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Abstract

Smartphones are used in today’s enterprises for sending e-mails, storing
documents and accessing data remotely. This exposes sensitive informa-
tion on these smartphones. Android is the most implemented operating
system for smartphones and sensitive information should be protected on
those devices. In this research we investigated to what extent sensitive in-
formation is protected on Android based smartphones by studying already
existing literature. We showed that multiple areas put sensitive information
at risk. One of those areas is the data encryption, the encryption keys re-
main in memory when the device is locked. If an attacker is able bypass the
lockscreen authentication, the attacker gets access to all the sensitive infor-
mation. Also there are security concerns due to trade-off between usability
and security for lockscreen authentication. If a weak authentication method
is used, the sensitive information might be at risk. When a more complex
method is used, the smartphone can become unusable. When selecting a
smartphone, a device owner should make sure that the manufacturer is
committed to distribute security updates in a reasonable time, otherwise
the sensitive information might be at risk. As for now it is also impossi-
ble to detect a compromised kernel at run time. Finally a mobile device
management solution should be used to manage the smartphones, used to
enforce security policies on the smartphones and used to collect informa-
tion about the smartphones. Although the current information collection
is limited and can be significantly enhanced. Besides investigating possible
weaknesses, this research also presents possible solutions.
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1. Introduction

Smartphones have become an indispensable part of today’s enterprises.
Users bring their own smartphones inside corporate networks and enter-
prises distribute smartphones to their employees as business phones. Using
smartphones in organisations introduces new security risks no matter which
deployment schema is used. Employees use smartphones for sending and
receiving e-mails, storing documents or remotely accessing data, thus ex-
posing sensitive information.

Chief Information Security Officers (CISO) are challenged to mitigate
those security risks. The risks are mitigated by designing and implement-
ing security policies. Such policies include for example, password length or
enforcing transmission of data over secure channels. Multiple organisations
provide guidelines for CISOs to help them design these policies. Examples
of those organisations are the National Institute of Standards and Technol-
ogy (NIST) and the Communications Electronic Security Group (CESG).
The NIST policies are generic, discussing the risks of using smartphones
in organisations. The CESG guidelines explain which security settings can
mitigate which risks on operating system level.

Operating System Market share
Android 84,1%

iOS 14,8%
Windows Phone 0,7%
BlackBerry OS 0,2%

Others 0,2%

Table 1.1: Smartphone OS market share in Q1 of 2016 [Sta16]

It happens that technical requirements force an organisation to use a
specific operating system. This operating system could be the Android
Operating System (OS). Also based on the market share of smartphone
operating systems [Sta16](as can be seen in Table 1.1) it is likely that an
organisation comes into contact with the Android OS.

Every operating system has its own strengths and weaknesses. If an
organisation wants to use sensitive information on an Android based smart-
phone, it is important that security features are configured to mitigate pos-
sible risks as much as possible. The already mentioned guidelines do not
explain to what extent sensitive information is protected. The goal of the
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Section 1: Introduction

CESG guidelines is only to inform the device owner about which security
settings mitigate specific risks. The explanation of how, why and to what
extent those security settings mitigate those risks is not the goal of those
guidelines.

In this research we will investigate the requirements for using sensitive
information on Android based smartphones, the security features of the
Android OS, possible weaknesses of those security features and to what
extent sensitive information is protected on an Android based smartphone.
We also show how the security features can be improved. Already existing
literature will be used to investigate the requirements, the security features
or the possible weaknesses. After reading this research we want our reader
to understand to what extent sensitive information is protected on Android
based smartphones and which areas require improvements.

1.1 Research Questions

This research focusses on how effective the security mechanisms are for
storing sensitive information on the Android OS, but not on the phone’s
hardware. This will be done by answering the following research question:

To what extent is sensitive information protected on Android 6 based
smartphones?

To help answering the main research question the following subquestions
need to be answered:

• RQ1: What are the requirements for storing sensitive information on
Android based smartphones?

• RQ2: What security mechanisms does the Android OS implement to
comply with those requirements?

• RQ3: Which new security features are implemented in the Android
OS version 6?

• RQ4: How can the security features of the Android OS be improved?

The Android OS is constantly evolving and research is quickly outdated.
Some of the available research does not clearly address which Android OS
version has been researched. Our research does clarify this matter by stress-
ing which new security features have been added in the most recent version,
Android version 6. This is the reason why RQ3 has been added additionally
to RQ2.

Sensitive information is a core concept of this research, but what exactly
is meant with sensitive information? This will be discussed in the next
section.

1.2 Sensitive Information

In this research sensitive information refers to the majority of information
processed (or created) by large enterprises or public services that are used
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Section 1: Introduction

in routine business operations and services and could have damaging con-
sequences if lost, stolen or published in the media [CES14]. Examples are
[Wik16e];

• personal and private information (such as medical records), which is
required to be protected by law;

• confidential business information (such as information protected by a
Non-Disclosure Agreement (NDA)).

The next section will describe to the attack landscape and thus explain
in which cases sensitive information should be protected.

1.3 Attack landscape

Smartphones are highly mobile and therefore they introduce security risks.
They lack physical security controls because they can be used outside of
an organization’s control, for example in restaurants or hotels. They are
much more likely to get stolen than other devices because of their small
form factor. They primarily use untrusted networks for internet access,
for example the cellular network. Compared to laptops which use trusted
networks more often, for example the corporate network. Mobile operat-
ing systems running on smartphones make it extremely easy to install and
run applications. Also smartphones interact with a lot of different systems,
for example synchronization with a personal computer or with cloud ser-
vices [SS14]. Smartphone users tend to use weak authentication methods
or disable authentication altogether, which also potentially puts sensitive
information at risk [Dev16a]. Compared to for example a laptop, where
a keyboard is available which making it more convenient to enter complex
passwords. These examples show that mobile devices have a different attack
landscape then for example a personal computer.

NIST [SS14] and USCert [RF11] helped translating those risks in a well
defined attack landscape. Based on the definition of [Off14], sensitive infor-
mation should be protected against attackers with bounded capabilities and
resources. Examples of those attackers may include, investigative journal-
ists, competent individual hackers, or the majority of criminal individuals
and groups [Off14].

Examples of possible attacks performed by those attackers to which
sensitive information should be protected [RF11][SS14]:

• device theft, when a smartphone gets stolen sensitive information
stored on the smartphone should not be available to the attacker.

• malicious applications stealing sensitive information. Applications
should be able to access information that they do not required. For
example, a simple flash light application should not be able to access
calendar data.
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Section 1: Introduction

• exploiting vulnerabilities (both known and unknown) to execute code
on the system. It should not be possible for the bounded attacker
to make the phone do something which it is not supposed to do for
example disabling a security mechanism.

• eavesdropping on communication, it should not be possible for the
bounded attacker to access data that is sent to and from the smart-
phone. Even when the user of the smartphone is accessing sensitive
information through an insecure WiFi network (for example a free
insecure WiFi network in a hotel), the sensitive data should still be
protected.

Both the attack landscape and the definition of sensitive information
are important concepts used through this research. The next section will
describe the structure of the rest of this report.

1.4 Structure

The rest of this paper is structured as follows: this research starts with its
related work and methodology in Section 2 and 3. Section 4 will answer RQ1
thus describes the requirements for storing sensitive information. Section
5 will answer RQ2 and RQ3, thus elaborate on the security features of
Android version 6 and describe its weaknesses. Section 6 will compare
the answers of those of RQ1 with RQ2 and RQ3 in order to answer the
main research question. Using this information possible improvements were
found. Those improvements are described in Section 7 (answering RQ4 ).
Finally, we end this report with a discussion, conclusion and suggest future
work in Sections 8, 9 and 10, respectively.
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2. Related Work

As described in Section 1, there are guidelines available from CESG [CES15]
[CES16] and NIST [JS08] [SS14] for processing sensitive information on
mobile devices including Android based smartphones. The CESG guidelines
describe which settings need to be enabled to protect sensitive information.
The guidelines also mention non-mitigated risks.

The NIST guidelines address security measures for smartphones and
PDAs, but do not address specific security features of operating systems.
They focus on the risks of introducing smartphones in an organization.
They also suggest mitigating measures for those risks. CESG also published
a comparable document [CES13], both documents were used in this research
to determine the requirements for storing sensitive information.

The security features of Android have been studied, but the Android
OS is continuously being extended. Some examples of Android security
research are [Cue+15], [Heu+14], [IG14], [Kha+12] and [Bug+11]. The
most up-to-date description of the security features of Android is the An-
droid project page [Pro16][Goo15b][Inc15a][Pro10][Goo15a][Inc15b]. This
page describes the security features of the Android OS, but it is oriented
towards developers. It does not provide guidelines for storing sensitive in-
formation. Some additional sources have been used when the project page
was insufficient. One of those sources has been [IG14]. [IG14] provides a
more detailed explanation of the security features of the Android OS.

An interesting case study is the Samsung KNOX secure container [Sam16].
The KNOX container can be used to store sensitive information inside an
application. The KNOX container has been researched in [KW16]. This
case study can be used to determine weaknesses in the security features
of the Android OS and research possible mitigations to those weaknesses.
Other sources that have been used for the same purpose are [MS13], [Ber12],
[Uel+13], [DM12], [Rog13], [OGo03], [Tes16], [Dav+12] and [Fox15].

Another interesting case study is Apple’s iOS, a technical description
of its security can be found in [App15]. The security features of iOS and
Android are compared in [MP15] and [Qer+14]. These papers indicate that
iOS offers more advanced security mechanisms than Android, but they do
not suggest improvements for Android. Both papers were published before
the release of version 6 of the Android OS.
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3. Methodology

This section describes the method used to answer the research questions.

Figure 3.1: Methodology used in this research

RQ1 - requirements for storing sensitive information First the
requirements for storing sensitive information were researched. To do so,
the related work as described in Section 2 was researched. This includes
the guidelines of NIST and CESG.

RQ2 & RQ3 - security mechanisms in version 6 of the Android
OS For researching the security features of the Android OS, the main
resource has been the Android Project page [Pro16]. Besides the previously
existing security features of the Android OS, extra attention was given to
new security features introduced in version 6 of the Android OS.

Next, the requirements were compared with the implemented security
features to determine if the security was sufficient for storing sensitive in-
formation.

RQ4 - improvements of the security features For the areas where
the security features were not sufficient, possible improvements where inves-
tigated by researching the related work. This research did not implemented
any of the improvements, but only investigated them on a theoretical level.
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4. Requirements

This section will describe the security requirements for storing sensitive
information on an Android based smartphone and thus answers RQ1. The
requirements are based on the guidelines described in [SS14] by NIST and
[CES13] by CESG.

Before diving into the requirements, it is important to understand the
Confidentiality Integrity and Availability (CIA) triad.

• The confidentiality of sensitive data means that unauthorized users
are not able to read the data [Wik16d].

• Integrity means that the data cannot be changed by unauthorized
users [Wik16d].

• Availability means that if a user authenticates successfully sensitive
data should be available.

To translate this to data used on smartphones: a sensitive e-mail (or any
data) stored on a smartphone (also referred to data at-rest) or a sensitive
e-mail transmitted from or to smartphones (also referred to as in-transit)
should not be readable or modifiable by unauthorized users. It should also
not be possible for those unauthorized users to modify the contents of the
sensitive e-mail. However, the sensitive e-mail should be available when an
authorized user authenticates himself successfully.

Application or user data have different requirements compared to the
operating system files. The confidentiality of the operating system files is
not as important as the integrity of the operating system files. However,
if the integrity can not be guaranteed, the confidentiality of sensitive data
is at risk. If an attacker can modify system files, he would be able to up-
load sensitive information remotely. For example a modified system service
sending all the received e-mails to a remote server. Because the source code
is available for the Android OS project, it does not make sense to ensure
the confidentiality of the operating system files.

To ensure the confidentiality and integrity of sensitive data the following
subcategories are required:

• data protection, all requirements to protect the confidentially (and
integrity) of data;

• platform protection, all requirements to protect the integrity of the
platform.
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Section 4: Requirements

4.1 Data protection requirements

Examples of data stored on smartphones can be amongst others, sensitive
e-mails, location data or text messages. This section describes the require-
ments to protect this data.

4.1.1 Data at-rest

Data at-rest protection refers to data being stored on a smartphone. Data
at-rest should be protected sufficiently so that an attacker is required to
authenticate himself to get access to the data stored on a smartphone. This
applies for example when a device gets stolen. An attacker should not be
able to access any sensitive data stored on the smartphone.

4.1.2 Data in-transit

Data being transmitted through untrusted networks should be protected.
Strong in-transit protection should be used to protect the confidentiality and
the integrity of this data. Thus it should not be possible for the bounded
attacker to listen in on communication.

4.1.3 Authentication

To protect the data at-rest and data in-transit, strong authentication should
be used. The smartphone should be able to verify the identity of the user,
and any services should be able to verify the smartphone and the smart-
phone verifying services. A possible solution to authenticate the user is
through for example a password. Only the user should know this password
allowing him to access his smartphone.

4.2 Platform protection requirements

The platform requirements refer to everything for ensuring the integrity of
the platform (operating system).

4.2.1 Application protection requirements

To reduce the impact of a compromised application or a compromised com-
ponent of the platform, there should be segregation between applications.
Application permissions should be restrictive and distributed on a ‘need-to-
know’ basis. Applications should only be able to (directly) modify or access
their own files.

As described earlier, a flash light application should not be able to access
sensitive calendar data. There should be a mechanism in place to ensure
which data is accessible by applications.
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Section 4: Requirements

4.2.2 Secured boot chain

Secure boot chain is a technology in which every step in the boot chain is
verified by the next step. Thus when a user powers on his or her smartphone
a ‘trust anchor’ is used to verify the next step in the boot chain. The
next step verifies the step after that. This continues until the smartphone
is booted. This technology is important because if an attacker would be
able to modify anything during the boot sequence he could potentially hide
himself. For example, a virus hiding itself from a virus scanner. Thus, it
should be impossible for unauthorized processes or users to modify the boot
sequence.

4.2.3 Malicious code execution detection and preven-
tion

Vulnerabilities potentially make it possible to execute malicious code on
a smartphone. Researchers around the world investigate new methods of
preventing malicious code execution. The operating system running on a
smartphone should implement the current best practices when it comes to
malicious code execution prevention.

Detection of malicious code execution is a more complex matter, the
smartphone should provide methods to make it possible to detect malicious
code execution. A frequently used solution on desktop computers is an anti-
virus solution. An anti-virus solution scans applications before and while
they are running on a platform for malicious behaviour.

Also the origin of an application should be verifiable to ensure that an
application originated from a specific developer.

It also should be possible to restrict applications from running on a
smartphone and only allow authorized applications to run, to reduce the risk
of running a malicious application. If there is a defined set of applications
that is used in an enterprise, why not only allow those applications to
run on the smartphone? This reduces the risk of for example running the
potentially malicious flash light application.

Vulnerabilities potentially make it possible to bypass any protection
mechanism that might be implemented. Security updates can fix vulnera-
bilities. An enterprise wants to install those updates a quickly as possible
to reduce the risks of those vulnerabilities as much as possible. Thus se-
curity updates should be available within reasonable time for distribution
to smartphones. Distribution to smartphones should be enforced and auto-
mated to reduce the impact of vulnerabilities. This does not only refer to
security updates of the operating system, but also refers to security updates
of applications.

4.2.4 Security policies

It should also be possible to define and enforce a security policy for the
smartphone. This policy should define which protection mechanisms are
enabled. It should also be possible to monitor the state of this policy and
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Section 4: Requirements

the state of the platform. For example through gathering and analysing log
files or by monitoring installed applications. An example of a security policy
can be to ensure a strong form of user authentication (strong password).

Designed policies should easily be updated, distributed and enforced
on smartphones. It should not be possible for users to modify the critical
security settings. For example a user should not be able to disable the user
authentication.

12



5. Security Features of
the Android OS

The previous section described the requirements for storing sensitive in-
formation. This section will describe the implementation of the security
features of the Android OS, specifically version 6, answering RQ2 and RQ3
and will use the same subsections as section 4.

5.1 Data protection mechanisms

This section will describe the security features ensuring the data protection
on an Android based smartphone.

5.1.1 Data at-rest

Android offers data at-rest protection by means of full disk encryption. Full
disk encryption is a technology which is used to protect information, mak-
ing the information unreadable to unauthorized users. Someone trying to
access to data needs to know some kind of secret before getting access to
the data [Wik16b]. In the case of Android the full flash memory contain-
ing all the application data (and thus user data) is being encrypted, thus
becoming unreadable for an unauthorized user. There are different encryp-
tion algorithms available of which Android uses the Advanced Encryption
Standard (AES) encryption scheme and it is required to have 128-bit keys.
Also, starting with Android version 5, disk encryption is enabled by default
[Pro16] [Inc15a]. According to NIST those keys should be sufficient for
protecting data till at least 2030 [Bar16].

The first time the Android OS boots, a key called the Disk Encryption
Key (DEK) is generated. The DEK is used to encrypt data on the smart-
phone. Android uses another key, called the Key Encryption Key (KEK).
The KEK is generated through a custom algorithm (see [Pro16] for more
details). The KEK is based on the user’s passcode (password, PIN or pat-
tern) and the Hardware-bound private Key (HBK) (a key bound to the
phones hardware) [Pro16]. The result of this is that the DEK is encrypted
with a derivative of the user’s passcode. When the user changes the pass-
code, it does not require re-encryption of the whole file-system with the new
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Section 5: Security Features of the Android OS

key material. Only the DEK needs to be re-encrypted with the new KEK.
Figure 5.1 is a graphical representation of the full disk encryption scheme.

Figure 5.1: Relation between elements for full disk encryption

When the Android smartphone boots, the user inputs his passcode to
generate the KEK. With the KEK, the DEK can be decrypted. From that
moment on the DEK is placed in memory to allow reading and writing
data to the disk. Once the phone is turned off, the DEK is removed from
memory.

The keys are protected by the Trusted Execution Environment (TEE).
The TEE is a secure part of the main processor (or a separate micro-
controller) of a smartphone. It is an isolated execution environment which
provides security features like running Trusted Applications and protecting
the confidentiality of Trusted Applications their assets [Wik16f] (like en-
cryption keys). All security sensitive operations should be executed in the
TEE. The main processors on smartphones are considered untrusted and
cannot access certain areas of Random Access Memory (RAM), hardware
registers and fuses where secret data (for example the HBK) is stored. Soft-
ware running on the main processor delegates any operation that require
the use of secret data to the TEE processor via an API [Pro16].

With version 6 of the Android OS the Keystore has been enhanced by
adding additional features to the Keymaster Hardware Abstraction Layer
(HAL) [Pro16]. For example the addition of user-authentication-gated en-
cryption keys, which will be further discussed in Section 5.1.3. The Android
Keystore provides the possibility to store encryption keys in some kind of
container to increase the difficulty of extracting them from the device. This
technology is for example used in storing the DEK.

A weakness of the data at-rest protection in the Android OS is that the
encryption keys remain in memory when the device is locked [CES16]. The
Android project strongly recommends that encryption keys should never be
stored on the device unprotected, but this is not required when keys are
being used [Pro16]. However, full disk encryption requires to have the keys
in memory. As a result, if an attacker steals the device, the attacker would
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Section 5: Security Features of the Android OS

(theoretically) be able to retrieve the encryption keys from RAM. [MS13]
froze the RAM of an Android based smartphone and used a cold boot attack
to retrieve the disk encryption keys from RAM [MS13]. A cold boot attack
is an attack where the device is turned off and then booted again. In this
case not the regular Android operating system will be booted by a custom
prepared operating system which is designed to extract the encryption keys
from the ‘frozen’ RAM. This attack relies on the property of RAM to hold
its data for a short period of time when frozen to a very low temperature.
This attack is not possible on all smartphones, only on smartphones where
the bootloader has been unlocked. Section 5.2.2 will elaborate more on this.

[MS13] also theoretically described the possibility of retrieving the en-
cryption keys from RAM through a Joint Test Action Group (JTAG) in-
terface. A JTAG interface is a low level debug interface mostly used by
the Original Equipment Manufacturer (OEM) during the development of
smartphones or for performing maintenance on broken smartphones. It can
potentially give direct access to the contents of the RAM. These interfaces
can be protected by requiring authentication, but it is left up to the OEMs
to protect their interfaces.

Besides by getting direct access to the RAM, sensitive information would
be at risk if the attacker would be able to bypass the lockscreen. The
attacker would then have access to all the user’s data without knowing the
secret (passcode). CVE-2015-3860 [CER15] is a vulnerability where a buffer
overflow caused the lock screen to crash giving the attacker access to all the
sensitive information. This vulnerability has been patched, but it illustrates
that the encryption scheme could be improved. If the encryption key would
not be stored in memory, bypassing the lockscreen would not give access to
sensitive information. Such an encryption scheme is used by Apple’s iOS
[App15].

As already mentioned, the DEK is protected by the TEE. Implementing
a TEE is strongly recommended by the Android Compatibility Definition
Document (CDD), but it is not required [Inc15a]. Not having the hardware
backed key protection results in the encryption key stored on filesystem
only being protected by a key based on the users passcode (the KEK). This
makes the encryption key vulnerable to an off-the-box attack [Pro16]. An
off-the-box attack is an attack where the key is moved to another device
and then the user’s passcode is bruteforced there. A bruteforce attack is
an attack where all possible combinations are tried to unlock the phone
[Wik16a]. When a TEE is implemented, the KEK is derived from the HBK
(together with the user’s passcode), preventing an off-the-box attack.

The TEE sounds very promising, but every vendor has to design and
create their own implementations. The security of all those implementations
should go through extensive security testing. During this research Google
announced that they increased the rewards for submitting a vulnerability to
the Google Vulnerability Rewards Program. The highest reward stands for
finding a vulnerability in either the TrustZone (a TEE implementation) or
in Verified Boot [To16] (see Section 5.2.2 for more information on Verified
boot). The increased rewards sounds promising, but every different imple-
mentation of both the TEE and any security feature of Android should go
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through extensive security testing.
There are only a few Android based smartphones which have gone

through government certification processes (for example the Federal Infor-
mation Processing Standards (FIPS) 140-2). An example of such a smart-
phone is the Samsung S7 [Sam16]. Untested implementations increase the
potential risk of security incidents. One of the most used implementatiosn
of a TEE is ARM’s TrustZone on the Qualcomm processors, this imple-
mentation has had multiple vulnerabilities (for example examples [MIT13],
[MIT16a], [MIT16c] and [MIT16b]). Two of those vulnerabilities resulted
in a fully compromised device, which illustrates that the TEE should be
tested extensively because it is a critical part of the security ecosystem of
the Android OS.

With the release of version 6 of the Android OS an additional feature
was introduced, which allowed the adoption of the SD-card memory into the
main storage. This enables the possibility to also use full disk encryption
on the SD-card. In previous versions of Android, the SD-card was not
encrypted even if full disk encryption was used. However, this feature is not
required to be implemented by the Android CDD [Inc15a]. The Android
CDD defined which conditions OEMs have to meet before they are allowed
to distribute their smartphone with the Android OS.

5.1.2 Data in-transit

To prevent eavesdropping on communication, a Virtual Private Network
(VPN) solution can be used. VPN is a technology where data is encrypted
over a secure tunnel between the server and the smartphone. Android
supports a couple of VPN protocols Layer 2 Tunneling Protocol (L2TP),
IPSEC or Point-to-Point Tunneling Protocol (PPTP).

It also offers a feature called Always-On VPN. The Always-On VPN
guarantees that all data will always be routed through the VPN. The
Always-On feature only works with the native VPN protocols (the pro-
tocols listed above). So third party applications using different protocols
do not have this functionality.

5.1.3 Authentication

Important is the authentication mechanism used to verify the identity of
the user. Native Android offers PIN, pattern and password authentication.
Fingerprint authentication is introduced in version 6 of the Android OS.

Another new feature is user-authentication-gated cryptographic keys,
where access to a cryptographic key is granted if a user is able to successfully
authenticate [Pro16]. For example: an application requests a cryptographic
key from the keystore application in the TEE, the TEE requires the user
to authenticate before releasing the key to the application.

To authenticate a server, x509 certificates can be used. X509 certificates
are digital certificates verifying the identity of an entity. To be able to
verify the identity of a server, a trust anchor is required. This can be done
either through a built-in list of certificates or through a technology called
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certificate pinning. With certificate pinning the server’s certificate is placed
inside an application. When the application connects to a server it check if
the certificate offered by the server is identical to the one provided inside
the application.

X509 certificates can also be used to verify the identity of a smartphone.
The challenging part of this is the distribution of certificates to the smart-
phone, because this is not provided in the native Android OS. Version 6 of
the Android OS introduced the possibility of adding certificate enrolment
protocols through third party applications. This allows certificate enrol-
ment protocols to be available on an Android based smartphone through
for example a Mobile Device Management (MDM) solution. More informa-
tion about MDM solutions is provided in Section 5.2.4.

Whether authentication on smartphones is sufficient is arguable. Google
stated at the 2016 developer summit that 50% of their Nexus phones are
not using authentication (prior to the release of the fingerprint authentica-
tion)[Dev16a].

A PIN number could also be considered a weak form of authentication.
[Ber12] states that 26,83% of users’ PINs can be guessed within 20 tries. The
total key space in case of a 4 digit PIN is only 104. Attacking this keyspace
through a bruteforce attack is doable through the earlier described off-the-
box attack. The encrypted DEK would be removed from the smartphone
and all combinations of the PIN would be tried to reconstruction a KEK
that decrypt the DEK. This attack would only be possible if no TEE would
be implemented, because the TEE prevents against off-the-box-attacks as
described in Section 5.1.1.

Users tend to prefer something convenient for authenticating to their
smartphone. Because of this, a different authentication method was intro-
duced, which is based on a recall-based authentication scheme. A recall-
based authentication scheme requires the user to redraw a secret. Recall-
based authentication is supposed to give a better user experience and offer
higher security because humans are better at remembering patterns than
a number sequence. In the Android OS the recall-based authentication
scheme is implemented by requiring the user to draw a pattern on a 3x3
grid [Uel+13].

[Uel+13] studied the patterns used in a real world scenario to determine
their real strength. Potentially the keyspace of the Android based pattern
authentication scheme is 219. [Uel+13] showed humans are biased when
it comes to choosing patterns. For example 38% of the participants in the
study used the top left as a starting point for their pattern. This and other
predictable characteristics caused the keyspace to be reduced to 210,90.
Making the key space close to the key space of a randomly picked 3 digit
PIN [Uel+13]. Figure 5.1.3 displays the percentages per starting points in
Android screen unlock pattern.

If a strong PIN, pattern or password and a TEE are used, Android can
put (and increase) a time-out between failed authentication attempt making
it infeasible to brute force a PIN code for our bounded attacker. However,
the Android CDD does not require an exponential backoff algorithm (the
Android CDD however highly recommends implementing it) [Inc15a]. It
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Figure 5.2: Starting point for unlock patterns in percentages [Uel+13]

only requires that rate limiting is enabled for authentication to the lock
screen. It also requires to have at least 30 seconds of rate limiting after
5 failed fingerprint authentications. [DM12] showed that the 30 second
timeout was implemented on a Galaxy Nexus running Android 4.1. In
version 6 of the Android OS this issue has been solved. The exponential
backoff algorithm starts after 20 failed authentications and the time out is
doubled after 40 failed authentication attempts. After a total of 50 failed
authentication attempts, the time out is doubled every 10 attempts.

Android version 6 introduced a new form of authentication: fingerprint
authentication. Google states that on their Nexus devices, the amount of
users who enabled authentication increased from 50% to 90% [Dev16a] due
to the introduction of fingerprint authentication. This kind of authentica-
tion scheme has also been implemented in Apple’s iOS [App15]. [Rog13]
bypassed the authentication of iOS using ‘artificial gummy fingers’. The
Gummy Finger attack requires the attacker to lift the fingerprint of the
user of for example a beer glass. The lifted fingerprint is then digitalised by
photographing it. This fingerprint is then printed on gummy tissue using
laser equipment, resulting in an artificial gummy finger. [Rog13] states that
it was a lengthy process and requires equipment worth thousands of dol-
lars (like a high resolution camera and a laser printer)[Rog13]. This attack
might be too complex to be performed by our bounded attacker, still it is
a possible risk that the lockscreen could be bypassed.

kb =
1

FMR(1)
(5.1)

For fingerprint authentication, the kb the effective keyspace of biometric
authentication) is based on the False Match Rate (FMR) [OGo03]. The
formula to calculate the kb is shown in equation 5.1. The Android CDD
requires at least a FMR of 0, 002% resulting in an effective key space of
50000. Making it halve the keyspace of a 5-digit PIN, because a 5-digit
PIN has a keyspace equal to 105 which is equal to 100000.

According to [OGo03] it is a bad practise to solely rely on biometric
authentication, which is the case for fingerprint authentication in Android.
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Even if passcode authentication is enabled for full disk encryption, the An-
droid CDD does not require to re-authenticate the user after a specific
interval [Inc15a]. This could result in Android solely relying on fingerprint
authentication because smartphones are always-on devices (smartphones
are not restarted verys often).

CESG[CES16] recommends to use a strong 9 character password for
authentication. This would indeed be a stronger authentication scheme
than fingerprint authentication, but it comes at the cost of user experience.
However, passwords, PINs and patterns are vulnerable to over-the-shoulder
attacks where an attacker looks over the shoulder of the victim and captures
the secret. This illustrates it is not a trivial task to decide on the required
authentication scheme.

5.2 Platform protection mechanisms

5.2.1 Application protection mechanisms

To protect the platform (and applications) from malicious applications, An-
droid offers application segregation by implementing sandboxing capabili-
ties. Sandboxing means that every application runs in a complete separated
environment, creating segregation between applications.

Since Android version 4.3 Security-Enhanced Linux (SELinux) has been
used for defining the boundaries of Android applications and system pro-
cesses. In Android version 4.3, SELinux was configured in permissive mode.
SELinux provides mechanisms for defining the boundaries of applications
and restricting them. Through SELinux it is possible to restrict an appli-
cation from making a specific system call or prevent it from writing to a
specific file or folder.

Permissive mode is a reporting mode, where illegal actions are only
logged. Since Android version 5 SELinux has been changed from permissive
to enforcing mode. Enforcing mode does not only log illegal actions, but
also prevents them. Android version 6 further tightens the boundaries,
improving the segregation between applications and thus reduces the threat
of exposed services [Pro16].

Besides SELinux, every process runs with its own Linux defined User
ID (UID), which takes advantage of the Linux user-based protection [IG14].
Thus when a new application is installed a new user is created together with
a separate application folder, which is only read- and writeable by that new
user. Other applications are not able to read or write in the newly created
folder.

For application permissions, Android 6 introduces the concept of ‘Run-
time Permissions’ where permissions are requested only when they are
needed, providing a ‘need to know’ permission scheme. For pre-Android
6 applications, application permissions are still requested at installation
time, but can be revoked at a later time. Application permissions allow
applications to perform specific API calls. For example, access cellular in-
formation, location information or read the user’s contacts.
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The segregation and sandboxing have proven to be insufficient in the
past. Recently found vulnerabilities, for example CVE-2016-2463 [MIT16d]
showed that it is possible to bypass the application sandbox, in case of the
example, by sending a specially crafted media file to a smartphone. Of
course, found vulnerabilities can be patched with security updates.

5.2.2 Secured boot chain

To protect against an attacker modifying the boot chain, Android im-
plements Verified Boot. This secures the boot chain through the device-
mapper-verity (dm-verity) kernel feature. A hash table is used to verify (at
a block level) the integrity and authenticity of the boot chain. With the
introduction of Android version 6 this is now required by Android CDD
[Inc15a]. The boot chain starts from an immutable hardware key supplied
by the OEM and ends at the booted kernel. Each stage should verify the
integrity and authenticity of all the bytes of the next stage before executing
the code of the next stage [Pro16].

The Verified Boot feature makes sure that the kernel is not compromised
at boot time, thus malware will not be able to place itself in the boot
sequence without being detected. However, if malware is able to exploit the
system at runtime, it is impossible to detect that the system is compromised,
because there is no method to detect if the kernel has been compromised
at runtime.

There is another problem with Verified Boot. Users can disable the
Verified Boot. One such method is through the process of unlocking the
bootloader. Sometimes the OEM provides a method to unlock the boot-
loader. If that is not the case, users sometimes use exploits to unlock the
bootloader. Unlocking the bootloader makes it possible to install different
Android distributions, also referred to as CustomRoms. After unlocking the
bootloader Verified Boot is not enabled anymore and thus the bootchain is
not being verified [Pro16]. This makes the user vulnerable to the previously
described cold boot attack [MS13].

It is required by the Android CDD to wipe all data after the bootloader
has been unlocked. If this would not be the case, sensitive information might
be at risk. Once Verified Boot has been disabled, any part of the operat-
ing system can be changed and thus any protection mechanism protecting
sensitive data can be disabled.

5.2.3 Malicious code execution detection and preven-
tion

To protect against malicious code execution Android implements Address
Space Layout Randomization (ASLR) [Pro16] and Data Execution Pre-
vention (DEP) [Wik16c]. ASLR and DEP complicate the exploitation of
vulnerabilities based on buffer overflows. Buffer overflows are very unlikely
in most Android applications because they are developed in Java,. However,
Android does support C / C++ applications (called native applications).
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Some of the core functionalities of the Android OS are written as native
applications.

Another protection mechanism for mitigating buffer overflows is Control
Flow Integrity (CFI). CFI is a technology where applications have strict
flow control. This control flow describes which function may be called by
which function (how does the application flows through its code). For exam-
ple: only the shutdown button should be able to shutdown a smartphone.
Without CFI there is no flow control that prevents the volume button from
shutting down the smartphone. [Dav+12] showed a CFI implementation on
smartphones, but this framework is not implemented in any version of the
Android OS.

It could be argued that CFI does not increase the security, because
most of the applications are written in Java. This is partially true, but it is
possible to write native Android applications (in C or C++). An example
of a native application is the media server, used for playing media files.
The previously discussed vulnerability [MIT16d] used a buffer overflow in
the media server to execute malicious code. CFI could potentially reduce
the risk or increase the complexity of exploiting this vulnerability.

Besides implementing buffer overflow protection mechanisms, Google
also actively scans (and rescans when new vulnerabilities are found) all
applications uploaded to the Google Play store with the Google Bouncer.
It scans for (but is not limited to) coding mistakes, known vulnerabilities
and malicious behaviour. Developers who upload malicious applications
will receive a time line for ‘fixing’ flagged applications [Dav16]. [Fox15]
described that a group of hackers was able to bypass the Google Bouncer
by using complex methods. Eventually, those methods were discovered and
patched.

It is possible to install an anti-virus application on Android, which could
analyse applications and potentially flag them as malicious. By default
Google enabled (from Android version 4.2 and up) the “Verify App” fea-
ture [Pro16], where applications are scanned for malware at installation
time (remotely by Google). Users also have the possibility to install an
additional anti-virus solution. [Tes16] showed that those scanners detect
known malware, but the antivirus products could easily be evaded by a
minor alteration. It did not require advanced code obfuscation or any sim-
ilar technologies. [Tes16] also showed that droppers are a major problem.
Droppers are applications that do not contain malicious code, but down-
load the malicious code after the dropper is installed. The malicious code
never touches the disk, it only remains in memory. None of the anti-virus
applications were able to detect droppers. Finally [Tes16] showed that none
of the anti-virus solutions were able to detect unknown threats.

Applications running on Android are required to be signed. When the
application is installed, the package manager verifies if the application is
signed by the public key distributed together with the application. Appli-
cations do not have to be signed by a trusted party (there does not need
to be a trust anchor), signing certificates can be self signed [Pro16]. This
feature protects against a malicious user distributing a fake upgrade of a
legit application. Based on the certificate, the Android OS is able to verify

21



Section 5: Security Features of the Android OS

if an application is signed by the same developer.
Through the Android for Work API MDM solutions can white-list ap-

plications. White-listing can be applied both to allow applications to run
or allow applications to be installed [Inc15b]. The next section will describe
MDM solutions in more detail.

Most security risks of the scenarios described above can be reduced if
the Android OS is fully up-to-date on security updates. It would require
our bounded attacker to find a vulnerability and create an exploit.

One of the biggest issues regarding Android security is the distribution of
security updates. Every OEM has to implement the security patches them-
selves in their own Android implementation. The Android Open Source
Project will provide updates for at least the three most recent versions of
Android and this is a security issue. This could result in 22,9% of the de-
ployed Android devices do not receive security updates any more [Goo16].
Of the other 77,1% it is unsure whether or not the OEM will distribute
security updates. Samsung, LG and Google have promised to distribute
security updates on a monthly basis for their support devices[Dre15]. Ta-
ble 5.1 shows the distribution of the different Android OS versions at the
moment of writing. Sensitive data might be at risk if the OEM does not
provide security updates in a reasonable time (or does not provide security
updates at all).

Version Distribution
2.2 0.1%
2.3 2.0%
4 1.9%

4.1 - 4.3 18.9%
4.4 31.6%
5 35.4%
6 10.1%

Table 5.1: Android version distribution as of June 6th 2016 [Goo16]

[CES16] describes that Android 6 introduces the possibility for device
owners to specify an update policy (for example automatically install up-
dates as soon as they are available or during the night). It is not possible
to force application updates. Automatic installing updates for applications
can be enabled through Google Play, but cannot be enforced (a user can
still disable this setting) [CES16].

5.2.4 Security policies

An MDM solution plays an important part in the protection of sensitive in-
formation on Android based smartphones. In most cases an MDM solution
is an application installed on the smartphone, this application communi-
cates with the MDM server. It sends system information (for example
the Android version, phone number or installed applications) to the MDM
server. The server on its part sends a policy to the client which speci-
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fies for example which authentication schemes are available or the required
passcode complexity. The client retrieves the policy and enforces it on the
smartphone and finally reports back to the server. This process is shown
in Figure 5.2.4. It should be noted that some security mechanisms are only
available through an MDM solution, for example the feature to wipe the
phone after a maximum of failed authentication attempts. This feature
reduces the risk of an attacker guessing (or bruteforcing) the passcode.

Figure 5.3: Process of applying security policy using an MDM solution

[CES16] described that some settings cannot be enforced, for example
the automatic updating of applications through the Google Play store.

[CES16] also described that it is not possible to remotely retrieve system
logs from an Android based smartphone. Android simply does not offer
any APIs for retrieving system logs. There are some APIs available that
provide information on installed applications, running Android version, last
contact time with MDM, failed authentication attempts, network state,
compliance state, enrolment status, location information or roaming status
[CES16]. Most MDM solutions offer the option to collect and store the
gather information for analysis.
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6. Result

This section will compare Section 4 with Section 5 to determine if the secu-
rity mechanisms implemented by the Android OS are sufficient to guarantee
the security of sensitive information to our bounded attacker and to what
extent this sensitive information is protected. This section will answer the
main research question.

6.1 Data protection

6.1.1 Data at-rest

Data at-rest might be at risk, because an attacker would be able to re-
trieve the encryption keys directly from memory with a cold boot attack
or through other means (for example crashing the lockscreen). This attack
could be too complex to be performed by our bounded attacker and would
either require an unpublished vulnerability, an unlocked bootloader or using
the JTAG interface.

To reduce this risk, a device owner should make sure that the smart-
phone has implemented a TEE, the bootloader is locked and the device is
up-to-date on security patches. Also if a SD-card slot is available, the de-
vice owner should make sure that the Android OS adopts it into the main
storage to ensure the data at-rest protection.

6.1.2 Data in-transit

If the native VPN implementation is configured properly, the data in-transit
protection meets the requirements. This is because the Always-On function-
ality guarantees that network connections are only allowed when the VPN is
enabled. The Always-On VPN can be disabled by the user. Users could be
tricked to disable the Always-On option. To reduce this risk, users should
be educated on the risk of disabling the Always-On VPN.

6.1.3 Authentication

Authentication can be considered insufficient when non-random and weak
PINs or patterns are used or when random strong PINs or patterns are used
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without having a TEE implemented. Bypassing the fingerprint authentica-
tion is complicated, but still feasible for our bounded attacker.

A device owner should use an MDM solution to enforce an authentica-
tion policy. Which authentication scheme should be used depends on the
required protection. A trade-off has to be made between security (requir-
ing a strong password) and usability (fingerprint authentication). The au-
thentication policy should also enforce wiping data after a maximum failed
attempts.

Authentication of smartphones and servers can be based on x509 certifi-
cates and is currently considered a strong form of authentication, thus this
is sufficient [CES16]. An MDM solution should be used which implements
certificate enrolment protocols.

6.2 Platform integrity

6.2.1 Application protection

Based on the requirements, Android offers sandboxing, segregation between
applications and a ’need-to-know’ based permission scheme. The possibility
of being exploited through a weakness in the application sandbox can be
mitigated by deploying security updates in a reasonable time.

6.2.2 Secured Boot chain

Based on the requirements, Android offers a sufficient secure boot mecha-
nism, but only when the bootloader is locked. Thus a device owner should
make sure that users do not unlock the bootloader. This could be done
through user awareness.

6.2.3 Malicious code execution detection and preven-
tion

The past has shown that the malicious code execution detection and preven-
tion have not been sufficient. It could be argued that it is too complex for
our bounded attacker to find new exploits in version 6 of the Android OS.
Applying security updates in a reasonable time could again mitigate this
risk, but there is no method available to detect that a kernel is compromised
during run time potentially putting sensitive information at risk.

For malware, anti-virus solutions fail to detect small modifications to
known malware and hackers have shown that the Google Bouncer can be
bypassed. To prevent malware installation, there is an easier solution: only
install trusted applications and only allow trusted applications to run.

As described in Section 5.2.3, whitelisting can be used through an MDM
solution to further reduce the risk of exposing the platform to a malicious
application.

If an Android phone is used that receives security updates after every
monthly security patch round, it is protected against known vulnerabilities
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that could be used by our bounded attacker. For device owners, security
updates should be scheduled to be installed in a reasonable time. Also a
device owner should make sure that OEMs distribute security updates for
used devices in a reasonable time.

6.2.4 Security policies

An MDM can be used to enforce the security policies. APIs exist to enforce
mentioned security features described in this research, apart from some
limitations: users can disable automatic application updating and change
VPN settings (as already mentioned in Section 6.1.2).

The platform monitoring is very limited and could be improved to allow
a more detailed event collection. For example a user disabling the auto
update of applications can not be detected by MDMs because Android does
not provide an API call to monitor this. However, the current platform
monitoring provides the most essential information. The ability not to
gather log files does not directly impact the confidentially or the integrity
of an Android based smartphone, it, however, does reduce the detection
rate of compromised devices.

6.3 Attack landscape

This next section will compare the results with the attack scenarios de-
scribed in Section 1.3 and determine to what extent sensitive information
is protected in the case of the attack scenarios.

6.3.1 Stolen Device

An Android smartphone is still adequately protected when it gets stolen if a
TEE is implemented, strong authentication is used, the bootloader is locked
and the Android OS is up-to-date on security updates. The possibility
remains that data could be retrieved if the attacker has an unknown (or
non-patched) vulnerability that either bypasses the lockscreen, unlocks the
bootloader without wiping the user data partition or discovers a method to
retrieve the content of the memory directly (for example through the JTAG
interface).

An MDM solution can be used to enforce the security policies including
the authentication policy. However, device owners should make sure that
their smartphones implement a TEE, the bootloader is locked and the OEM
distributes security updates in a reasonable time.

6.3.2 Malicious Applications

To protect against malicious applications applications should only be in-
stalled through the Google Play store, only trusted applications should be
able to be installed or be able to run using whitelisting and the device
should be up-to-date on security updates. Users should also be made aware
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to not disable the automatic updating of the applications. It is only possible
through an MDM to implement white-listing of applications.

6.3.3 Exploits

The detection of exploits is rather weak, it is possible to verify the kernel at
boot time but it is not possible to detect a compromised kernel at run time.
To mitigate this risk, the device should be up-to-date on security updates
and the bootloader should be locked.

6.3.4 Eavesdropping

Accessing unsecured networks can be made secure if a proper VPN imple-
mentation is used. The build-in VPN should be used, because this allows
for the Always-On functionality. It guarantees that all connections will al-
ways go through the VPN, only users are able to disable this settings this
could potentially make an Android based smartphone vulnerable to eaves-
dropping on communication. Users should be made aware not to disable the
Always-On functionality, because an MDM solution can not enforce this.
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7. Improvements to the
Android Security Features

As suggested in previous sections, Android security could be improved in
a couple of areas. This section will suggest improvements on the security
features of the Android operating system. The section will thus answer
RQ4.

7.1 Data protection

7.1.1 Data at-rest protection

To solve the problem of having the encryption keys in memory when the
device is locked required a different encryption scheme than the one cur-
rently used. The problem of leaving the encryption keys in memory is that
an attacker is not required to know the user’s passcode to get access to the
data. If he is able to bypass the lockscreen, he gets full access the the user’s
data without knowing the passcode.

An encryption scheme that does remove the encryption keys from mem-
ory when the device is locked is Apple’s iOS encryption scheme.

7.1.1.1 Apple’s iOS encryption scheme

[App15] describes the encryption scheme used in Apple’s iOS. This section
is based on this whitepaper.

Every iOS device has a unique key and a device group key placed on
the device during manufacturing. No software or firmware can read them
directly, they can only be seen as the result of an AES operation. The
unique device key allows data to be tight to a device. Besides those two
keys, every file has its own encryption key, a ‘per-file’ key. ‘Per-file’ keys
are protected by so called ‘class’ keys. Class keys determine when the ‘per-
file’ keys are available. Thus to unlock a file, first the hardware key is
required to unlock the class key. For some class keys the user’s passcode is
also required to fully unlock the class key. Which class key is required to
unlock a ‘per-file’ key is stored in the file meta data. This file meta data
is protected by the file system key. The file system key is generated when
iOS is first installed. Figure 7.1 illustrates this encryption scheme.
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Figure 7.1: Encryption scheme used in Apple’s iOS

There are different types of class keys:

• Protected by the passcode, requires user’s passcode to unlock the class
key, class key is discarded after the device is locked. It is not possible
to read or write without the passcode.

• Read protected, makes it is possible to write new files, an example
could be an email attachment downloaded in the background, still
the passcode is required to unlock the class key.

• Protection after first login, the class key remains in memory after the
user authenticates for the first time (at boot time).

• No ‘per-file’ key protection, files protected by this class are only pro-
tected by the device’s unique key.

7.1.1.2 eCryptfs

As the Android OS uses the Linux kernel, a good solution would be to use
a file based encryption scheme that is already implemented in the Linux
kernel. eCryptfs is such an encryption scheme.

In eCryptfs, every file is encrypted with a File Encryption Key (FEK)
and the FEK is encrypted with the master key (called File Encryption Key,
Encryption Key (FEKEK)). This encrypted FEK is called the Encrypted
File Encryption Key (EKEK). The EKEK is stored in the meta-data of the
header of the encrypted file. The user’s passcode can be used to define the
FEKEK [DeF12]. Figure 7.3 illustrates the eCryptfs encryption scheme.

7.1.1.3 Improving eCryptfs

eCryptfs still has the same problem as Android’s full disk encryption, the
FEKEK has to remain in memory to operate. [DeF12] suggested an im-
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Figure 7.2: Encryption scheme used in eCryptfs

provement to eCryptfs by using boundary keys per application. Boundary
keys are generated by concatenating the FEKEK with the UID of the ap-
plication and then hashing the result. For hashing, the MD5 algorithm
was used because the result matched the corresponding 128-bit key length
which was required at the time of writing. The boundary keys of application
should be removed from memory when the phone is locked.

The described encryption scheme by [DeF12] is similar to the encryp-
tion scheme used by Apple’s iOS, but its primary weakness is using the
UID (which is a predictable number and is not a secret). Because of this,
the entropy of the boundary key reduces. Also using MD5 as a hashing
algorithm is not recommended anymore [Bar16].

To improve on the eCryptfs scheme, the Apple’s iOS encryption scheme
can be used. The FEK will be encrypted with a class key. For the sake
of brevity, not all the iOS class keys will be described. The ‘protected by
the pass code’ class key is encrypted with KEK. To recall, the KEK is a
key based on the user’s passcode and the HBK which is a hardware-bound
private key. In the case of this class key, when the device is locked the KEK
and class key are removed from memory. When the device is unlocked, the
passcode can be used to reconstruct the KEK, which allows to decrypt the
class key. For more information about the KEK generation process please
read [Pro16].

The ‘no ‘per-file’ key protection’ class should still use full disk encryp-
tion, for this a new key, the HBEK (Hardware Bound Encryption Key),
should be used. This key is an AES key bound to the device, should not
be retrievable and should either be generated during manufacturing or the
first time the Android OS boots. When ‘no ‘per-file’ key protection’ class
protection is used for a file, it is thus only protected by the Hardware Bound
Encryption Key. Figure 7.3 illustrates this encryption scheme.

7.1.2 Data in-transit

The data in-transit protection could be enhanced if it would be possible to
manage the native VPN implementation though an MDM solution. Addi-
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Figure 7.3: File based encryption scheme based on eCryptfs, dm-crypt and
Apple iOS encryption scheme

tionally, the Always-On VPN functionality should also be available to third
party VPN implementations.

7.1.3 Authentication

As described in section 6, authentication is important for smartphones.
Fingerprint authentication offers sufficient authentication, but might not
protect against a more capable attacker. Forcing users to use strong PINs
or passwords might not be convenient and will reduce the user experience.

A better solution might be to combine authentication schemes. For
example require fingerprint authentication and a 4 digit-PIN.

Another solution could be to use fingerprint authentication and require
re-authentication for accessing security sensitive information.

Also Android could add the support for wiping data after a maximum
failed authentication attempts (which is only available through an MDM).
Also increasing the backoff timeout exponentially should be required by
the Android CDD. Both mechanisms will prevent the possibility of brute
forcing the authentication of the lock screen.
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7.2 Platform integrity

7.2.1 Application protection

Based on the requirements, the application protection is sufficient, thus no
improvements are required.

7.2.2 Secured Boot chain

Based on the requirements, the secure boot chain implementation is suffi-
cient, thus no improvements are required.

7.2.3 Malicious code execution detection and preven-
tion

Currently there is no method available in Android to detect a compromised
kernel at run time. This introduces a security risk, because smartphones are
always-on devices, leaving them exposed for a long time. A solution would
be to detect the compromised kernel at run time. An interesting approach
to solve this issue, also presented in [KW16] is using an application in the
TEE to detect the compromised kernel. This both increases the prevention
and detection rate of malicious code execution.

The ability to collect device logging might also increase the detection
rate, of course when an attacker has gained full root access he is able to
falsify log files. In case of a compromised application (for example logging
crashed applications like the lockscreen) collecting device logging might
help detection. Also just collecting log files is not enough to increase the
detection rate, the collected log files should also be analysed to increase the
detection rate.

OEMs should make sure that updates are available to phones that are
still actively used and that those updates are released in a reasonable time.

7.2.4 Security policies

The APIs used by MDM solutions can be improved by adding additional
features like platform monitoring to collect detailed events or to add the
possibility of enforcing automatic updating of applications.
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8. Discussion

When comparing this research with its primary related work, the CESG
guidelines [CES16] [CES15], the NIST guidelines [JS08] [SS14] and the An-
droid Project page [Pro16], this research answers a question that the related
work does not answer: to what extent sensitive information is being pro-
tected. It also gives an overview of the technical details of the security
mechanisms and clearly defines the impact of those security mechanisms.
Its primary weakness might be that this research contains too much de-
tails for less technical readers, but it fills a information gap which was not
previously addressed before.

This research showed that it is possible to protect sensitive data against
a bounded attacker. Android offers security mechanisms that are enabled by
default. For example the application segregation or malicious code execu-
tion prevention. Other security mechanisms need to be enabled or checked
by the device owner whether or not the OEM has implemented them.

Some of the security mechanisms are critical for protecting sensitive
data. For example not having a TEE puts sensitive information at risk.
[Ben16] showed that the TrustZone TEE might not be as strong as expected.
The researchers also showed that the HBK was generated in software and
was available throughout the TEE making it not “strongly” bound to the
hardware. A method was described to extract the DEK and breaking the
full disk encryption. This attack would still require to find an exploitable
vulnerability in the TEE, which might be too complex for our bounded
attacker. Still the research showed that the full disk encryption might not
be strong enough in the case of storing extremely sensitive information that
should be protected against a state actor. This would be interesting future
research because our research is focussed on protecting sensitive information
against a bounded attacker.

Being up-to-date is one of the most important measures to protect sensi-
tive information. Not being up-to-date has an impact on all of the security
mechanisms. A interesting case study is the recent ‘GODLESS’ malware.
This malware was distributed through multiple applications (for example in
a flash light application, see Figure 8.1). The malicious applications where
distributed through the Google Play Store, but also through other means.
For example distributing fake applications (for example a legitimate looking
social media application) through forums or websites. Inside those malicious
applications a couple of known exploits were used to get full control of the
smartphone. The malware targeted older, non updated Android versions
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(Android version 5.1 or earlier). In the case of this malware, a device would
have been protected if it had been up-to-date on security updates [Zha16].

Figure 8.1: Flashlight application which contained the GODLESS malware
[Zha16]

In both case studies sensitive information was protected against a bounded
attacker if the security mechanisms were in play. Still there are areas that
can be improved. For example the data at-rest protection can be improved,
as discussed in Section 7.1.1. Google also stated that they see room for im-
provement and have announced that in the next release of the Android OS
(Android version N) a file based encryption scheme will be used [Dev16b].
Implementation details are not available as for now. It would however be
interesting to research if the upcoming enhancement implements a file based
encryption scheme where the encryption keys do not remain in memory.

Detecting a compromised smartphone is something that is complicated.
The suggested solution to detect a compromised kernel through the TEE
might cause a significant performance penalty. Every so often (or during
every system call) the TEE would have to check if the kernel is not com-
promised. A solution to this problem might be to implement those check
for security sensitive operations only. Summarizing, more research is re-
quired to develop a sophisticated solution for this problem. Google is also
working on a possible solution for this problem. In Android version N they
are working on improving the ‘Verified Boot’ feature to be able to repair
system files, but if this is also possible during run time was not discussed
[Dev16b].

Combining authentication methods to strengthen the authentication
might protect against simple attackers, but more persistent attackers might
still be able to bypass the stronger forms of authentication. It is impor-
tant that any form of authentication does not decrease the usability of the
mobile device to a point where the user is not able to use the device effi-
ciently anymore. Other security mechanisms might reduce the risks that
arise when a device is stolen to an acceptable level, reducing the need for a
stronger form of authentication.

It should also not be forgotten to educate users about some of the secu-
rity concerns of a smartphone. For example to not try to install unwanted
applications, disable the ‘Always-On’ VPN option or unlock the bootloader.
This same issue is also addressed by [CES16].
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9. Conclusion

This research investigated to what extent sensitive information can be pro-
tected on an Android based smartphone. First the requirements of stor-
ing sensitive information together with the attack landscape were inves-
tigated. Sensitive information should be at least protected from attack-
ers with bounded capabilities (investigative journalist, capable individual
hackers and the majority of criminals) in the case of device theft, malicious
applications, exploits and eavesdropping on communication.

This research also investigated the security features which should protect
the sensitive information by researching already existing literature. Android
offers data at-rest protection in the form of full disk encryption and data
in-transit protection using VPN or other forms of transport layer security.
It offers a secured boot chain, application sand-boxing and offers APIs to
MDM solutions to further tighten the security of the Android OS.

There are some areas that can weaken the protection of sensitive in-
formation. Firstly, encryption keys remain in memory when the device is
locked. If attackers are able to bypass the lockscreen, they would be able
to access the sensitive data without knowing the user’s passcode. This sit-
uation could happen when the device is stolen. This research suggested
an improvement encryption scheme based on eCryptfs and Apple’s iOS en-
cryption scheme.

Secondly, lockscreen authentication is also an area that could weaken
sensitive information. Users tend to use passcodes that are easy to remem-
ber (either passwords, patterns or PINs). The user experience of smart-
phone is reduced when users have to enter a long complex passcode when
they want to use the device. A solution introduced by Android version 6
is fingerprint authentication. Fingerprint authentication is (by itself) not
a strong form of authentication. An improvement would be to incorporate
more convenient authentication methods and stack them with fingerprint
authentication or require to re-authenticate using strong passcodes only for
security sensitive tasks.

Thirdly, Android does not offer any method to detect a comprised kernel
during runtime. A solution could be to use the TEE to detect this.

Also any device owner should make sure that the Android based smart-
phone includes a TEE, has the OEM committed to supply monthly security
updates for the used smartphone and install them in a reasonable time,
an MDM is used to enforce further tightening of the security features, a
trade-off should be made between potential security risks and user comfort
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regarding lockscreen authentication, boot loader is locked and no unknown
applications can be installed.

36



10. Future Work

Future work can be to research how extremely sensitive information is pro-
tected on Android based smartphones against state actors for example. This
would require researching possible methods of state actors and investigate
if sensitive information could be protected.

This research has suggested an improved eCryptfs based encryption
scheme. This encryption scheme still requires more research before it is
implementable.

In 2016 Google will release a new version of the Android operating sys-
tem. This new version will introduce new security features. It would be
interesting to see if the new version further improves the protection of sen-
sitive data.

The ‘artificial gummy fingers’ attack has not been performed for the An-
droid OS. Future work could be to perform this attack. During this research
[Kop16] showed that it is possible to falsify fingerprints for authenticating
the smartphones (including Android based smartphones). This shows that
the ‘artificial gummy fingers’ attack should work for Android based smart-
phones.

More research should be carried out on the security of the different
TEEs, because the TEE is a critical part of the security of the Android OS.
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