
Modifying existing applications for 100 Gigabit Ethernet
Jelte Fennema

jelte.fennema@os3.nl
Monday 11th July, 2016

Abstract

This research investigates the use of DPDK to saturate
a 100GbE link. This is first done by looking at Pktgen,
an already existing DPDK packet generator. After
that iperf3 is modified to use DPDK, as it normally
uses the Linux networking stack. The performance of
this new iperf3 is then compared to that of the original
iperf3. It is shown that the necessary modifications
to iperf3 for this were quite straightforward. However,
these modifications resulted in less throughput than
before. The cause for which is probably some missing
features in the DPDK network stack that was used.

1 Introduction

Currently, 100 Gigabit Ethernet (100GbE) Network
Interface Cards (NICs) are becoming more common
in high performance networks. However, because of
these ultra high speeds the CPU overhead of the
Linux kernel, required to simply create and handle
the packets, becomes quite significant. Even when run
on a high performance server, the popular network
benchmarking tool iperf3 is not able to utilize the
full speed of the network as it is limited by speed of
the CPU, since it fully utilizes the core it is running
on [1]. This means that specialised and expensive
equipment is needed to test the performance of these
networks [2].

To combat this limit imposed by the CPU, Intel has de-
veloped the Data Plane Development Kit (DPDK) [3],
which is a framework for fast packet processing. It is
used to access a NIC directly from user space, thereby

Send/receive data

Linux kernel

Application

Network card

System calls and interrupts

network drivers
and

Figure 1: Regular networking on Linux

bypassing the kernel and its overhead, as shown in
Figures 1 and 2. DPDK consists of a set of high
performance low level libraries, such as memory pool
allocator and ring buffer libraries. Apart from this, it
also contains special drivers described as poll mode
drivers. These drivers do not use interrupts to signal
that data is available, but instead the application
keeps asking (polling) if data is available. This elim-
inates the overhead caused by interrupts, but has as
a side-effect that a DPDK application is always fully
utilizing its CPU core, since it needs to keep asking
for data.

There are two different packet generators, similar to
iperf3, based on DPDK, Pktgen [4] and MoonGen [5].
Using DPDK for these packet generators has proven
to be quite fruitful as both show serious performance

1

mailto:jelte.fennema@os3.nl

Send/receive data

Application,

Network card

network drivers
DPDK and

Figure 2: Networking with DPDK

improvements over their former counterparts [5, 6].
However, even for these packet generators no data is
available for their performance on 100GbE links.

There are a couple of important differences between
these packet generators and iperf3. First of all, both
of these applications have been designed from the
ground up for use with DPDK. Secondly, they do
not open an actual TCP connection like iperf3 does,
but instead they simply try to fill the link with a lot
of packets, without keeping any state. This means
that this approach cannot be used for already exist-
ing applications that require an actual TCP stack,
but also need the performance provided by DPDK.
These applications would need to be rewritten to use
a DPDK based networking stack instead of the Linux
one.

One such application is the previously mentioned
iperf3. It is integrated into perfSONAR, which is
a network measurement toolkit used a lot on inter-
national research networks [7, 8, 9]. Currently, this
toolkit is unable to measure the full speed of 100GbE
links, because it cannot saturate them. It could be
that modifying iperf3 to use DPDK would result in
more throughput, possibly allowing perfSONAR to
measure the full speed of these links.

1.1 Research questions

With these problems in mind and the hardware de-
scribed in Section 3.2 this research will focus on three
questions:

1. Can current DPDK packet generators saturate a
100GbE link?

2. What modifications to iperf3 are necessary to let
it use DPDK?

3. What effect does the usage of DPDK have on the
throughput of iperf3?

2 Related work

Quite some research has already been done into the
effects of DPDK applications on high speed networks,
but no research is available for using them on 100GbE
connections. Both MoonGen and Pktgen have been
researched on 10GbE networks [5, 6]. Pktgen is the
only one of these which is directly compared to other
packet generators. Even though both of them have
not been tested on 100GbE connections, in theory
MoonGen should be able to handle them, because
speeds of up to 120 Gbit/s were reached using multiple
10GbE NICs [5].

Porting existing applications to use the DPDK stack
is also not entirely new. Intel has modified Open
vSwitch to make it possible to use DPDK. This causes
a throughput increase of either two or six times de-
pending on the research [10, 11]. Open vSwitch is
similar to MoonGen and Pktgen in the fact that it
also does not open TCP connections. It simply for-
wards packets and optionally does something special
with them based on their contents, such as modifying,
dropping or duplicating.

Apart from these applications, there is also a more gen-
eral effort, called Accelerated Network Stack (ANS),
to create a full TCP/IP stack based on DPDK [12].
This is done by porting the FreeBSD TCP/IP stack to
DPDK. Both Nginx and Redis have been successfully
modified to use DPDK in this way [13, 14]. For both
of these ports some benchmark results are supplied.

2

However, these are not compared to equivalent bench-
marks for the unmodified versions of the applications.

3 Approach

The research consists of three main parts. First of all,
a baseline for performance is set. After that iperf3 is
modified to use DPDK, as this is necessary to answer
the last two research questions. Lastly, performance
experiments are done to compare different versions of
iperf3.

3.1 Focus

It is possible to do a multitude of different network
throughput tests, but this research focusses on one
specific type, namely the performance of a single TCP
stream by using a single core. TCP is a commonly
used protocol for sending data, because of its built in
reliability and congestion control [15]. This makes it
an interesting test subject, since the results could also
be applicable for TCP applications other than traffic
generators as they use the exact same protocol.

The performance of a single TCP stream with a single
core is then the most interesting to look at. The reason
being that the performance can then be increased
further by using multiple streams on multiple cores,
when the CPU core is the bottleneck. Although it
is not the main focus, the performance of multiple
streams on a single core is also compared. This is
done, because an increase in throughput for multiple
streams could mean that the limiting factor is not the
computing power, but instead something else, such as
the TCP protocol.

3.2 Setup and versions

The test setup that is used during the experiments
consists of two identical 100GbE nodes connected to
an Inventec D7032Q28B switch running in OpenFlow
mode. A simple overview of the setup can be seen in
Figure 3. The nodes have the following hardware:

SwitchServer 1

100GbE

Server 2

100GbE

Figure 3: The test setup

Component Version

Linux Distribution CentOS 6.8
Linux Kernel 2.6.32 x86_64
DPDK 16.04
iperf3 3.1.3
ANS 22-06-2016 (commit 7f6b0fe494)
Pktgen 3.0.02

Table 1: Exact software versions of the setup

• Supermicro 5018R-MR
• 1 x Intel Xeon E5-1630V3
• 4 x Certified 8GB DDR3 2133mhz ecc reg
• 1 x Mellanox ConnectX-4, 2-port 100GbE,

MCX416A-CCAT

The servers are installed using the perfSONAR ISO
image. This installs CentOS 6.8 as a Linux distri-
bution together with all the software needed to run
the perfSONAR Toolkit. The exact versions of all
the used software can be found in Table 1. Some
slight modifications have been made to DPDK. This
was done to make it compile on this setup, because
MoonGen required the changes, and to compile the
drivers for the Mellanox NIC. These modifications
can be found in Appendix B.

3.3 Performance baseline

To get an idea of the performance that can be achieved
by using a DPDK based packet generator a baseline
is set by Pktgen. At first, a baseline from MoonGen
was also planned, but during installation it became
clear that it did not support the 100GbE NIC used
in the experiments (Section 3.2).

3

TCP tests are done with Pktgen, but they differ quite
a bit from the iperf3 TCP tests and are actually much
more similar to its UDP tests. This is because Pktgen
does not actually support TCP stream. It can only
send raw packets over the interface. These packets
can be in the TCP format, but they will not actually
establish a connection over which a stream of data
is being sent in accordance with the TCP protocol.
It will simply be a packet stream consisting of TCP
formatted packets. This makes the performance of
iperf3 and Pktgen not directly comparable, but the
performance of Pktgen can be used to set a baseline
for the maximum speed that can be expected.

A second baseline test is performed, where multiple
processes of iperf3 are running at the same time. This
has the advantage that multiple cores can be utilized
to send traffic, possibly benefiting the total through-
put. This total throughput is calculated simply by
adding the measured throughput of all processes to-
gether. Just like with Pktgen this performance is
not directly comparable to the results of the other
performance experiments in this research. In this case
because it uses multiple processes and cores. However,
it is still interesting too see what throughput can be
achieved this way and if that is more or less than the
other methods.

3.4 Modifying iperf3

DPDK does not have a TCP stack built in to it. It
does supply means to generate TCP packets with
certain fields, but no means to keep a connection
open, which is also why Pktgen does not support this.
As iperf3 needs to open a TCP connection to send
data for its TCP tests such a stack is required. This
is why ANS is be used, as it already contains a full
TCP stack that is built on top of DPDK.

A new version of iperf3 is created that uses the TCP
stack provided by ANS instead of the one from Linux.
This version of iperf3 will be called iperf3-ANS. All
the modifications that are necessary to use ANS for
iperf3 are investigated and will be described in the
results to answer the second research question.

Apart from iperf3-ANS, a second modified version of
iperf3 will also be created. This one will still use the
Linux networking stack. It will differ from iperf3 by
containing the Linux compatible changes that were
made to create iperf3-ANS. This version is used to
find out what part of the performance difference is
caused by DPDK and what part is caused simply by
changing a part of the logic in the code.

3.5 Performance of iperf3 versions

After both these new iperf3 versions have been created
their performance is compared with that of the original
iperf3. Regular iperf3 supports a couple of protocols
for its data streams. This research focusses on TCP
performance, as described in Section 3.1, so all these
tests are done with TCP streams.

3.5.1 Multiple streams with iperf3

One of the features of iperf3 is the possibility of open-
ing multiple data streams by using the --parallel
command line parameter. In cases where the conges-
tion control features of TCP are causing a bottleneck
this should allow for more total throughput, because
these features are per stream. So, if the network
and hardware can handle the throughput a second
stream should have the same performance as the first,
thus doubling the total throughput. The amount of
streams is increased until no total throughput increase
is seen to find out whether the perceived maximum
throughput is caused by the CPU or network and not
TCP.

3.6 Performance settings

A couple of default network and CPU settings on the
two nodes have been changed to achieve better or
more reliable performance.

4

3.6.1 TCP settings

The first of these are TCP features, window sizes, and
buffer sizes. The values used for these have been based
on the host tuning advice of ESnet [16, 17]. Some
NIC specific tuning has also been done according to
the tuning guide by the NIC vendor [18]. The exact
settings used are shown in Appendix A.

3.6.2 Network settings

Apart from TCP settings, other network related set-
tings have also been changed. The NIC that is used
supports jumbo frames, which are Ethernet frames
that can carry a payload larger than the maximum
of 1500 bytes for regular frames [19]. Using these
bigger frames decreases the amount of headers and
packets that need to be created and thus the CPU
cycles that are spent on it. To utilize this feature
the Maximum Transmission Unit (MTU) has been
changed from 1500 to 9000 bytes.

A second change that has been made is to enable all
offloading capabilities of the NIC with ethtool [20].
This moves common network computations, such as
checksum calculations, from the CPU to the NIC.
This again decreases the load on the CPU, freeing
cycles for other computations.

3.6.3 CPU settings

Changes have also been made to the way the CPU
cores are used. First of all, CPU affinity is set for
the benchmark processes [21]. This way the process
will stick to a specific core, eliminating the overhead
caused by side effects of moving the process to another
core, such as invalidation of the cache and copying
the registers. Previous research has shown that the
core to which the process is pinned can matter for
the performance as well, especially when multiple
CPU sockets are used [22]. However, initial experi-
ments done on different cores showed no difference in
performance for the cores on our machines.

Secondly, Hyper-Threading is turned off [23]. This
is to make sure the physical CPU cores are used
instead of Hyper-Threaded ones. Hyper-Threaded
cores have lower performance than physical cores,
so it is important that the physical ones are used.
Disabling it is also recommended by the NIC vendor
when doing high-performance computing (HPC) [18].

Lastly, the isolcpus boot parameter of Linux is used
to make sure nothing else is scheduled on the cores
that are used by the benchmark processes [24, 25].
The value 0,1,2 is used for the parameter. This
indicates to the kernel that it should not schedule
any processes on these cores, except when a process
requests it explicitly by using CPU affinity. All other
processes will only be run on the cores that are left
over, in this case this is only the fourth core.

3.6.4 Using non-optimal settings

During the study it was discovered that ANS cur-
rently does not support some of the features described
above [26]. These features are NIC offloading, TCP
window scaling, and jumbo frames. Because they are
not supported they will also not be enabled in any
of the tests done with iperf3-ANS. Jumbo frames are
also not supported by Pktgen, so an MTU of 1500 is
used there as well.

The Linux versions of iperf3 will not only be tested
with the features enabled, but also without them.
This is done to get an indication of the performance
difference that is caused by these different feature
sets as opposed to difference caused by the underlying
networking stack.

3.6.5 ANS transmit burst buffer length

Finally, there is an ANS specific setting to specify
the size of its packet transmit burst buffer [26]. The
packet transmit burst buffer is used to temporarily
store packets before sending them all at once to the
NIC. Without changing this value a strange behaviour
occurred. Using two data streams tripled the through-
put of iperf3-ANS when compared to a single stream,

5

while doubling it would be the maximum expected
improvement, see Section 4.3.4 for details.

It was suggested by the developer of ANS that the
default size of the buffer could be the cause of this
behaviour. The default size of 32 packets was chosen
for performance reasons for a 10GbE NIC, but he
suggested that it could have adverse effects on higher
speed NICs such as ours. So finally, some tests are
also done with the size of this buffer set to 10, the
iperf3 version that uses this will be called iperf3-ANS-
small. This size of 10 seemed to be relatively good,
based on the single stream performance in initial tests.
However, detailed investigation to find the optimal
value has not been done.

3.7 Details of the experiments

All throughput measurements are done over a period
of 10 seconds. These 10 seconds exclude the three
second stabilization period at the beginning of each
run. During these three seconds data is being sent,
but it is not taken into account when calculating the
throughput. This is done to make sure the connection
has stabilized and that the TCP slow start is not
impacting the performance measurement [27].

For Pktgen, not only the throughput is measured, but
also the packet loss, since it does not use TCP. This
packet loss is calculated over all packets that are sent,
so also the stabilization period. This is done, because
Pktgen does not include a communication channel to
synchronize the start of the actual experiment.

Almost all of these experiments have been performed
14 times. The only experiments that were repeated
a different number of times were the experiments for
iperf3-ANS-small. After the first 14 runs the variance
was much larger than for the other experiments. So, 16
extra runs were executed to get more reliable results,
resulting in a total of 30 runs.

1 2 3 4
Number of iperf3 processes

40

50

60

70

80

90

100

T
ot

al
G

b
it

/s

Figure 4: iperf3 test with multiple processes

4 Results

The results of the research will be presented in the
same order in which they have been described in the
previous section. First, the baseline experiments will
be shown, then the steps necessary to port iperf3 to
DPDK, and finally the results of the different iperf3
versions. All of the plots show the average of the
results of the experiments and contain error bars
indicating a confidence interval of 95%. These error
bars can be very small in cases where there was a low
variance in the results.

4.1 Performance baseline

As described in Section 3.3, two performance baseline
tests are executed. One with Pktgen and another
with multiple iperf3 instances.

The average throughput that could be achieved with
Pktgen was 96.3 Gbit/s, with a standard deviation
of 0.1 Gbit/s. The packet loss was only 0.000 085 %
with a standard deviation of 0.000 041. Although
this is not the 100 Gbit/s line rate, it is higher than
the speed that could be achieved with a any number
of iperf3 process, as can be seen in Figure 4. The

6

1 2 3 4
Number of iperf3 processes

0

50

100

150

200

N
u

m
b

er
of

re
tr

an
sm

it
s

Figure 5: Number of retransmits for multiple iperf3
processes

average throughput that could be achieved with a
single iperf3 process is 45 Gbit/s. Opening multiple
iperf3 processes increases this throughput. With two
processes a total throughput of 94 Gbit/s is achieved,
which goes down to 86 Gbit/s with three processes
and to 85 Gbit/s with four. The average number of
TCP retransmits also increases a lot when using more
than two processes, going from almost none to around
150 retransmits as can be seen in Figure 5. This
performance drop and rise in retransmits is discussed
in Section 5.1 and some possible explanations are
given as well.

4.2 Modifying iperf3

The API supplied by ANS is very similar to the net-
working API available in Linux. It has functions that
correspond with the ones from the socket API and
the epoll event loop API [28, 29]. These corres-
ponding functions are simply prefixed with the string
“anssock_”. This should allow for very easy conver-
sion when the corresponding Linux API is already
used. However, when converting iperf3 to the ANS
API two main problems were found.

4.2.1 Converting select to epoll

The first problem was the fact that iperf3 uses an
event loop based on select instead of epoll. This
type of event loop has existed longer than epoll and
it is available on platforms other than Linux as well,
but it is not supported by ANS. So the first step was
to convert the select event loop to an epoll one.
There are resources available on how to use epoll and
select and some also describe differences between
select and epoll, but none of the resources that were
found explained concisely how to convert software
from select to epoll [29, 30, 31, 32, 33]. Using
these resources the differences between epoll and
select that were important when converting iperf3
were found, an overview of these conversion techniques
can be found in Table 2. Important to note is that,
although epoll supports a type of events called edge-
triggered, the default level-triggered type is used, since
this behaviour is similar to that of select [34].

The first one is the way in which a file descriptor (FD)
of a socket can be watched for events. For select it
is necessary to add the FD to one of the three FD
sets that are passed to the select function when it is
called, the read, write and error set. For epoll it is
necessary that an epoll instance is first created. FDs
can then be added to this epoll instance by calling
the epoll_ctl function. This has to be done in com-
bination with an epoll_event struct that has flags
set that specify for which events a notification should
be triggered. This conversion is pretty straightfor-
ward and an example for read set conversion is shown
in the FD_SET row of Table 2. The conversion for the
write and error set are the same, except that another
flag than EPOLLIN should be used.

The second difference is the way in which events are
received. For select, the select function has to be
called with the FD sets. This call will block until an
event happens. Then all file descriptors that have
been added to an FD set need to be checked to see if
they were the cause of the event by using FD_ISSET.
After this, something can be done with the FD, such
as reading it if a read event occurred. This is quite
different for epoll. It simply returns a list of the

7

select code epoll code

FD_SET(socket, read_set) event.events = EPOLLIN;
event.data.fd = socket;
epoll_ctl(epoll_instance, EPOLL_CTL_ADD, socket, event);

select(...); epoll_wait(...);
FD_ISSET(socket, read_set) (event.events & EPOLLIN) && event.fd == socket
FD_CLR(socket, fd_set); Remove
FD_ZERO(fd_set); Remove

Table 2: Basic conversions from select to epoll

epoll_event structs that were triggered. There is
no standard way to access the corresponding FD of
these events. However, one can easily be created by
adding the FD to the data part of the event before it
is added to the epoll instance with epoll_ctl.

The last difference is that select requires calls to
macros to modify the FD sets after an event has
been handled. Otherwise the previously mentioned
FD_ISSET macro will indicate that an FD triggered
the event even when that is not the case. This is
not the case for epoll, as it only returns the events
that have occurred. So all that is needed is simply to
remove the macro calls.

4.2.2 Remove blocking sockets

Apart from requiring epoll there is a big difference in
the way the ANS socket API works, when compared to
the POSIX version. This is that all of the functions are
nonblocking only, which means that it is not possible
to use blocking sockets.

This has an impact on every piece of the codebase
where a read or write takes place that requires a follow
up action after it completes. With blocking sockets
this was as simple as simply placing some code after
the call to read or write. This code would then
simply be executed after the call completes. With
nonblocking sockets a state needs to be kept and after
an event occurs this state needs to be checked to see
what the program should do to continue.

The conversion between these two methods can be
done by placing the code after the blocking read or

write in a separate function. A state value needs
to be saved somewhere, for instance an hash table
that is indexed by the FD of the socket. Then, when
an event occurs on the socket the state value can be
matched to the follow up function.

The method used to convert iperf3 in this research
was similar, but less sophisticated. A global state
for the connection was already kept, so simply more
options were added to this instead of using a hash
table. A second solution that was used, was to merge
to consecutive writes into a single one, resulting in a
single read event at the other side.

4.3 Performance of modified iperf3

In this section the performance of the different versions
of iperf3 is compared under different circumstances.
To distinguish the different versions in the results they
will be called the following:

• iperf3: The original iperf3 without any modifica-
tions.

• iperf3-epoll: The version of iperf3 modified to use
the Linux epoll event loop and only nonblocking
sockets.

• iperf3-ANS: The version that is modified to use
the ANS library.

• iperf3-ANS-small: The same as iperf3-ANS, but
with a smaller transmit burst buffer as described
in Section 3.6.5.

In the plots iperf3 is called “Regular” and the others
simply have the iperf3 prefix removed, e.g iperf3-ANS
is called “ANS”.

8

Regular Epoll ANS1

iperf3 version

0

10

20

30

40

50

60

G
b

it
/s

Figure 6: Initial performance comparison with a
single stream and optimal settings

4.3.1 Initial results

The first results we will look at are the initial res-
ults that were achieved with the optimal settings for
Linux described in Section 3.6. Keep in mind that
iperf3-ANS misses support for a couple of the features
that Linux supports and thus does not have these en-
abled, as described in Section 3.6.4. The results from
the experiments where these features are disabled for
Linux as well are available in Section 4.3.3. As you
can see in Figure 6, iperf3 can reach about 45 Gbit/s
and iperf3-epoll is even faster and can reach around
50 Gbit/s. However, iperf3-ANS is much slower than
the others and is only able to reach around 5 Gbit/s.
So it performs significantly worse than both others,
being 9 times slower than iperf3 and 10 times slower
than iperf3-epoll.

1NIC offloading, TCP window scaling, and jumbo frames
are not enabled for this iperf3 version, because ANS does not
support them.

1 2 3 4 5
Number of streams

0

10

20

30

40

50

60

T
ot

al
G

b
it

/s

iperf3 version

Regular

Epoll

ANS1

Figure 7: Performance comparison with multiple
TCP streams and optimal settings

4.3.2 Multiple streams

The differences in achievable throughput between ver-
sions is much smaller when looking at the results for
multiple streams, found in Figure 7. Still, iperf3-ANS
is not as fast or faster than the others, but instead of
being 9 or 10 times slower it is now only 2 times slower
when looking at three or more concurrent streams.
Something else to notice is that iperf3 also benefits
from using multiple streams. With two or more it per-
forms about the same as iperf3-epoll, with a maximum
close to 50 Gbit/s.

4.3.3 Disabling missing features

As explained in Section 3.6.4 some performance fea-
tures that are available in Linux are not available in
ANS. When disabling each of these features separately
for Linux it becomes clear that all of them have a
noticeable effect on the performance, which can be
seen in Figure 8. Keep in mind that iperf3-ANS has
all the features disabled in each of the graphs as it
does not actually support them.

9

1 2 3 4 5
Number of streams

0

10

20

30

40

50

60

T
ot

al
G

b
it

/s

No TCP window scaling

1 2 3 4 5
Number of streams

No jumbo frames

1 2 3 4 5
Number of streams

No NIC offloading

iperf3 version

Regular

Epoll

ANS1

Figure 8: Performance comparison with the missing ANS performance features disabled separately for Linux

Window scaling mostly affects performance of a
single stream, since it reaches a maximum of around
48 Gbit/s with higher number of streams, which is
close to the 50 Gbit/s maximum that was reached
with window scaling enabled. This is not the case for
the other two features, jumbo frames and NIC offload-
ing. These features seem to affect the throughput of
any amount of streams, by affecting the maximum
throughput that can be reached. When disabling one
of these two features the maximum is lower than it
was when it was enabled.

Disabling jumbo frames lowers the maximum to about
32 to 34 Gbit/s for iperf3 and to about 30 Gbit/s for
iperf3-epoll. This is still higher than the maximum of
iperf3-ANS. Disabling the computational offloading
to the NIC has an even bigger impact. This lowers
the maximum to about 24 to 25 Gbit/s resulting in
a maximum that is even slightly lower with more
streams than the maximum of iperf3-ANS.

Finally, if all these features are disabled at the same
time the speed that can be reached is only 6 Gbit/s
for iperf3 and 7 Gbit/s for iperf3-epoll, which can
be seen in Figure 9. This is much lower than the
25 Gbit/s maximum of iperf3-ANS, but strangely its
single stream performance is still slightly worse than
that of the other two.

1 2 3 4 5
Number of streams

0

10

20

30

40

50

60

T
ot

al
G

b
it

/s

iperf3 version

Regular

Epoll

ANS

Figure 9: Performance comparison without all the
features that are missing in ANS

10

Regular Epoll ANS ANS-small
iperf3 version

0

2

4

6

8

10

12

14

G
b

it
/s

Figure 10: Performance comparison with a single
TCP stream with performance features disabled that

are missing from ANS

4.3.4 Decreasing the transmit burst buffer

What is especially strange about the fact that iperf3-
ANS can only achieve 5 Gbit/s with single stream is
that it can reach 16 Gbit/s with two streams. Thus
tripling the throughput instead of doubling it, with
each separate stream reaching 8 Gbit/s of through-
put instead of 5. A possible method to increase the
performance for a single stream was decreasing the
transmit burst buffer as explained in Section 3.6.5.

As can be seen in Figure 10 decreasing the size of
the transmit buffer did indeed have a positive effect
on the throughput of a single stream. The average
throughput of a single stream for iperf3-ANS-small is
12 Gbit/s, which is about two times more than that
of iperf3.

For two streams an increase is also seen in Figure 11
when comparing iperf3-ANS-small to iperf3-ANS. In
this case it goes from around 16 to 23 Gbit/s. How-
ever, for three or more streams the performance seems
to have degraded a bit, decreasing the maximum to
slightly below the maximum of iperf3-ANS.

1 2 3 4 5
Number of streams

0

10

20

30

40

50

60

T
ot

al
G

b
it

/s iperf3 version

Regular

Epoll

ANS

ANS-small

Figure 11: Performance comparison with multiple
TCP streams with performance features disabled

that are missing from ANS

5 Discussion

5.1 Baseline experiments

In none of the baseline experiments the line rate of
100 Gbit/s was reached. The setup that came the
closest to line rate was Pktgen at 96.3 Gbit/s. After
that the setup with two simultaneous iperf3 processes
was fastest at 94 Gbit/s. However, the total through-
put went down with even more processes, which was
unexpected. If the throughput had stayed at the same
level it would appear that a maximum was reached
that could not be passed simply by using more pro-
cesses. However, as the performance actually went
down it seems that using more than two processes in
this setup was actually hurting the throughput.

A part of the explanation would be that the number
of TCP retransmits also went up when using more
than three processes. This indicates that packets are
lost and have to be retransmitted. An explanation
for this is that more data is being sent than the link
can handle, because three processes each sending data

11

each at 45 Gbit/s would produce output above the line
rate of 100 Gbit/s. The retransmissions should then
trigger TCP congestion control to lower its transmit
speed. So, it could be that the lower throughput is
reached, because the different processes constantly
increase their speed to what the CPU allows and then
lower it again, because of the TCP congestion control.

That four processes did not perform better than three
is also unexpected, although not as unexpected as
the drop. For the fourth core less performance is
to be expected, because context switches are needed
to switch between the iperf3 process and the other
processes that are scheduled there because of the
isolcpus value (explained in Section 3.6.3). However,
that no performance improvement was gained by using
the fourth core is quite strange.

That Pktgen was able to reach at 96.3 Gbit/s without
jumbo frames and only a single process is quite im-
pressive, because as iperf3 was only able to get a per-
formance of 33 Gbit/s in those conditions. However,
as stated before this is not an entirely fair comparison
as iperf3 actually uses a TCP connection and Pktgen
only sends raw packets.

5.2 Converting iperf3 to ANS

By using ANS it is possible to convert a regular Linux
application to use DPDK with little work. Converting
an application that uses a select event loop, requires
conversion to a epoll event loop. This is not difficult,
as function calls either have an epoll equivalent or
they can simply be removed. The conversion to non-
blocking sockets is less straightforward, but could be
done in a standard way as well.

5.3 Performance of modified iperf3

A single iperf3 process did not come close to the line
rate of 100 Gbit/s with a throughput of 45 Gbit/s for
a single stream and 50 Gbit/s with multiple streams.
However, the two ANS versions performed even worse,
reaching at most 12 and 25 Gbit/s for a single stream

and multiple streams respectively. This was unexpec-
ted, as DPDK was developed to be faster at network-
ing than the Linux kernel and Pktgen also showed
that a much higher speed was possible with DPDK.

This unexpected result seems to be caused by the
fact that ANS does not support a couple of the per-
formance features that Linux does support. Disabling
these features for Linux makes iperf3 perform between
2 and 4 times worse than iperf3-ANS-small, depending
on the number of TCP streams, which is more in line
with the performance difference that was expected.

With these performance features it is likely that iperf3-
ANS-small would be faster than the current Linux
iperf3. Although it is hard to say what performance
could be expected, some reasonable predictions can
be made.

With TCP window scaling enabled the maximum
throughput of 25 Gbit/s could probably be achieved
with a single stream, instead of requiring multiple
streams to reach it. Support for jumbo frames and
NIC offloading should both increase this throughput
maximum.

With some assumptions it is possible to estimate this
new maximum based on the measured increase for
the Linux stack. The necessary assumptions are that
increase in maximum caused be the features is relative
to the maximum without them and that this increase
is the same for ANS. For Linux the increase in max-
imum was from 7 to 50 Gbit/s, which is a relative
increase of 7.14 times. So, this would mean that the
new maximum of iperf3-ANS-small would be around
178.5 Gbit/s (25 × 7.14).

This new maximum seems quite high, given that Pkt-
gen was only able to get 96.3 Gbit/s without opening
actual TCP connections. However, Pktgen does not
support jumbo frames either so its performance would
probably be increased as well by using them.

5.4 Future work

There are a couple of directions for future research
that are related to this research. The first one would

12

be to compare the performance of the different iperf3
versions again after ANS supports the currently miss-
ing features. It would be very interesting to see if that
would indeed make the DPDK based iperf3 versions
outperform the Linux ones.

MoonGen is another project that would be interesting
to investigate at speeds of 100GbE. This was not pos-
sible in this research as MoonGen did not support the
available NIC. If this support is added, or if another
100GbE NIC is used it would be interesting to see
how it compares against Pktgen.

The chosen transmit burst buffer size for iperf3-ANS-
small was already much better than the default one
that was used for iperf3-ANS. However, no research
was done into finding the perfect size. So, it might
be possible that another size works even better and
experiments would need to be done to find the best
value. A similar experiment can be done for Pktgen,
as it also has a transmit burst buffer.

A strange finding was the performance drop that was
found when increasing the number of iperf3 processes
from two to three. It would be interesting to do more
extensive experiments in this area to determine the
cause of this performance drop. Experiments could
be done on machines with different numbers of cores
to see if they behave differently.

Finally, it would be interesting to look at the UDP
performance of the different iperf3 versions instead of
their TCP performance. This would make the results
for iperf3 also directly comparable to those of the two
DPDK packet generators, i.e. MoonGen and Pktgen.
This would require some more changes to iperf3-ANS
though, as it does not support UDP streams at the
time of writing.

6 Conclusion

This research has evaluated the use of DPDK as a
method to saturate a 100GbE link. It has also invest-
igated what modifications are necessary to iperf3 to
make it use DPDK and the effects of these modifica-
tions on the throughput.

Using a raw packet stream generated by the DPDK
based Pktgen a throughput of 96.3 Gbit/s was reached.
This throughput is only 3.7 Gbit/s lower than the
maximum that is imposed by the link. It is also more
throughput than was achieved with a Linux version of
iperf3, which was 45 Gbit/s for a single process and
94 Gbit/s for multiple processes on multiple cores.

Porting iperf3 to DPDK was also successfully done
by using the Accelerated Network Stack (ANS). The
changes that were required were either straightforward
replacements of certain function calls, or could be done
using a standardized conversion method. However,
even though Pktgen showed that high throughput was
possible with DPDK, this ported version of iperf3 did
not outperform the original iperf3.

The cause for the relatively bad performance of the
modified iperf3 was likely that some performance fea-
tures are missing from ANS. These features are TCP
congestion window scaling, NIC offloading, and jumbo
frames. When disabling these features for Linux as
well, the modified iperf3 did outperform the original
iperf3 by 2 to 4 times, depending on the amount of
opened TCP streams. This leads us to believe that
ANS might be used in the future to improve iperf3
performance once these features have been added,
even though currently the use of ANS only reduces
the performance.

References

[1] ESnet. iperf3. 2016. url: http://software.es.
net/iperf/index.html (visited on 04/06/2016).

[2] EXFO. 40G/100G Multiservice Test Modules
— FTB/IQS-85100G Packet Blazer. url: http:
/ /www . exfo . com/products / field - network -
testing / bu2 - transport - datacom / ethernet -
testing/ftb-iqs-85100g-packet-blazer (visited on
05/07/2016).

[3] Intel. Data Plane Development Kit. 2014. url:
http://dpdk.org (visited on 04/06/2016).

[4] Keith Wiles. The Pktgen Application. 2015. url:
https://pktgen.readthedocs.io/en/latest/ (vis-
ited on 04/06/2016).

13

http://software.es.net/iperf/index.html
http://software.es.net/iperf/index.html
http://www.exfo.com/products/field-network-testing/bu2-transport-datacom/ethernet-testing/ftb-iqs-85100g-packet-blazer
http://www.exfo.com/products/field-network-testing/bu2-transport-datacom/ethernet-testing/ftb-iqs-85100g-packet-blazer
http://www.exfo.com/products/field-network-testing/bu2-transport-datacom/ethernet-testing/ftb-iqs-85100g-packet-blazer
http://www.exfo.com/products/field-network-testing/bu2-transport-datacom/ethernet-testing/ftb-iqs-85100g-packet-blazer
http://dpdk.org
https://pktgen.readthedocs.io/en/latest/

[5] Paul Emmerich et al. ‘MoonGen: A Script-
able High-Speed Packet Generator’. In: Internet
Measurement Conference 2015 (IMC’15). Tokyo,
Japan, Oct. 2015.

[6] Daniel Turull, Peter Sjödin and Robert Olsson.
‘Pktgen: Measuring performance on high speed
networks’. In: Computer Communications 82
(2016), pp. 39–48.

[7] Andreas Hanemann et al. ‘Perfsonar: A service
oriented architecture for multi-domain network
monitoring’. In: Service-Oriented Computing-
ICSOC 2005. Springer, 2005, pp. 241–254.

[8] Brian Tierney et al. ‘perfSONAR: Instantiating
a global network measurement framework’. In:
SOSP Wksp. Real Overlays and Distrib. Sys
(2009).

[9] perfSONAR. About perfSONAR. url: http :
/ / www . perfsonar . net / about/ (visited on
04/06/2016).

[10] Paul Emmerich et al. ‘Assessing soft-and hard-
ware bottlenecks in PC-based packet forwarding
systems’. In: ICN 2015 (2015), pp. 78–83.

[11] Ashok Emani. Using Open vSwitch* with DPDK
for Inter-VM NFV Applications. 17th Nov. 2015.
url: https://software.intel.com/en-us/articles/
using-open-vswitch-with-dpdk-for-inter-vm-
nfv-applications (visited on 04/06/2016).

[12] opendp. TCP/IP stack for dpdk. 2014. url:
https://github.com/opendp/dpdk- ans (vis-
ited on 04/06/2016).

[13] opendp. dpdk-nginx. 2015. url: https : / /
github.com/opendp/dpdk-nginx (visited on
04/06/2016).

[14] opendp. dpdk-redis. 2015. url: https : / /
github . com/opendp/dpdk - redis (visited on
04/06/2016).

[15] Jon Postel. Transmission Control Protocol. STD
7. RFC Editor, Sept. 1981. url: http://www.rfc-
editor.org/rfc/rfc793.txt.

[16] ESnet. Linux Tuning. url: https://fasterdata.es.
net/host-tuning/linux/ (visited on 18/06/2016).

[17] ESnet. 40G Tuning. url: https://fasterdata.
es .net/host- tuning/40g- tuning/ (visited on
18/06/2016).

[18] Mellanox Technologies LTD. Performance Tun-
ing Guidelines for Mellanox Network Ad-

apters Revision 1.17. 2016. url: https : / /
www . mellanox . com / related - docs / prod _
software/Performance_Tuning_Guide_for_
Mellanox_Network_Adapters.pdf (visited on
18/06/2016).

[19] Ethernet Alliance. Ethernet Jumbo Frames.
2009. url: http://www.ethernetalliance.org/
wp-content/uploads/2011/10/EA-Ethernet-
Jumbo-Frames-v0-1.pdf.

[20] ethtool(8) - Linux man page. url: http://linux.
die.net/man/8/ethtool (visited on 06/07/2016).

[21] Robert Love. ‘Cpu affinity’. In: Linux Journal
111 (2003), pp. 18–21. url: https : / / www .
linuxjournal.com/article/6799.

[22] Nathan Hanford et al. ‘Characterizing the im-
pact of end-system affinities on the end-to-end
performance of high-speed flows’. In: Proceed-
ings of the Third International Workshop on
Network-Aware Data Management. ACM. 2013,
p. 1.

[23] Deborah T Marr et al. ‘Hyper-Threading Tech-
nology Architecture and Microarchitecture.’ In:
Intel Technology Journal 6.1 (2002).

[24] Linuxtopia. isolcpus — Isolate CPUs from
the kernel scheduler. url: http : / / www .
linuxtopia.org/online_books/linux_kernel/
kernel_ configuration / re46 . html (visited on
06/07/2016).

[25] Micro Focus. Isolating CPUs From The Gen-
eral Scheduler. url: https://www.novell.com/
support/kb/doc.php?id=7009596 (visited on
06/07/2016).

[26] Jelte Fennema and bluestar. dpdk-ans is slower
than regular Linux epoll with 100Gbit/s. 2016.
url: https://github.com/opendp/dpdk-ans/
issues/16 (visited on 06/07/2016).

[27] W. Richard Stevens. TCP Slow Start, Conges-
tion Avoidance, Fast Retransmit, and Fast Re-
covery Algorithms. RFC 2001. http://www.rfc-
editor.org/rfc/rfc2001.txt. RFC Editor, Jan.
1997. url: http ://www.rfc - editor .org/rfc/
rfc2001.txt.

[28] socket - Linux socket interface. url: http://
man7.org/linux/man-pages/man7/socket.7.
html (visited on 06/07/2016).

14

http://www.perfsonar.net/about/
http://www.perfsonar.net/about/
https://software.intel.com/en-us/articles/using-open-vswitch-with-dpdk-for-inter-vm-nfv-applications
https://software.intel.com/en-us/articles/using-open-vswitch-with-dpdk-for-inter-vm-nfv-applications
https://software.intel.com/en-us/articles/using-open-vswitch-with-dpdk-for-inter-vm-nfv-applications
https://github.com/opendp/dpdk-ans
https://github.com/opendp/dpdk-nginx
https://github.com/opendp/dpdk-nginx
https://github.com/opendp/dpdk-redis
https://github.com/opendp/dpdk-redis
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc793.txt
https://fasterdata.es.net/host-tuning/linux/
https://fasterdata.es.net/host-tuning/linux/
https://fasterdata.es.net/host-tuning/40g-tuning/
https://fasterdata.es.net/host-tuning/40g-tuning/
https://www.mellanox.com/related-docs/prod_software/Performance_Tuning_Guide_for_Mellanox_Network_Adapters.pdf
https://www.mellanox.com/related-docs/prod_software/Performance_Tuning_Guide_for_Mellanox_Network_Adapters.pdf
https://www.mellanox.com/related-docs/prod_software/Performance_Tuning_Guide_for_Mellanox_Network_Adapters.pdf
https://www.mellanox.com/related-docs/prod_software/Performance_Tuning_Guide_for_Mellanox_Network_Adapters.pdf
http://www.ethernetalliance.org/wp-content/uploads/2011/10/EA-Ethernet-Jumbo-Frames-v0-1.pdf
http://www.ethernetalliance.org/wp-content/uploads/2011/10/EA-Ethernet-Jumbo-Frames-v0-1.pdf
http://www.ethernetalliance.org/wp-content/uploads/2011/10/EA-Ethernet-Jumbo-Frames-v0-1.pdf
http://linux.die.net/man/8/ethtool
http://linux.die.net/man/8/ethtool
https://www.linuxjournal.com/article/6799
https://www.linuxjournal.com/article/6799
http://www.linuxtopia.org/online_books/linux_kernel/kernel_configuration/re46.html
http://www.linuxtopia.org/online_books/linux_kernel/kernel_configuration/re46.html
http://www.linuxtopia.org/online_books/linux_kernel/kernel_configuration/re46.html
https://www.novell.com/support/kb/doc.php?id=7009596
https://www.novell.com/support/kb/doc.php?id=7009596
https://github.com/opendp/dpdk-ans/issues/16
https://github.com/opendp/dpdk-ans/issues/16
http://www.rfc-editor.org/rfc/rfc2001.txt
http://www.rfc-editor.org/rfc/rfc2001.txt
http://www.rfc-editor.org/rfc/rfc2001.txt
http://www.rfc-editor.org/rfc/rfc2001.txt
http://man7.org/linux/man-pages/man7/socket.7.html
http://man7.org/linux/man-pages/man7/socket.7.html
http://man7.org/linux/man-pages/man7/socket.7.html

[29] epoll - I/O event notification facility. url: http:
//man7.org/linux/man-pages/man7/epoll.7.
html (visited on 06/07/2016).

[30] George Yunaev. select/poll/epoll: practical dif-
ference for system architects. 2014. url: http://
www.ulduzsoft.com/2014/01/select-poll-epoll-
practical-difference-for-system-architects/ (vis-
ited on 04/06/2016).

[31] Oleksiy Kovyrin. Using epoll() For Asyn-
chronous Network Programming. 2006. url:
http : / / kovyrin . net / 2006 / 04 / 13 / epoll -
asynchronous-network-programming/ (visited
on 06/07/2016).

[32] Mukund Sivaraman. How to use epoll? A com-
plete example in C. 2011. url: https://banu.
com/blog/2/how- to- use- epoll - a- complete-
example-in-c/ (visited on 06/07/2016).

[33] select, pselect, FD_CLR, FD_ISSET,
FD_SET, FD_ZERO - synchronous I/O
multiplexing. url: http://man7.org/linux/man-
pages / man2 / select . 2 . html (visited on
06/07/2016).

[34] Jonathan Corbet. Edge-triggered interfaces are
too difficult? 2003. url: https : / / lwn . net /
Articles/25137/ (visited on 06/07/2016).

Acronyms

100GbE 100 Gigabit Ethernet. 1–3, 13

10GbE 10 Gigabit Ethernet. 2, 6

ANS Accelerated Network Stack. 2–13

API Application Programming Interface. 7, 8

CPU Central Processing Unit. 1, 3–5, 12

DPDK Data Plane Development Kit. 1–4, 6, 12, 13,
17

FD file descriptor. 7, 8

HPC high-performance computing. 5

IP Internet Protocol. 2

MTU Maximum Transmission Unit. 5

NIC Network Interface Card. 1–3, 5, 6, 9, 10, 12, 13

POSIX Portable Operating System Interface. 8

TCP Transmission Control Protocol. 2–7, 9, 11–13

UDP User Datagram Protocol. 4, 13

15

http://man7.org/linux/man-pages/man7/epoll.7.html
http://man7.org/linux/man-pages/man7/epoll.7.html
http://man7.org/linux/man-pages/man7/epoll.7.html
http://www.ulduzsoft.com/2014/01/select-poll-epoll-practical-difference-for-system-architects/
http://www.ulduzsoft.com/2014/01/select-poll-epoll-practical-difference-for-system-architects/
http://www.ulduzsoft.com/2014/01/select-poll-epoll-practical-difference-for-system-architects/
http://kovyrin.net/2006/04/13/epoll-asynchronous-network-programming/
http://kovyrin.net/2006/04/13/epoll-asynchronous-network-programming/
https://banu.com/blog/2/how-to-use-epoll-a-complete-example-in-c/
https://banu.com/blog/2/how-to-use-epoll-a-complete-example-in-c/
https://banu.com/blog/2/how-to-use-epoll-a-complete-example-in-c/
http://man7.org/linux/man-pages/man2/select.2.html
http://man7.org/linux/man-pages/man2/select.2.html
https://lwn.net/Articles/25137/
https://lwn.net/Articles/25137/

A Tuned settings

A.1 sysctl.conf

Controls IP packet forwarding
net.ipv4.ip_forward = 0

Controls source route verification
net.ipv4.conf.default.rp_filter = 1

Do not accept source routing
net.ipv4.conf.default.accept_source_route = 0

Controls the System Request debugging functionality of the kernel
kernel.sysrq = 0

Controls whether core dumps will append the PID to the core filename.
Useful for debugging multi-threaded applications.
kernel.core_uses_pid = 1

Controls the use of TCP syncookies
net.ipv4.tcp_syncookies = 1

Controls the default maxmimum size of a mesage queue
kernel.msgmnb = 65536

Controls the maximum size of a message, in bytes
kernel.msgmax = 65536

Controls the maximum shared segment size, in bytes
kernel.shmmax = 68719476736

Controls the maximum number of shared memory segments, in pages
kernel.shmall = 4294967296
vm.nr_hugepages = 1024

net.core.rmem_max = 134217728
net.core.wmem_max = 134217728

net.ipv4.tcp_rmem = 4096 87380 67108864
net.ipv4.tcp_wmem = 4096 65536 67108864

net.core.netdev_max_backlog = 250000

net.ipv4.tcp_congestion_control=htcp

net.ipv4.tcp_mtu_probing=1

16

net.ipv4.tcp_window_scaling=1

Needed for ANS
kernel.randomize_va_space=0

B DPDK modifications
diff -ur dpdk-16.04/config/common_base dpdk-16.04-modified/config/common_base
--- dpdk-16.04/config/common_base 2016-04-11 23:56:34.000000000 +0200
+++ dpdk-16.04-modified/config/common_base 2016-06-28 11:30:48.285820155 +0200
@@ -125,7 +125,7 @@
CONFIG_RTE_LIBRTE_ETHDEV_DEBUG=n
CONFIG_RTE_MAX_ETHPORTS=32
CONFIG_RTE_MAX_QUEUES_PER_PORT=1024

-CONFIG_RTE_LIBRTE_IEEE1588=n
+CONFIG_RTE_LIBRTE_IEEE1588=y
CONFIG_RTE_ETHDEV_QUEUE_STAT_CNTRS=16
CONFIG_RTE_ETHDEV_RXTX_CALLBACKS=y

@@ -213,7 +213,7 @@
#
Compile burst-oriented Mellanox ConnectX-4 (MLX5) PMD
#

-CONFIG_RTE_LIBRTE_MLX5_PMD=n
+CONFIG_RTE_LIBRTE_MLX5_PMD=y
CONFIG_RTE_LIBRTE_MLX5_DEBUG=n
CONFIG_RTE_LIBRTE_MLX5_SGE_WR_N=4
CONFIG_RTE_LIBRTE_MLX5_MAX_INLINE=0

diff -ur dpdk-16.04/drivers/net/i40e/i40e_rxtx.c
dpdk-16.04-modified/drivers/net/i40e/i40e_rxtx.c↪→

--- dpdk-16.04/drivers/net/i40e/i40e_rxtx.c 2016-04-11 23:56:34.000000000 +0200
+++ dpdk-16.04-modified/drivers/net/i40e/i40e_rxtx.c 2016-06-28 11:30:50.956772983

+0200↪→

@@ -50,6 +50,8 @@
#include <rte_tcp.h>
#include <rte_sctp.h>
#include <rte_udp.h>

+#include <rte_branch_prediction.h>
+

#include "i40e_logs.h"
#include "base/i40e_prototype.h"

@@ -1619,8 +1621,10 @@
I40E_TX_FLAG_L2TAG1_SHIFT;

}

- /* Always enable CRC offload insertion */

17

- td_cmd |= I40E_TX_DESC_CMD_ICRC;
+ /* Enable L2 checksum offload */
+ if (likely(!(ol_flags & PKT_TX_NO_CRC_CSUM)))
+ td_cmd |= I40E_TX_DESC_CMD_ICRC;
+

/* Enable checksum offloading */
cd_tunneling_params = 0;

diff -ur dpdk-16.04/drivers/net/ixgbe/ixgbe_rxtx.c
dpdk-16.04-modified/drivers/net/ixgbe/ixgbe_rxtx.c↪→

--- dpdk-16.04/drivers/net/ixgbe/ixgbe_rxtx.c 2016-04-11 23:56:34.000000000 +0200
+++ dpdk-16.04-modified/drivers/net/ixgbe/ixgbe_rxtx.c 2016-06-28 11:30:50.821775366

+0200↪→

@@ -787,8 +787,10 @@
* are only set in the last Data Descriptor:
* - IXGBE_TXD_CMD_RS
*/

- cmd_type_len = IXGBE_ADVTXD_DTYP_DATA |
- IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT;
+ cmd_type_len = IXGBE_ADVTXD_DTYP_DATA | IXGBE_ADVTXD_DCMD_DEXT;
+ if (!(ol_flags & PKT_TX_NO_CRC_CSUM))
+ cmd_type_len |= IXGBE_ADVTXD_DCMD_IFCS;
+

#ifdef RTE_LIBRTE_IEEE1588
if (ol_flags & PKT_TX_IEEE1588_TMST)

diff -ur dpdk-16.04/lib/librte_eal/linuxapp/igb_uio/compat.h
dpdk-16.04-modified/lib/librte_eal/linuxapp/igb_uio/compat.h↪→

--- dpdk-16.04/lib/librte_eal/linuxapp/igb_uio/compat.h 2016-04-11 23:56:34.000000000
+0200↪→

+++ dpdk-16.04-modified/lib/librte_eal/linuxapp/igb_uio/compat.h 2016-06-28
11:30:51.076770862 +0200↪→

@@ -15,13 +15,13 @@
#define HAVE_PTE_MASK_PAGE_IOMAP
#endif

-#ifndef PCI_MSIX_ENTRY_SIZE
+#ifndef PCI_MSIX_ENTRY_CTRL_MASKBIT
#define PCI_MSIX_ENTRY_SIZE 16

-#define PCI_MSIX_ENTRY_LOWER_ADDR 0
-#define PCI_MSIX_ENTRY_UPPER_ADDR 4
-#define PCI_MSIX_ENTRY_DATA 8
-#define PCI_MSIX_ENTRY_VECTOR_CTRL 12
-#define PCI_MSIX_ENTRY_CTRL_MASKBIT 1
+#define PCI_MSIX_ENTRY_LOWER_ADDR 0
+#define PCI_MSIX_ENTRY_UPPER_ADDR 4
+#define PCI_MSIX_ENTRY_DATA 8
+#define PCI_MSIX_ENTRY_VECTOR_CTRL 12

18

+#define PCI_MSIX_ENTRY_CTRL_MASKBIT 1
#endif

#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 34) && \
diff -ur dpdk-16.04/lib/librte_eal/linuxapp/kni/ethtool/igb/kcompat.h

dpdk-16.04-modified/lib/librte_eal/linuxapp/kni/ethtool/igb/kcompat.h↪→

--- dpdk-16.04/lib/librte_eal/linuxapp/kni/ethtool/igb/kcompat.h 2016-04-11
23:56:34.000000000 +0200↪→

+++ dpdk-16.04-modified/lib/librte_eal/linuxapp/kni/ethtool/igb/kcompat.h 2016-06-28
11:30:51.107770314 +0200↪→

@@ -319,11 +319,11 @@
__be16 h_vlan_encapsulated_proto;

};
#define vlan_hdr _kc_vlan_hdr

+#endif /* NETIF_F_HW_VLAN_TX && NETIF_F_HW_VLAN_CTAG_TX */
#if (LINUX_VERSION_CODE < KERNEL_VERSION(3,10,0))
#define vlan_tx_tag_present(_skb) 0
#define vlan_tx_tag_get(_skb) 0
#endif

-#endif /* NETIF_F_HW_VLAN_TX && NETIF_F_HW_VLAN_CTAG_TX */

#ifndef VLAN_PRIO_SHIFT
#define VLAN_PRIO_SHIFT 13

diff -ur dpdk-16.04/lib/librte_eal/linuxapp/kni/ethtool/ixgbe/kcompat.h
dpdk-16.04-modified/lib/librte_eal/linuxapp/kni/ethtool/ixgbe/kcompat.h↪→

--- dpdk-16.04/lib/librte_eal/linuxapp/kni/ethtool/ixgbe/kcompat.h 2016-04-11
23:56:34.000000000 +0200↪→

+++ dpdk-16.04-modified/lib/librte_eal/linuxapp/kni/ethtool/ixgbe/kcompat.h 2016-06-28
11:30:51.091770598 +0200↪→

@@ -318,11 +318,12 @@
__be16 h_vlan_encapsulated_proto;

};
#define vlan_hdr _kc_vlan_hdr

+#endif
+
#if (LINUX_VERSION_CODE < KERNEL_VERSION(3,10,0))
#define vlan_tx_tag_present(_skb) 0
#define vlan_tx_tag_get(_skb) 0
#endif

-#endif

#ifndef VLAN_PRIO_SHIFT
#define VLAN_PRIO_SHIFT 13

diff -ur dpdk-16.04/lib/librte_eal/linuxapp/kni/kni_misc.c
dpdk-16.04-modified/lib/librte_eal/linuxapp/kni/kni_misc.c↪→

--- dpdk-16.04/lib/librte_eal/linuxapp/kni/kni_misc.c 2016-04-11 23:56:34.000000000
+0200↪→

19

+++ dpdk-16.04-modified/lib/librte_eal/linuxapp/kni/kni_misc.c 2016-06-28
11:30:51.128769943 +0200↪→

@@ -432,9 +432,6 @@
up_read(&knet->kni_list_lock);

net_dev = alloc_netdev(sizeof(struct kni_dev), dev_info.name,
-#ifdef NET_NAME_UNKNOWN
- NET_NAME_UNKNOWN,
-#endif

kni_net_init);
if (net_dev == NULL) {

KNI_ERR("error allocating device \"%s\"\n", dev_info.name);
diff -ur dpdk-16.04/lib/librte_mbuf/rte_mbuf.c dpdk-16.04-modified/lib/librte_mbuf/rte_mbuf.c
--- dpdk-16.04/lib/librte_mbuf/rte_mbuf.c 2016-04-11 23:56:34.000000000 +0200
+++ dpdk-16.04-modified/lib/librte_mbuf/rte_mbuf.c 2016-06-28 11:30:51.021771834 +0200
@@ -271,6 +271,7 @@
const char *rte_get_tx_ol_flag_name(uint64_t mask)
{

switch (mask) {
+ case PKT_TX_NO_CRC_CSUM: return "PKT_TX_NO_CRC_CSUM";

case PKT_TX_VLAN_PKT: return "PKT_TX_VLAN_PKT";
case PKT_TX_IP_CKSUM: return "PKT_TX_IP_CKSUM";
case PKT_TX_TCP_CKSUM: return "PKT_TX_TCP_CKSUM";

diff -ur dpdk-16.04/lib/librte_mbuf/rte_mbuf.h dpdk-16.04-modified/lib/librte_mbuf/rte_mbuf.h
--- dpdk-16.04/lib/librte_mbuf/rte_mbuf.h 2016-04-11 23:56:34.000000000 +0200
+++ dpdk-16.04-modified/lib/librte_mbuf/rte_mbuf.h 2016-06-28 11:30:51.022771816 +0200
@@ -101,6 +101,10 @@
/* add new RX flags here */

/* add new TX flags here */
+/**
+ * Disable CRC checksum offload
+ */
+#define PKT_TX_NO_CRC_CSUM (1ULL << 48)

/**
* Second VLAN insertion (QinQ) flag.

20

	Introduction
	Research questions

	Related work
	Approach
	Focus
	Setup and versions
	Performance baseline
	Modifying
	Performance of versions
	Multiple streams with

	Performance settings
	settings
	Network settings
	settings
	Using non-optimal settings
	transmit burst buffer length

	Details of the experiments

	Results
	Performance baseline
	Modifying
	Converting select to epoll
	Remove blocking sockets

	Performance of modified
	Initial results
	Multiple streams
	Disabling missing features
	Decreasing the transmit burst buffer

	Discussion
	Baseline experiments
	Converting to
	Performance of modified
	Future work

	Conclusion
	References
	Acronyms
	Tuned settings
	sysctl.conf

	modifications

