the commands available for I/O functions and communication patterns such as ini-
tialisation sequences [2]. Finally, the business logic layer implements any capability
that SDIO may provide. This includes a variety of capabilities as shown in Figure
3, one example being the WLAN capability [7]. Each of the layers will be explained
in more detail in Subsections 4.1.1, 4.1.2 and 4.1.3 respectively.

Fig. 6: SDIO Stack
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4.1.1 Physical Layer: SPI and SD

This layer defines two bus protocols, which are mandatory for SD cards ac-
cording to the Physical Layer Specification [11]. These are the SD and the SPI
protocols. Table 1 shows how the pins of an SD(IO) card are used by the lines
defined in each protocol. Both protocols account for voltage, ground, clock and
data lines.

Tab. 1: SD and SPI lines

Pin # SD Mode SPI Mode
Name Description Name Description

1 CD/DAT3
Card Detect/
Data Line [Bit 3]

CS Chip Select

2 CMD Command/Response SDI Data In
3 VSS1 Supply voltage ground VSS Supply voltage ground
4 VDD Supply voltage VDD Supply voltage
5 CLK Clock SCLK Clock
6 VSS2 Supply voltage ground VSS2 Supply voltage ground
7 DAT0 Data Line [Bit 0] SDO Data Out
8 DAT1 Data Line [Bit 1] RSV Not used
9 DAT2 Data Line [Bit 2] RSV Not used

SPI is a well-known open protocol, utilised in a variety of applications serving
as an interface to a considerable number of peripherals such as sensors [18] and
LCDs [19]. It is simple and it only accounts for the use of a single data line (the
SDI line to receive data from an SDIO host and SDO to send data to the host).

In contrast to SPI, SD is not as widely used as SPI. SD is only used in ap-
plications aimed at interacting with SD cards, which makes it less pervasive. In
addition, SD is more complex and its full specification requires licensing. More
commands and multiple operation modes are specified as part of SD, which depend
on the data lines being used. These are known as 1-bit (DAT0) and 4-bit (DAT0,
DAT1, DAT2 and DAT3) SD bus modes. By using concurrent data streams, the
latter may achieve higher transfer rates.

One of the most relevant differences between SPI and SD is that SD is the
default bus protocol used by SDIO cards. In this context, SPI functions as a
fall-back mechanism which the card can use if the host decides to do so.

The specification describes the communication flow between the SDIO periph-
eral and the host system by defining a set of commands, responses and data blocks
for each protocol.

A command is a token used to start an operation, and is sent from the host
to the SDIO peripheral. A response is a token that the SDIO peripheral sends
to the host to answer a previously received command. The data blocks, are used
to exchange data from the peripheral to the host and vice versa. Figures 7 and 8
illustrate the communication flow within a single block read transfer for SD and
SPI respectively.
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Fig. 7: Single Block Read Transfer, SD Mode [20]

Fig. 8: Single Block Read Transfer, SPI Mode [20]

4.1.2 SDIO Layer

The SDIO specification defines that both SPI and SD are mandatory for SDIO
peripherals as its underlying communication protocols. It adds SDIO functionality
by defining new commands and responses to the existing SD protocol and it also
presents a different initialisation sequence and additional error conditions.

As inherited by its underlying communication protocols, SDIO is a Master-Slave
protocol. The master (host) decides what communication protocol to use and sends
commands to which the slave (peripheral) must reply in a timely manner.

4.1.3 Business Logic Layer

The Business Logic Layer implements the functionality that the SDIO periph-
eral provides. To fulfil this purpose, it uses the commands and responses defined in
the SDIO Layer. Some of these capabilities, such as WLAN, Bluetooth and GPS
are standardised, while others like Ethernet and Fingerprint Recognition are not.

This layer is especially relevant to manufacturers who implement the function-
ality they want to provide in their SDIO peripherals. Business logic needs to be
implemented on both the peripheral and the host. The peripheral implements this
as its firmware, while the host implements the corresponding drivers. Chapters 5,
6 and 7 elaborate on drivers, firmware and their interactions.
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5 General Host-Peripheral Model Based on the SDIO Stack

This chapter gives a high level description of the way both SDIO aware hosts
and SDIO peripherals implement the SDIO Stack introduced in Chapter 4. Figure
9 shows the complete model we developed for this purpose. In this model the layers
of the host and the peripheral are depicted colour coded according to the place they
occupy in the SDIO Stack.

On the peripheral, the physical layer is handled by its microcontroller. It im-
plements both the SPI and the SD bus protocols, deemed mandatory by the SDIO
specification. The layers corresponding to SDIO and Business Logic of the SDIO
Stack are implemented in firmware.

On the host, the physical layer is handled by the microcontroller present on
the card reader, which implements the SD bus (and optionally implements the SPI
bus). The top two layers are comprised of drivers that interact with the card’s
firmware. When a peripheral is inserted, the generic OS drivers read the card’s
information. Subsequently, control of the peripheral is passed to its corresponding
manufacturer drivers.

Chapters 6 and 7 provide a more detailed explanation of how these layers are
implemented and discusses the interactions that take place between the host and
the peripheral.

Fig. 9: Host-Peripheral Model Based on the SDIO Stack
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6 SDIO Hosts

The SDIO Specification introduces the term SDIO aware host. However, it does
not elaborate on requirements a host needs to comply with to be categorised as
such.

The SD Host Controller Specification [21] describes implementation guidelines
for SD(IO) hosts. It includes guidelines for card readers, OS supplied drivers and
vendor specific drivers. However, adherence to this specification is not mandatory.
It therefore does not define the requirements of an SDIO aware host.

An understanding of the actual requirements needed for a host to be considered
SDIO aware is crucial to our research as it affects the attack surface and therefore
the probability of actual exploitation. In addition, it influences considerations that
might need to be taken into account when outlining an attack scenario.

To determine what is considered SDIO aware, we analysed the interactions
that take place between a host and a peripheral. In Section 6.1 we elaborate on
the methods used for this purpose.

In Section 6.2 we discuss the prerequisites for SDIO aware hosts to support
SDIO peripherals.

6.1 Analysis Methods

Despite Linux being a well-known open source operating system, there is no
clear documentation on how the SDIO drivers interact with SDIO peripherals. We
used several methods to examine how this interaction occurs.

By analysing the Linux kernel source code [22], it was discovered that the Linux
kernel contains generic drivers as well as manufacturer specific drivers to handle
SDIO peripherals. We determined the relationships and identified the flow of con-
trol between drivers that handle SDIO peripherals.

By adding debugging statements to kernel modules, we were able to verify the
results from the previous method and follow the flow of control more precisely.

By monitoring how kernel modules are being loaded, we discovered what mod-
ules are used for what peripheral. We determined what modules were loaded at
boot time and monitored changes that occurred in /proc/modules when SDIO pe-
ripherals were inserted or removed.

We also monitored system buses to determine the system bus used by SDIO
peripherals. We observed the /sys/bus/ system folder, and its relevant sub folders
(/sys/bus/spi/devices, /sys/bus/mmc/devices, /sys/bus/sdio/devices). Standard
SD peripherals are connected to the mmc system bus, while SDIO peripherals are
connected to the sdio system bus.

Finally, we introduced modifications to the kernel’s drivers to try to force the
Linux operating system to use the SPI protocol by default. However, this attempt
failed. Furthermore, we found out that many modern microcontrollers do not
support SPI and only support SD. The aforementioned fact makes this attempt
less relevant as the protocol needs to be supported by both the microcontroller and
the drivers for the communication with the SDIO peripheral to be effective.

6.2 SDIO Aware Hosts

SDIO aware hosts require hardware and software components to handle SDIO
peripherals. Hardware components are essential for interfacing with SDIO pro-
tocols that operate on the physical layer of the SDIO Stack (SD and/or SPI).
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Software components, such as drivers, are required for interacting with the periph-
erals’ firmware. Subsection 6.2.1 describes the requirements for hosts which are
equipped with SDIO slots. Subsection 6.2.2 presents the prerequisites for hosts
which do not have SDIO slots, but use GPIO pins to provide SDIO capabilities
such as Raspberry Pi boards. Their main difference is the type of connector they
use to interface with SDIO peripherals.

6.2.1 Requirements for Hosts Equipped with an SDIO Slot

One requirement an SDIO aware host has, is to be equipped with a micro-
controller capable of handling SDIO’s underlying communication protocols that
operate on the physical layer of the SDIO Stack. The microcontroller plays a key
role as it is the master in the communication with the SDIO peripheral.

SDIO compliant peripherals are required to implement both communication
protocols (SD and SPI). However, SDIO aware hosts seemingly do not share this
requirement. Modern SD card readers may support the SD protocol only, as SPI
is considered to be a low-cost alternative with lower data transfer rates.

Over the low-level components such as microcontrollers, card reader drivers
(specific to each manufacturer) are used to monitor the system bus to detect any
events. When an SDIO peripheral is connected to the host, these low-level drivers
pass control to the generic drivers for further interaction. Their source code is
located in the drivers/mmc/host folder of the Linux kernel source code tree. An
example of such a driver is the rtsx pci sdmmc which interacts with the Realtek
Semiconductor Co., Ltd. RTS5227 PCI Express Card Reader [23].

Generic drivers interact with the SDIO peripheral to probe for the type, manu-
facturer and product. In addition, they handle generic SD and SDIO errors such as
incompatible voltages. They facilitate in loading the corresponding SDIO periph-
eral manufacturer drivers and pass control accordingly. The source code of these
drivers is located in the drivers/mmc folder within the Linux kernel source tree.

After identification by the generic drivers, control is passed to the manufacturer
drivers. These drivers are used to interact with the business logic implemented in
the card’s firmware. Their source code is placed in different kernel folders according
to their SDIO capability. For instance, the libertas sdio driver used for handling
Marvell WLAN microcontrollers is placed in drivers/net/wireless/marvell/libertas.
If the manufacturer drivers are not present on the host system, the SDIO peripheral
will presumably not operate. The Linux source code and SDIO specifications do
not indicate the existence of any other (generic) drivers that could take over the
task of handling SDIO peripheral’s firmware implementing the business logic.

To illustrate how the drivers operate and interact, we propose the three layer
driver scheme displayed in Figure 10. Applications using information provided by
these drivers are not shown in this diagram.

The lowest layer corresponds to the ”Card Reader Drivers” which are the specific
drivers for the card reader on the host. They monitor the system bus and detect
events, such as a peripheral being plugged in the SDIO slot. They subsequently
make a call to the ”Generic OS Drivers”. The latter probe the card to identify
information such as type, manufacturer, product and operating voltage levels. Once
the SDIO card is considered ‘valid’, ”Manufacturer Drivers” are invoked to handle
the SDIO specific functionality.

For SDIO peripherals to work as intended by the manufacturers, the host needs
access to the corresponding drivers to handle the peripheral. One way is for the
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Fig. 10: SDIO Aware Host Drivers

host to have the drivers installed and loaded as kernel modules. The kernel loads
these modules automatically as soon as the peripheral is connected.

As the kernel detects a new peripheral, it uses modprobe for device probing.
Modprobe identifies the modules corresponding to the SDIO peripheral, and loads
them accordingly. A similar process takes place at boot time. Upon booting,
the kernel enumerates all hardware devices to load drivers for peripherals that are
present.

It is important to note that drivers that are in development (staging), are not
loaded automatically by modprobe and need to be loaded manually. An example
of such a driver is the wilc1000 which is used to handle ATWILC1000-SD SDIO
capable peripheral.

The other way the host can get access to the drivers is by means of the Code
Storage Area (CSA). The CSA is a memory area in SDIO cards, which can be used
to store drivers on the peripherals. This mechanism facilitates the Plug-and-Play
concept for SDIO cards, as it lets manufacturers include drivers for different host
platforms [2].

6.2.2 Requirements for Hosts that Implement SDIO Through GPIO

An example of a host that can interact with SDIO peripherals through GPIO
pins is the Raspberry Pi 2 board. This device has two card controllers. One of them
is used to handle the regular SD card that it uses to boot the operating system
from, through the SD card reader slot. The other can be used to interact with an
SDIO peripheral through GPIO pins.

Driver collaboration occurs in a similar fashion as described for hosts equipped
with an SDIO slot as Raspberry Pi boards run a Linux kernel. A difference could
be the specific card reader driver that picks up the events on the system bus, as
this depends on the card reader present in the Rapsberry Pi.

In 2015, Elliot Williams added WiFi capabilities to a Raspberry Pi 2 by using
the ESP8266 IoT chip through SDIO [24]. His work illustrates how SDIO can be
leveraged to provide additional capabilities to an SDIO aware host by connecting
the SDIO peripheral to its GPIO pins.
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7 SDIO Peripherals

SDIO communication occurs in a master-slave fashion where the host is the
master and the SDIO peripheral is the slave. Linux-driven hosts are designed to
be the master as their drivers implement master logic. Making them behave like
slaves would require substantial changes such as driver modifications, which are
not currently implemented [25] [26].

The master initialises the communication. After the SDIO peripheral is reset
or powered-up, all I/O functions are disabled and it remains idle. Initially, the
peripheral resides in SD mode. However it may optionally be set to SPI mode by
pulling the chip select (CS) pin low and issuing the reset command (CMD0).

When the peripheral receives a special command (CMD5) from the host, it
will respond and initialise the I/O controller. After initialising the I/O controller,
the Common Information Area (CIA) of the peripheral is read by the host. The
CIA contains information about the peripheral’s capabilities, its manufacturer and
its product identification. The latter is subsequently used by the host to load
corresponding drivers to handle further communication. A diagram illustrating
this initialisation sequence is shown in Figure 11. A more extensive explanation of
the steps that take place during the initialisation process can by found in the SDIO
specification [2].

 SDIO communication

Opt. SPI mode

Card initialization 

Card activation

Fig. 11: SDIO Initialisation Sequence
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8 Host System Exploitation

This chapter presents two approaches in developing a malicious SDIO peripheral
to exploit the host system. The first approach consists of developing a malicious
SDIO peripheral from scratch. This involves implementing the three layers of the
SDIO Stack shown in Figure 6. Section 8.1 describes this approach.

The second approach consists of modifying the firmware of an already existing
SDIO peripheral for malicious use. This approach is described in Section 8.2.

Both approaches require the reverse engineering of the peripherals’ firmware,
as they both target existing SDIO drivers on the host.

8.1 Develop an SDIO Peripheral and Create New Firmware

Access to the complete SDIO specification requires a license, which demands an
NDA. Because of this, its derivative products such as SDIO card source code are
kept private by manufacturers. Therefore, there is no open source example of an
SD(IO) card, which complicates the task of creating a malicious one from scratch.

According to the specification provided by the SD Association it is possible to
implement SDIO using either the SPI bus or the SD bus. Both protocols are placed
on a lower level of abstraction than SDIO itself as explained in Chapter 4.

In the following sections we evaluate these low level protocols and discuss the
possibilities that they offer towards implementing a malicious SDIO peripheral.
Both the required hardware and software components are considered. In Subsection
8.1.1 we describe how a malicious peripheral could be implemented using the SPI
protocol. In Subsection 8.1.2 we present two alternatives (bit banging and FPGA)
to implement a malicious peripheral using the SD protocol.

8.1.1 Develop an SDIO Peripheral Using the SPI Protocol

SPI is a simple master-slave protocol commonly used in general purpose micro-
controllers. This protocol handles low level details of the communication such as
clock rate and polarization. Examples of microcontrollers that support SPI are the
Atmel 8 or 32 bit AVR usually present in Arduino boards [27].

Apart from the hardware support, there are open source libraries available, such
as the Arduino SPI library [28], that offer high level functions to define and modify
protocol parameters.

In addition, low-cost sniffers for SPI can be constructed. These can be used to
capture data being transferred between the master and the slave. We implemented
such a sniffer by using a low-cost general purpose bus sniffer (Bus Pirate [29]). We
sniffed SPI communication between an Arduino Board (master) and an SD storage
card (slave). The code loaded on the Arduino board made use of the SPI and SD
libraries to read information from the SD card such as its type and its partitions
[30]. Figure 12 shows a schematic diagram of the SPI sniffer setup we used.

By analysing the captured communication, it is possible to reverse engineer
the protocol. Gathering information such as commands being sent by the master
and responses being sent by the slave may become helpful in the development of
a malicious peripheral. Especially, when the complete specification (which gives
details about specific commands and timing) is not available.

The analysis of the data can be facilitated by logic analysers. There are several
open source analysers available for SPI. For our research we used Logic Sniffer [31].
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Fig. 12: SPI Sniffer: Bus Pirate (left), SD breakout board (top-center), Arduino
UNO board (right)

Appendix C shows the captures we obtained with Logic Sniffer, which we collected
while the Arduino board was interacting with the SD card to obtain its information.

8.1.2 Develop an SDIO Peripheral Using the SD Protocol

In contrast to the SPI bus, the SD bus is a licensed protocol only used by
SD(IO) peripherals adhering to the SD(IO) specification. This difference between
the protocols introduces complications when implementing an SDIO peripheral over
SD.

Low-cost microcontrollers that natively support SD seem less available. More-
over, protocol analysers like the SD Sleuth Pro [32] are proprietary. These aspects
affect the ease of development of a malicious peripheral. Nonetheless, we have iden-
tified several possibilities that could be considered when implementing a malicious
slave through SD.

One of these possibilities is bit banging. This is a technique used for imple-
menting serial communication through software instead of using dedicated hard-
ware. Software is used to handle all parameters for signals such as timing, levels
and synchronization [33]. While this technique can be implemented on a low-cost
general purpose microcontroller, it requires extensive knowledge of the intricacies
of the protocol.

Another possibility is to use an FPGA solution. This involves implementing an
SDIO Slave Controller on an FPGA board. SDIO Slave Controllers facilitate the
design of SDIO cards by abstracting the SD Physical Specification as well as the
SDIO Specification maintained by the SD Association. The controller provides the
user with the implementation and interface to the two lower layers in the SDIO
Stack described in Chapter 4. There are several companies that commercialize the
required IP-core (logic used in FPGAs) to implement SDIO Slave Controllers [34]
[35] [36] [37] [38].

While the IP-core for the FPGA provides the functionality of the two lower
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layers, the business logic corresponding to the third layer still needs to be im-
plemented by the developer. This process might have a steep learning curve as it
requires developing for an unconventional platform. This approach does not require
modifications on the host, as the SDIO peripheral may be engineered to interact
with already existing drivers on the host system.

8.2 Modify Existing Firmware

Besides developing a new SDIO peripheral that exploits an existing driver, the
firmware of existing peripherals may be modified to fulfil the same purpose. In
BadUSB - On Accessories that Turn Evil Karsten Nohl and Jakob Lell demon-
strated how the lack of encryption and cryptographic signatures allow for the mod-
ification of USB peripherals’ firmware.

To modify SDIO peripherals’ firmware, reverse engineering firmware binaries is
indispensable as its source code is not available. Depending on the target architec-
ture of the binary, a suitable debugger or disassembler might be used to ease the
firmware analysis. This may reveal interesting functions that might subsequently
be hooked to change the behaviour of the SDIO peripheral.

For instance, a function that flushes WLAN packets to the host might be hooked
to inspect each packet and make changes accordingly. The function can be altered
to filter DHCP-reply packets and change the DNS server resulting in the attack
scenario as described in Section 3.1.

Two approaches in loading firmware to the SDIO peripheral were encountered
during our research:

• Firmware loaded from flash memory

• Firmware loaded from the host

In the first approach an SDIO peripheral incorporates a chip, such as flash memory,
to store its firmware. When the device boots it will fetch the firmware from the
flash memory and start executing instructions accordingly. This approach enables
an adversary to modify a peripheral’s firmware without having access to the host.

In contrast, the second approach relies on the host to serve the peripheral’s
firmware. When the peripheral boots it will fetch the firmware from the host
(provided from /lib/firmware/ on Linux systems) and start executing instructions
as per the firmware received. This approach suggests that a host machine must
first be compromised in order to serve malicious firmware to the SDIO peripheral.
This seemingly provides a protection against SDIO peripheral attacks as privileged
access on the host is required.

However, a malicious peripheral can still be developed to exploit the correspond-
ing driver and perform the attack. This peripheral may incorporate its own flash
memory, loaded with malicious firmware, that responds as if uploading firmware
from the host was successful. As the driver finishes uploading the firmware with-
out any issues, it will consider the peripheral to be in a valid state and proceed
operation regardless of the actual firmware being executed on the peripheral.

During our research we investigated the two SDIO peripherals mentioned in
Section 1.5. At least one of these peripherals, the ESP8266, was susceptible to
firmware modification. We desoldered the chip’s flash memory to expose its SDIO
pins, which allowed us to both flash firmware and interact with the microcontroller
directly over SDIO from our host system.
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An SDK for the ESP8266 is provided by its manufacturer to develop new appli-
cations for its microcontroller [39]. However, SDIO firmware example code is not
contained within the SDK and may only be obtained after signing an NDA. The
firmware has a proprietary format which needs to be reverse engineered to develop
new SDIO applications.

Despite the unavailability of this code, we successfully uploaded new SDIO
firmware to the ESP8266 microcontroller, that originates from the Linux Rockchip
repository [40]. The repository contains two binary firmware files which are up-
loaded to the peripheral by the driver and are executed accordingly. This allowed
us to program the microcontroller and use the chip’s SDIO WLAN functionality.
However, as the firmware’s format is proprietary we were unable to implement
malicious modifications.

In an effort to modify the ATWILC1000-SD’s firmware, we compiled its latest
drivers and included them in the Linux kernel. However, we were unable to verify
the succesful modification, as the corresponding wilc1000 drivers are in staging
phase and did not work properly during experimentation. Efforts to patch these
drivers manually were not effective and resulted in erroneous behaviour.

By analysing two different firmwares (SD8686 V9 firmware used in Marvell Lib-
ertas 88W8686 microcontroller [10] and Wilc1000 firmware used in ATWILC1000
Atmel Evaluation Board [8]), we were able to derive that they are unencrypted.
We found readable strings in both firmwares and analysed their entropy.

Figures 13a and 13b show the entropy throughout both firmwares. These graphs
show the entropy measured per equal-sized block of 1024-bit. Entropy is measured
in bits per byte of both the original firmware and an AES-256-CBC encrypted
version of the same firmware. As shown in the graphs, the entropy corresponding
to the encrypted version of the firmwares is higher, being close to the maximum
of 8 bits per byte. In contrast, the entropy values of the original version of the
firmwares fluctuate below 7 bits per byte. The exact measurement values can be
found in Appendix D.
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Fig. 13: Firmware Entropy

In addition, cryptographic signatures were not discovered nor mentioned in
any product or standard specification checked. The apparent lack of encryption
and cryptographic signatures suggests that modified firmware would be accepted
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by SDIO peripherals, as their microcontrollers would not be able to verify the
firmware’s authenticity based on cryptography.
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9 Evaluating SDIO Attacks

This chapter evaluates on different aspects regarding SDIO-based attacks. Sec-
tion 9.1 discusses the difference between the two methods proposed in Chapter 8 to
develop a malicious SDIO peripheral. Section 9.2 examines the effectiveness of the
attacks based on the two different communication protocols: SPI and SD. Finally,
Section 9.3 discusses SDIO-based attacks in comparison to USB-based attacks.

9.1 Creating New Firmware vs. Modifying Existing Firmware

The first method mentioned in Chapter 8 encompasses creating an SDIO pe-
ripheral from scratch. This implies that the adversary would need to implement
the three layers of the SDIO Stack from the peripheral. This is different from the
second method, which requires modifying the firmware of an existing SDIO periph-
eral. As the three layers of the SDIO Stack have been already implemented by the
manufacturer in an existing peripheral, an adversary is only required to alter its
business logic. Therefore, a malicious peripheral based the second method would
potentially require less resources.

However, creating a malicious SDIO peripheral from scratch is more flexible, as
the implementation is not bounded by specific firmware of a particular manufac-
turer.

9.2 Using the SD Protocol vs. Using the SPI Protocol

SPI presents several advantages when considering implementation details of a
malicious SDIO peripheral. As the protocol is commonly used by many applications
and microcontrollers, more low-cost and open source products for this protocol are
available. This implies that the implementation of a malicious SDIO peripheral
using the SPI protocol would be more convenient than implementing it using the
SD protocol.

However, SPI presents a major disadvantage as it is not the default protocol
used to communicate with SDIO peripherals. The host (master) decides what
communication protocol to use, and might not necessarily support SPI. Therefore,
using the SPI protocol as an attack vector might be less effective. As SD is the
default protocol, a malicious peripheral using SD will presumably affect a wider
range of (modern) hosts as compared to SPI.

9.3 SDIO vs. USB Attacks

SDIO presents similarities with USB, in the sense that both are used to add
capabilities to a host. Both USB and SDIO utilise a universal bus, which can be
used to connect different types of peripherals. In both cases, peripherals include
an identifiable string for the host to load the appropriate drivers. Despite their
similarities, SDIO and USB also present several differences.

The attack surface is composed of the available hosts and peripherals susceptible
to SDIO or USB-based attacks. Even though there are a number of different types
of SDIO aware hosts (e.g. laptops, tablets, PDAs), there are presumably more
devices that support USB (e.g. desktops, laptops, printers, routers, etc). When
considering SDIO peripherals, there are few vendors and products available as
opposed to USB peripherals. Altogether, USB seemingly presents a bigger attack
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surface as compared to SDIO. This increases the probability of USB-based attacks
over SDIO-based attacks.

Another aspect when considering the probability of successful exploitation, is
the inconspicuousness of the attack. For attacks to be more effective it is preferable
that the peripheral goes unnoticed when plugged into the host system. We ratio-
nalise that SDIO peripherals have an advantage as they generally do not protrude
from the port as opposed to USB peripherals.

In addition, it is preferable that the user does not notice malicious behaviour
when the peripheral is plugged in. If an aware user expects to connect a storage
device, it may be suspicious when the host does not recognize the peripheral as such.
In BadUSB, malicious capabilities may be hidden by emulating a USB hub. This
way, the host perceives the peripheral as multiple USB devices, one of them being
storage, the other being malicious. In SDIO-based attacks this can be achieved by
presenting the device as a combo card, which incorporates both memory storage
and I/O functionality.

The ease of exploitation is another considerable aspect. In the case of SDIO,
there are no off-the-shelf products available yet, that provide a platform to emu-
late SDIO peripherals. This makes host exploitation more difficult as adversaries
need to implement one of the methods described in Chapter 8. In contrast, for
USB there are devices available such as USB Armory [41], that provide platforms
for developing and running several applications, as well as USB device emulation
capabilities.

Furthermore, SDIO peripherals generally provide WLAN or Bluetooth capabil-
ities, whereas USB provides a wider range of capabilities. This makes USB more
flexible and vulnerable for a wider range of possible attacks. For instance, USB
provides MTP (media device) and HID capabilities such as keyboards and mice,
that are not directly encompassed by SDIO. However, some capabilities, such as
keyboards and mice, can be emulated via Bluetooth and may thus be used with
SDIO.

How peripherals are displayed in the user’s interface depends on their capabili-
ties. In some cases peripherals connected through SDIO might be more obtrusive
as compared to USB. For instance, connected USB HID devices will generally only
appear in certain (graphical) dialogues, whereas connected Bluetooth devices are
shown as an icon on the desktop.
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10 Discussion

In this research we investigated whether SDIO could be considered as a new
attack vector against SDIO aware hosts. Our results suggest that it is possible to
exploit a host system by means of SDIO, as no protections were found to prevent
this. Vendors could sign their firmware to prevent the execution of modified code on
their SDIO peripherals. Nonetheless, it seems such security measures are generally
not implemented. Entropy tests conducted on two distinct SDIO firmware binaries
and readable strings suggest that no (strong) encryption is being used. Further-
more, no evidence was found of usage of cryptographic signatures. However, it is
not possible to generalise this result to peripherals outside of our testbed.

SDIO attacks are feasible, provided a malicious SDIO peripheral is either newly
created or modified. The development of a malicious SDIO peripheral is time con-
suming and expensive. Licensing is required to access the complete specifications
for SD and SDIO. Moreover, there are no low cost off-the-shelf emulation devices
yet to accelerate development of SDIO applications. However, once a malicious
SDIO firmware has been developed, it may be copied and distributed to many pe-
ripherals. Adversaries with less resources may benefit from this as devices may be
obtained for a fraction of the costs as occurred with USB Rubber Ducky [42].

Each firmware is handled by specific manufacturer drivers, instead of being
handled by a generic driver. It is therefore not possible to create a malicious general
purpose SDIO peripheral; all steps in developing a malicious SDIO peripheral need
to be redone when targeting a different SDIO driver.

The risk of this attack vector is composed by the probability of such an attack
to occur, and the impact it has on the host. There are two main factors to be
considered when examining the probability of the attack.

The first factor is the attack surface, which consists of SDIO aware hosts only.
This diminishes the population of target hosts as non-SDIO SD slots are not affected
by this attack vector. Nonetheless, many hosts such as laptops, tablets and PDAs
are SDIO aware and might subsequently be compromised. Moreover, there are
several devices, such as tablets and PDAs, in which SD(IO) peripherals are the
only supported external media. This makes it more difficult to apply prevention
techniques and policies such as blocking SD(IO) slots.

The second factor is the fact that the host needs to have access to the drivers
to handle the peripheral for the attack to be successful. In cases in which the
drivers are installed on the host, this should not be considered as a limitation for
production-ready modules; once the Linux kernel detects a new device, it runs
modprobe which loads the kernel module required to handle the device. However,
staging drivers (e.g. wilc1000) are not loaded automatically with modprobe. In
cases in which the peripheral contains drivers in the CSA memory area, the host
can directly interact with the peripheral by means of those drivers. This increases
the probability of an attack being successful.

Successful exploitation may have a considerable impact on the victim’s host.
Its main reason, is that SDIO provides a wide range of functionalities that can
be misused. Depending on the exploited functionality, the inflicted damage may
vary. Moreover, SDIO might be exploited to perform attacks beyond its original
capabilities. For instance, if a Bluetooth keyboard were to be emulated by the
malicious SDIO peripheral and paired with the host, arbitrary keystrokes could be
executed on the host system. This attack could be used in staging the deployment
of malware and breaching the air gap in highly secured environments.
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11 Conclusion

SDIO (Secure Digital Input Output) is an extension to the SD specification to
cover I/O functions. SDIO peripherals are used to extend the capabilities of SDIO
aware hosts, including WLAN and Bluetooth among others. A host is considered
to be SDIO aware when it incorporates a compliant microcontroller and compatible
SDIO drivers.

Despite SDIO’s initial specification being released in 2001, little research re-
garding this topic has been published. Literature on SDIO is mainly restricted
to its specification, which requires licensing to access the complete version. This
compelled us to develop models and concepts that would otherwise be considered
part of a preliminary study of the state of art.

SDIO may operate in both SD and SPI mode. Both modes must be implemented
in SDIO compliant peripherals. SDIO aware hosts do not share this requirement,
and may support either one of these modes or both.

Analogous to USB, SDIO uses a universal bus. Any SDIO capability and ac-
companying driver could potentially be exploited for malicious intent. For instance,
SDIO WLAN drivers might be exploited to alter a host’s network configuration with
a malicious DNS server. Moreover, some SDIO drivers, such as SDIO Bluetooth
ones, might be exploited in staging attacks against higher-level non-SDIO drivers
(e.g. Bluetooth keyboard drivers). This extends the attack surface beyond the
original SDIO drivers.

A malicious SDIO peripheral could be developed by either modifying existing
firmware or by implementing new firmware. The former relies on reverse engineering
existing firmware to hook functions and modify their behaviour. The latter relies on
implementing new firmware that advertises itself as an existing peripheral. Modern
SD(IO) card readers tend not to implement SPI in favour of SD. A malicious
peripheral implementing SD is therefore expected to be more effective.

We currently deem an actual SDIO attack less probable than a USB attack,
due to the unavailability of development platforms for SDIO. However, considering
the similarities with USB and the impact of BadUSB in computer security, we
recognize SDIO as a new attack vector.



12 Mitigations 27

12 Mitigations

In this chapter we highlight mitigations to counteract SDIO-based attacks. At-
tacks can be mitigated either on the host side or on the peripheral side, and prefer-
ably on both.

On the peripheral side, vendors should strive to protect their firmware from
modification. If firmware is not protected, a malicious SDIO peripheral could be
developed more conveniently. One way manufacturers could protect their firmware
is to sign it. This way, SDIO peripherals will be able to verify whether they are
executing the original firmware, thus being able to detect a (malicious) modified
version. However, this process is not trivial as it involves secure key storage and
processing. In addition, vendors could encrypt their firmware to make the reverse
engineering process more complicated.

On the host side, several countermeasures such as disabling unused SD(IO)
ports and removing unused SDIO drivers could be implemented to mitigate these
attacks. However, these policies may not benefit usability. Furthermore, awareness
of this new attack vector should be raised to end-users. As such, individuals will
be able to protect themselves against this type of attack.

It may be assumed that adversaries with enough resources will eventually cir-
cumvent these security measures. However, the mitigations proposed will up the
ante, making exploitation more complicated and less likely.
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13 Ethical Considerations

During our research we found that SDIO can be used as an attack vector on
SDIO aware hosts. We did not implement a malicious peripheral, however we deem
this to be feasible for adversaries having enough resources.

By conducting and publishing this research, we aim to raise awareness on the
malicious capabilities of SDIO peripherals and insecurity of SDIO aware hosts.

We hope this research enables individuals to protect themselves against these
types of attacks and triggers the security community to develop countermeasures.
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14 Future Work

The focus of this project was to research if SDIO could be considered as an
attack vector in a similar fashion as USB. Future research on this topic could focus
on the implementation of a proof of concept to verify our results. The PoC could
consist of a practical implementation of the attack scenarios described in Chapter
3. In addition, we consider the exploration of potential attacks based on other
SDIO functionalities valuable research.

An important prerequisite for modifying existing SDIO peripherals’ firmware
encompasses the absence of encryption and cryptographic signatures. During our
research we successfully modified the firmware of one peripheral. Moreover, we
found no indication of encryption or cryptographic signatures in two other periph-
erals’ firmware. Further research may explore whether these security measures are
enforced by other vendors and if so, investigate how encryption and cryptographic
signature checks are implemented in SDIO peripherals and their firmware. Modified
firmware may be uploaded to the peripherals to verify these results.

In our research, we did not focus on vulnerabilities in hosts’ software such
as drivers. As these often run in kernel space, any vulnerability could have a
considerable impact on the host. Further research may consist of finding such
vulnerabilities. As part of this research, an SDIO fuzzer could be designed and
developed to automate the process.

The exploitability of a host is partially determined by the available drivers. In
this research, we examined the Linux kernel to determine what SDIO drivers exist
and how they are loaded. We found that modprobe probes the peripheral and loads
its corresponding modules accordingly. However, in other operating systems this
might work differently. While Microsoft documents USB initialisation and how a
device’s drivers are downloaded by Windows Update [43], it does not provide the
same level of detail in its SDIO documentation. Further research may be conducted
to determine how non-Linux operating systems load SDIO drivers.

Likewise, user awareness is another considerable aspect in exploitation. An
attack could be successfully performed if peripherals loaded with malicious firmware
are unwittingly inserted by users. As opposed to USB [44], user awareness studies
on SDIO peripherals have not yet been published.



15 References 30

15 References

[1] Parallella. Create SD Card. url: https://www.parallella.org/create-
sdcard/ (visited on 07/06/2016).

[2] Technical Committee. SDIO Simplified Specification. Version 3.00. SD Card
Association. 2400 Camino Ramon, Suite 375, San Ramon, CA 94583 USA,
Feb. 2011.

[3] Karsten Nohl, Jakob Lell. BadUSB - On Accessories that Turn Evil. Sept. 11,
2014. url: https://www.youtube.com/watch?v=nuruzFqMgIw (visited on
06/02/2016).

[4] Andrew Huang, Sean Cross. 30C3: Exploration and Exploitation of an SD
Memory Card. Dec. 29, 2013. url: https://www.youtube.com/watch?v=
r3GDPwIuRKI (visited on 07/05/2016).

[5] Andrew Huang, Sean Cross. On Hacking MicroSD Cards. url: https://
www.bunniestudios.com/blog/?p=3554 (visited on 07/05/2016).

[6] Andreas Loeffler, Andreas Deisinger. “A Microcontroller-based HF-RFID
Reader Implementation for the SD-Slot”. In: (Apr. 2011).

[7] Technical Committee. SD Specifications Part E7 Wireless LAN Simplified
Addendum. Version 1.10. SD Card Association. 2400 Camino Ramon, Suite
375, San Ramon, CA 94583 USA, Mar. 2014.

[8] Atmel. ATWILC1000. url: http://www.atmel.com/devices/ATWILC1000.
aspx (visited on 11/07/2016).

[9] Espressif. ESP8266EX Overview. url: https : / / espressif . com / en /

products/hardware/esp8266ex/overview (visited on 13/07/2016).

[10] Marvell. Wireless chipsets. url: https://wikidevi.com/wiki/Marvell

(visited on 11/07/2016).

[11] Technical Committee. Physical Layer Simplified Specification. Version 4.10.
SD Card Association. 2400 Camino Ramon, Suite 375, San Ramon, CA 94583
USA, Jan. 2013.

[12] SD Association. SDIO. url: https : / / www . sdcard . org / developers /

overview/sdio/index.html (visited on 07/06/2016).

[13] Opticon. H 21 - OptiWiki. Dec. 11, 2012. url: http://wiki.opticon.com/
index.php/H_21 (visited on 21/07/2016).

[14] Opticon. H 16 - OptiWiki. Dec. 11, 2012. url: http://wiki.opticon.com/
index.php/H_16 (visited on 21/07/2016).

[15] Transcend. User Manual Wi-Fi SD. Version 2.0. Transcend. 2400 Camino
Ramon, Suite 375, San Ramon, CA 94583 USA, June 2014.

[16] Opticon. Hacking Transcend Wifi SD Cards. Aug. 12, 2013. url: http://
hackaday.com/2013/08/12/hacking-transcend-wifi-sd-cards/ (visited
on 21/07/2016).

[17] Wikipedia. SDIO. url: https : / / en . wikipedia . org / wiki / Secure _

Digital#SDIO (visited on 11/07/2016).

[18] Texas Instruments. LM74 SPI/Microwire12-Bit Plus Sign Temperature Sen-
sor. url: http://www.ti.com/lit/ds/symlink/lm74.pdf (visited on
11/07/2016).

https://www.parallella.org/create-sdcard/
https://www.parallella.org/create-sdcard/
https://www.youtube.com/watch?v=nuruzFqMgIw
https://www.youtube.com/watch?v=r3GDPwIuRKI
https://www.youtube.com/watch?v=r3GDPwIuRKI
https://www.bunniestudios.com/blog/?p=3554
https://www.bunniestudios.com/blog/?p=3554
http://www.atmel.com/devices/ATWILC1000.aspx
http://www.atmel.com/devices/ATWILC1000.aspx
https://espressif.com/en/products/hardware/esp8266ex/overview
https://espressif.com/en/products/hardware/esp8266ex/overview
https://wikidevi.com/wiki/Marvell
https://www.sdcard.org/developers/overview/sdio/index.html
https://www.sdcard.org/developers/overview/sdio/index.html
http://wiki.opticon.com/index.php/H_21
http://wiki.opticon.com/index.php/H_21
http://wiki.opticon.com/index.php/H_16
http://wiki.opticon.com/index.php/H_16
http://hackaday.com/2013/08/12/hacking-transcend-wifi-sd-cards/
http://hackaday.com/2013/08/12/hacking-transcend-wifi-sd-cards/
https://en.wikipedia.org/wiki/Secure_Digital#SDIO
https://en.wikipedia.org/wiki/Secure_Digital#SDIO
http://www.ti.com/lit/ds/symlink/lm74.pdf


15 References 31

[19] Adafruit. i2c / SPI character LCD backpack. url: https://www.adafruit.
com/product/292 (visited on 11/07/2016).

[20] Cactus Technologies. An Introduction To SD Card Interface. url: http:

/ / www . cactus - tech . com / files / cactus - tech . com / documents /

whitepapers/An%20Introduction%20To%20SD%20Card%20Interface.pdf

(visited on 07/07/2016).

[21] Technical Committee. SD Host Controller Simplified Specification. Version
3.00. SD Association. 2400 Camino Ramon, Suite 375, San Ramon, CA 94583
USA, Feb. 2011.

[22] Linus Torvalds. Linux kernel source tree. url: https : / / github . com /

torvalds/linux (visited on 07/05/2016).

[23] Ubuntu. Realtek Semiconductor Co., Ltd. RTS5227 PCI Express Card Reader
Cardreader. url: http : / / www . ubuntu . com / certification / catalog /

component/pci/10ec:5227/ (visited on 07/07/2016).

[24] Elliot Williams. Raspberry Pi 2 WiFi Through Epic SDIO Hack. url: https:
/ / hackaday . com / 2015 / 12 / 09 / raspberry - pi - wifi - through - sdio/

(visited on 07/05/2016).

[25] Mark Brown et. al. Overview of Linux kernel SPI support. url: https :

//www.kernel.org/doc/Documentation/spi/spi- summary (visited on
21/07/2016).

[26] Gordon. Understanding SPI on the Raspberry Pi. url: https://projects.
drogon.net/understanding- spi- on- the- raspberry- pi/ (visited on
21/07/2016).

[27] Atmel. Atmel AVR 8-bit and 32-bit Microcontrollers. url: http://www.

atmel.com/products/microcontrollers/avr/ (visited on 08/07/2016).

[28] Arduino. SPI library. url: https://www.arduino.cc/en/Reference/SPI
(visited on 07/06/2016).

[29] DANGEROUSPROTOTYPES. Bus Pirate. url: http : / /

dangerousprototypes.com/docs/Bus_Pirate (visited on 07/06/2016).

[30] Arduino. Using the SD library to retrieve information over a serial port. url:
https://www.arduino.cc/en/Tutorial/CardInfo (visited on 21/07/2016).

[31] J.W Janssen. Logic Sniffer. url: https://www.lxtreme.nl/ols/ (visited
on 07/06/2016).

[32] Jinvani Systech Online. SD Sleuth Pro. url: http://jinvanisystech.com/
sd_sleuth_pro.html (visited on 07/06/2016).

[33] Wikipedia. Bit banging. url: https://en.wikipedia.org/wiki/Bit_

banging (visited on 07/06/2016).

[34] XILINIX - all programmable. SDIO Slave Controller. url: http://www.

xilinx.com/products/intellectual-property/1-1tmch5.html (visited
on 07/06/2016).

[35] Microsemi. IP Module - SDIO Slave Controller. url: http : / / soc .

microsemi.com/products/ip/search/detail.aspx?id=715 (visited on
07/06/2016).

https://www.adafruit.com/product/292
https://www.adafruit.com/product/292
http://www.cactus-tech.com/files/cactus-tech.com/documents/whitepapers/An%20Introduction%20To%20SD%20Card%20Interface.pdf
http://www.cactus-tech.com/files/cactus-tech.com/documents/whitepapers/An%20Introduction%20To%20SD%20Card%20Interface.pdf
http://www.cactus-tech.com/files/cactus-tech.com/documents/whitepapers/An%20Introduction%20To%20SD%20Card%20Interface.pdf
https://github.com/torvalds/linux
https://github.com/torvalds/linux
http://www.ubuntu.com/certification/catalog/component/pci/10ec:5227/
http://www.ubuntu.com/certification/catalog/component/pci/10ec:5227/
https://hackaday.com/2015/12/09/raspberry-pi-wifi-through-sdio/
https://hackaday.com/2015/12/09/raspberry-pi-wifi-through-sdio/
https://www.kernel.org/doc/Documentation/spi/spi-summary
https://www.kernel.org/doc/Documentation/spi/spi-summary
https://projects.drogon.net/understanding-spi-on-the-raspberry-pi/
https://projects.drogon.net/understanding-spi-on-the-raspberry-pi/
http://www.atmel.com/products/microcontrollers/avr/
http://www.atmel.com/products/microcontrollers/avr/
https://www.arduino.cc/en/Reference/SPI
http://dangerousprototypes.com/docs/Bus_Pirate
http://dangerousprototypes.com/docs/Bus_Pirate
https://www.arduino.cc/en/Tutorial/CardInfo
https://www.lxtreme.nl/ols/
http://jinvanisystech.com/sd_sleuth_pro.html
http://jinvanisystech.com/sd_sleuth_pro.html
https://en.wikipedia.org/wiki/Bit_banging
https://en.wikipedia.org/wiki/Bit_banging
http://www.xilinx.com/products/intellectual-property/1-1tmch5.html
http://www.xilinx.com/products/intellectual-property/1-1tmch5.html
http://soc.microsemi.com/products/ip/search/detail.aspx?id=715
http://soc.microsemi.com/products/ip/search/detail.aspx?id=715


15 References 32

[36] LATTICE - semiconductor. EP560: SD / SDIO / MMC Slave Con-
troller. url: http : / / www . latticesemi . com / en / Products /

DesignSoftwareAndIP / IntellectualProperty / IPCore / EurekaCores /

EP560SDSDIOMMCSlaveController (visited on 07/06/2016).

[37] Hitech Global. SD/SDIO Device IP Core. url: http://www.hitechglobal.
com/IPCores/SDSDIODevice.htm (visited on 07/06/2016).

[38] iWave - Embedding Intelligence. SDIO Slave Controller. url: http://www.
iwavesystems.com/sdio-slave-controller.html (visited on 07/06/2016).

[39] Espressif. ESP8266 Document Map. Feb. 26, 2015. url: http : / / bbs .

espressif.com/viewtopic.php?f=67&t=225 (visited on 21/07/2016).

[40] al177. Linux kernel module driver for the ESP8089 WiFi chip. May 26, 2016.
url: https://github.com/al177/esp8089 (visited on 21/07/2016).

[41] Inverse Path. OPEN SOURCE FLASH-DRIVE SIZED COMPUTER. url:
https://inversepath.com/usbarmory (visited on 07/06/2016).
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AES Advanced Encryption Standard

AP Access Point

CIA Common Information Area

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

FPGA Field Programmable Gate Array

GPIO General Purpose Input/Output

GPS Global Positioning System

HID Human Interface Device

IoT Internet of Things

IP Internet Protocol

MitM Man-in-the-Middle

MTP Media Transfer Protocol

NDA Non-Disclosure Agreement

OS Operating System

PDA Personal Digital Assistant

RFID Radio Frequency Identification

SD Secure Digital

SDIO Secure Digital Input Output

SPI Serial Peripheral Interface

USB Universal Serial Bus

WLAN Wireless Local Area Network
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B Raspberry Pi SDIO Pinout

Table 2 shows the GPIO pins of a Raspberry Pi 2 used to communicate with
the board through SDIO.

Tab. 2: Raspberry Pi 2 SDIO Pins [45]

SDIO Signal Raspberry Pi
CLK 15/GPIO22
CMD 16/GPIO23
D0 18/GPIO24
D1 22/GPIO25
D2 37/GPIO26
D3 13/GPIO27

C Logic Sniffer Captures

Figure 14 shows the digital signals for the different lines used in the SPI protocol.
A brief description of each of the lines and their correspondence with the names
shown in Table 1 can be found below:

• SS (CS): Slave Select line is used by the master to enable the slave it wants
to talk to.

• MISO (SDO): Master In Slave Out line is used by the slave to transfer data
to the master.

• CLK (SCLK): Clock Signal line is used to determine the frequency of the
communication.

• MOSI (SDI): Master Out Slave In line is used by the master to transfer
data to the slave.

Fig. 14: SPI Lines
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Figure 15 shows a screen capture that was made during an SD card initialisation
procedure. On the left side of the capture the four lines being used by SPI (CS,
SCK, MOSI and MISO) as well as configuration parameters that determine the
SPI mode and amount of bits used are shown. On the right, the actual data being
transferred from the master to the slave (MOSI) and the data transferred from the
slave to the master (MISO) is shown.

Fig. 15: SPI Analysis Results
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Tab. 3: Firmware Entropy

SD8686 V9 Wilc1000

Offset (hex) Original ent. (b/B) AES ent. (b/B) Offset (hex) Original ent. (b/B) AES ent. (b/B)
0x0 6.282123 7.816399 0x0 6.196781 7.790906

0x400 6.454746 7.802034 0x400 5.835086 7.815643
0x800 6.249155 7.821375 0x800 5.416778 7.841111
0xC00 6.366582 7.818442 0xC00 6.089453 7.800521
0x1000 6.357649 7.824689 0x1000 6.089927 7.810695
0x1400 4.426039 7.811515 0x1400 6.057734 7.781174
0x1800 4.531434 7.818418 0x1800 5.777246 7.812392
0x1C00 6.475733 7.814030 0x1C00 5.894327 7.810398
0x2000 6.310075 7.789059 0x2000 5.429183 7.827062
0x2400 6.384919 7.820586 0x2400 5.599103 7.821440
0x2800 6.130767 7.813376 0x2800 5.664827 7.804816
0x2C00 6.159059 7.787654 0x2C00 6.017343 7.815635
0x3000 6.526084 7.804782 0x3000 5.966877 7.807068
0x3400 6.482011 7.793845 0x3400 6.366095 7.797009
0x3800 6.491932 7.833620 0x3800 6.256537 7.831146
0x3C00 6.236911 7.796921 0x3C00 6.408006 7.809673
0x4000 6.432307 7.847315 0x4000 6.251089 7.807754
0x4400 6.466668 7.825627 0x4400 6.282799 7.823955
0x4800 6.696223 7.789991 0x4800 6.261074 7.787923
0x4C00 6.318827 7.793375 0x4C00 6.065895 7.773369
0x5000 6.471171 7.840938 0x5000 6.356354 7.812360
0x5400 6.485790 7.794561 0x5400 5.901363 7.802251
0x5800 5.783693 7.835262 0x5800 6.100675 7.813515
0x5C00 5.660242 7.810968 0x5C00 6.292268 7.814612
0x6000 4.162811 7.792157 0x6000 6.268948 7.834495
0x6400 6.005361 7.807295 0x6400 6.179029 7.761681
0x6800 6.098992 7.803388 0x6800 6.210149 7.787396
0x6C00 5.847149 7.800566 0x6C00 6.269547 7.814905
0x7000 5.933182 7.821835 0x7000 6.157793 7.800639
0x7400 5.955469 7.820296 0x7400 6.262275 7.792521
0x7800 4.507794 7.818671 0x7800 6.036280 7.812407
0x7C00 6.378093 7.822686 0x7C00 6.145536 7.813159
0x8000 6.447655 7.813889 0x8000 5.967199 7.807400
0x8400 6.507003 7.805989 0x8400 6.277762 7.808937
0x8800 6.431914 7.835076 0x8800 6.313068 7.788279
0x8C00 6.471262 7.793253 0x8C00 5.755092 7.791551
0x9000 6.516406 7.842450 0x9000 6.073859 7.832568
0x9400 6.387915 7.799170 0x9400 6.234864 7.835058
0x9800 6.445048 7.814121 0x9800 6.388277 7.828832
0x9C00 6.384710 7.815529 0x9C00 6.026602 7.834788
0xA000 6.417160 7.829903 0xA000 6.413248 7.831872
0xA400 6.615589 7.820571 0xA400 6.097927 7.845391
0xA800 6.588879 7.824128 0xA800 6.295916 7.784753
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0xAC00 6.590554 7.834618 0xAC00 6.450563 7.809205
0xB000 6.204366 7.816639 0xB000 6.200918 7.798214
0xB400 6.717976 7.808683 0xB400 5.579083 7.821661
0xB800 6.498007 7.793328 0xB800 6.111125 7.804148
0xBC00 6.336890 7.807164 0xBC00 6.078714 7.802501
0xC000 6.391718 7.809967 0xC000 6.063906 7.809615
0xC400 6.603862 7.795499 0xC400 6.295670 7.810010
0xC800 6.495353 7.811748 0xC800 6.191030 7.812454
0xCC00 6.386407 7.838251 0xCC00 6.226064 7.813552
0xD000 6.271982 7.798142 0xD000 6.351674 7.784992
0xD400 6.278694 7.797673 0xD400 6.048070 7.817074
0xD800 6.346745 7.828686 0xD800 6.181060 7.793652
0xDC00 6.308050 7.819614 0xDC00 6.003390 7.791534
0xE000 6.381152 7.789465 0xE000 6.162673 7.805886
0xE400 6.476464 7.805906 0xE400 6.220248 7.811830
0xE800 6.425268 7.823496 0xE800 6.216663 7.816791
0xEC00 6.533572 7.811808 0xEC00 5.781208 7.819768
0xF000 6.431959 7.808271 0xF000 5.457941 7.823257
0xF400 6.499904 7.798325 0xF400 5.838138 7.799077
0xF800 6.381171 7.821593 0xF800 6.152044 7.806681
0xFC00 6.327072 7.776229 0xFC00 6.110505 7.808134
0x10000 6.095266 7.813516 0x10000 6.376960 7.815517
0x10400 6.387887 7.831374 0x10400 6.140733 7.824913
0x10800 6.470291 7.785457 0x10800 6.415055 7.827554
0x10C00 6.326426 7.813777 0x10C00 6.088240 7.814294
0x11000 6.497502 7.831452 0x11000 6.105161 7.818131
0x11400 6.504326 7.799271 0x11400 6.328910 7.811734
0x11800 6.536592 7.798512 0x11800 6.313498 7.797230
0x11C00 6.369887 7.803129 0x11C00 6.079704 7.822836
0x12000 6.227220 7.839872 0x12000 6.003947 7.786529
0x12400 6.505688 7.801060 0x12400 5.799353 7.817759
0x12800 6.383635 7.809317 0x12800 6.020696 7.823267
0x12C00 6.341630 7.815041 0x12C00 6.194943 7.802518
0x13000 6.305724 7.809067 0x13000 6.315341 7.830045
0x13400 6.564890 7.778000 0x13400 6.033194 7.777760
0x13800 6.629823 7.841609 0x13800 6.110680 7.792548
0x13C00 6.477083 7.839465 0x13C00 6.067308 7.810681
0x14000 6.423005 7.811619 0x14000 6.261553 7.815760
0x14400 6.560365 7.822127 0x14400 6.288602 7.808087
0x14800 6.173809 7.819352 0x14800 6.232241 7.800946
0x14C00 6.563699 7.786751 0x14C00 6.021768 7.838575
0x15000 6.477254 7.833468 0x15000 6.271147 7.841496
0x15400 6.337297 7.829270 0x15400 5.907614 7.815469
0x15800 6.484721 7.824830 0x15800 6.072703 7.803377
0x15C00 6.536767 7.827070 0x15C00 6.057596 7.855655
0x16000 6.459793 7.806964 0x16000 6.268259 7.834823
0x16400 6.425674 7.837323 0x16400 6.266129 7.800098
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0x16800 6.543259 7.816521 0x16800 6.166257 7.806485
0x16C00 6.198983 7.817839 0x16C00 6.211079 7.773295
0x17000 6.411231 7.814982 0x17000 6.278467 7.802397
0x17400 6.489958 7.800252 0x17400 6.437000 7.810697
0x17800 6.739250 7.818868 0x17800 6.305361 7.800238
0x17C00 6.440302 7.817690 0x17C00 6.034212 7.782088
0x18000 6.325242 7.815903 0x18000 5.969841 7.818692
0x18400 6.207766 7.832533 0x18400 6.043584 7.823577
0x18800 6.434275 7.798508 0x18800 6.333866 7.814156
0x18C00 6.268040 7.798674 0x18C00 6.127458 7.794050
0x19000 6.416762 7.806698 0x19000 5.996880 7.803975
0x19400 6.395780 7.802857 0x19400 6.006530 7.802240
0x19800 6.589188 7.793649 0x19800 6.208177 7.803420
0x19C00 6.472562 7.780894 0x19C00 6.200652 7.818866
0x1A000 6.590784 7.803909 0x1A000 6.179185 7.798105
0x1A400 6.599236 7.818867 0x1A400 6.419692 7.811515
0x1A800 6.557897 7.816901 0x1A800 6.390383 7.821750
0x1AC00 6.450935 7.812819 0x1AC00 5.983445 7.796019
0x1B000 6.484309 7.813880 0x1B000 4.902346 7.813387
0x1B400 6.536098 7.792983 0x1B400 5.215895 7.812963
0x1B800 6.471651 7.804992 0x1B800 5.472545 7.796501
0x1BC00 6.405682 7.822902 0x1BC00 5.004568 7.803138
0x1C000 6.587034 7.794353 0x1C000 5.161797 7.798800
0x1C400 6.251813 7.797026 0x1C400 4.948997 7.821221
0x1C800 6.550434 7.817870 0x1C800 5.094176 7.810794
0x1CC00 6.403757 7.828598 0x1CC00 5.279307 7.796035
0x1D000 6.351541 7.803989 0x1D000 5.206772 7.807321
0x1D400 6.364537 7.799708 0x1D400 3.841399 7.783986
0x1D800 6.435129 7.816044 0x1D800 4.625766 7.810500
0x1DC00 6.605740 7.776826 0x1DC00 4.193379 7.825631
0x1E000 5.605661 7.804576 0x1E000 4.462423 7.801810
0x1E400 4.231247 7.440353 0x1E400 4.314079 7.705897
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