
Thinking in possibilities for federated log out.

Marcel den Reijer & Fouad Makioui

Supervised by
Thijs Kinkhorst & Joost van Dijk

SURFnet

University of Amsterdam

June 9, 2017

Abstract
Security Association Markup Language version 2.0 (SAML 2.0) is an open standard
protocol defined by OASIS for exchanging security information. SAML 2.0 supports

different protocols such as Single Sign On and Single Logout. This report describes the
possible solutions for federated log out in a hub and spokes model of SURFconext. The
possible solutions are based on the expectation of the users, which entails that the user
only logs out from the corresponding application. This expectation is defined as Partial

Logout. Partial Logout is not a standard function of SAML 2.0.

Contents

1 Introduction 3
1.1 Research Questions . 4
1.2 Scope . 4

2 Related Work 5

3 Desk Research 6
3.1 SAML 2.0 . 6

3.1.1 SAML 2.0 introduction . 6
3.1.2 SAML 2.0 concept architecture . 6
3.1.3 Statements . 7

3.2 Single Sign On . 7
3.2.1 The definition of Single Sign On . 7
3.2.2 Authentication Request Protocol . 8

3.3 Single Logout . 9
3.3.1 Single Logout definition . 9
3.3.2 Logout Request element . 12
3.3.3 Logout Response element . 13
3.3.4 Metadata . 13

3.4 SURFconext . 13

4 Methodology 16

5 Results 17
5.1 User expectations . 17
5.2 Possible solutions . 18

5.2.1 Disabling Single Sign On . 19
5.2.2 Defining a new protocol for Partial Logout 19
5.2.3 Using the Single Logout protocol for Partial Logout 20
5.2.4 ForceAuthn option in the authentication request 26

5.3 Experiments & Results . 27
5.3.1 Experiment 1 Single Logout . 27
5.3.2 Experiment 2 Partial Logout . 28
5.3.3 Experiments 3 between the Identity Provider and SURFconext . . . 28

6 Conclusion 29

7 Discussion 29

8 Future Work 30

9 Acknowledgment 31

2

1 Introduction

Most systems are protected by a form of authentication/authorization technology. For
users to be able to access their resources, they must verify their identity by some form
of authentication. There are several methods to provide authentication to a system.
The most common authentication method is username/password authentication. Other
methods are authenticating with bio metric data such as fingerprints/iris scans, smart
cards, soft or hard tokens and certificates.[1]

There is a need for a federated identity infrastructure to manage the user’s access
(authentication) to multiple systems and to be able to keep the identities across different
systems manageable. A federated identity infrastructure links a person’s digital identity
and attributes to a stored multiple distinct identity management systems. [7]

Federated identity makes it possible to decouple the authentication and authorization
functions. The applications do not need to store user credentials, because the user
credentials are stored by the authority server. The benefit for the users is that the users
have one identity for accessing different applications.
Single Sign On can be implemented in a federated infrastructure, this gives the users the
benefit that the users only needs to authenticate once by applications that are part of the
federation.[5]

There are two major protocols in federated identity for web authentication: SAML 2.0
and OpenID connect.[5]

This research will mainly focus on the SAML 2.0 protocol, because this is currently
the most implemented in identity federation for higher education and research.[3] SAML
2.0 stands for Security Assertion Markup Language version 2.0 and is an open-standard
protocol based on XML for exchanging security data between three parties: Service
Provider, Identity Provider and the user agent. SAML 2.0 is developed by OASIS and
the latest official version released on March 2005. SAML can be used to implement Single
Sign On and/or Single Logout.[2]

The SAML 2.0 protocol provides a possibility for Single Logout (Aslo called Single Logout
protocol)[9]. The Single Logout allows users to terminate their session. This is propagated
to all services that shared the session. This works if all sessions of the user are responding
on the logout request of the Identity Provider. The Single Logout as defined in the SAML
2.0 is not implemented often.[14]

3

1.1 Research Questions

It is clear that Single Logout is not often implemented.[14] The idea behind this project
is to research which possibilities there are for logout in a federation. Therefore, our main
research question is:

• What are the possibilities for Federated log out?

This main research question is supported by the following sub-questions:

• What do the users expect when they log out of a Service Provider?

• Which possible solutions provide (at least some of) the user’s expectations?

- Specified with the pros and cons in the field of technical implementation and
feasibility.

• Which solution(s) is/are the most feasible one(s)?

- Verify that the most feasible one can work in a proof of concept.

1.2 Scope

This research project focuses on finding a possible solution for the problem, which is
discussed in the introduction. The case of this project refers to SURFnet and its environment
as described in section 3.4. The solution must work on SAML 2.0 in a hub and spoke
model. If there is more than one solution, the best solution will be tested in a proof
of concept. The experiment will be performed on the two most used Identity Providers
applications by the providers that are connected to SURFconext which are Microsoft
ADFS and SimpleSAMLphp. Figure 1 illustrates the product overview1 of the connected
Identity Providers.

Figure 1: SURFconext - Identity Providers product overview (13 January 2017) [4]

1on 13 January 2017

4

2 Related Work

”Shibboleth is among the world’s most widely deployed federated identity solutions, connecting
users to applications both within and between organizations.”[15] Shibboleth project has
done some research in the field of Single Logout and has written an article about unfamiliar
problems. Shibboleth[15] discussed only the practical issues that may occur. The article
”SLOissues” begins with an introduction of web application sessions. Shibboleth[15] claims
that:

”most web-based applications store data about the currently active users within memory
and index this collection of data with randomly generated number called a SESSIONID.

The SESSIONID is in a normal way stored in a browser cookie so that each time the
user returns the cookie is presented to the application and the application can find the

relevant current session data.”

Shibboleth mentioned some technical difficulties for Single Logout. These difficulties
can be classified in three categories. The first category is the Front-Channel bindings
revisited. What happened when an HTTP error is encountered during the HTTP sessions,
while information is being transported. Shibboleth mentioned some other issues when
Front-Channel bindings in SAML 2.0 is used. The second category concern the Back-channel
bindings. Also these issues, which may occur are also related to sessions. The third
category is the SAML versions. Only SAML 2.0 supports Single Logout, so all parties
have to support SAML 2.0.[15] According to Shibboleth[15]:

”When presented with these issues many individuals offer a protocol where only the
initiating Service Provider and the Identity Provider communicate. The goal is to

destroy the Service Provider and the Identity Provider its sessions so that users would
have to re-authenticate if they visit that Service Provider again.”

SURFnet did some research about federated logout. The conclusion of the research was
that SAML 2.0 did not have a proper solution for federated logout. SURFnet decided
that they don’t support the logout possibility as specified by SAML 2.0. [21]

Sanna Suoranta et al. did research about Logout in Single Sign On Systems. Their
conclusion is: ”Standardization organizations, web browser vendors, and service developers
should consider also the termination of the sessions.” According to them the solution lies
in enhanced cookie management in web browsers and a unified user interface for logout.[14]

5

3 Desk Research

3.1 SAML 2.0

3.1.1 SAML 2.0 introduction

SAML 2.0 is an XML based open-standard protocol for exchanging security information
between parties. The standard defines and describes the syntax and rules for requesting,
creating and transferring with security information between or across security domain
boundaries using trusts. There are three participants when SAML is used. These SAML
participants are the SAML asserting party, the SAML replying party and the user. The
SAML asserting party makes assertions and is also known as the SAML authority or
Identity Provider. The SAML relying party is a system entity that uses received assertions
from the SAML authority. The relying party also called a Service Provider. Another
SAML participant is the user also called principal which runs a web browser or SAML-enabled
application.[12]

3.1.2 SAML 2.0 concept architecture

The concept architecture of SAML 2.0 consists of ”building-block” components. When
the components are put together, it can supports a number of use cases. If there is a trust
relationship between the parties, then SAML authority permits transfer of user’s identity,
authentication, attribute and authorization information. The Identity Provider is the
party where the user identity is stored. The SAML assertion XML schema describes the
valid structure and contents of an assertions. Figure 2 illustrates an architecture overview
of SAML 2.0.[12]

Figure 2: SAML 2.0 - Architecture [12]

6

The SAML 2.0 architecture contains six parts with Protocols and Assertions known as
the SAML Core. The following parts are[12]:

• Assertions: Contains information about the user. This information can be authentication,
attributes or entitlement information. An assertion is a package of information that
supplies zero or more statements made by a SAML authority.

• Protocols: Defines the SAML requests and responses appropriate.

• Bindings: Defines how SAML messages can be transported (for example over HTTP
with SOAP) between participants.

• Profiles: Define how the components SAML assertions, protocols and bindings are
combined.

• Metadata: Contains its own XML schema. This schema is used to express and share
configuration information between SAML parties. This configuration data contains
the identifiers, supported identity attributes and encryption or signing information.

• Authentication Context: Contains detailed information about types and security
strengths of authentication.

3.1.3 Statements

There are three kinds of statements that can be carried within an assertion. The first
statement is authentication, which is created by the party where the user successfully
is authenticated. The second statement is authorization, which contains the kind of
information about the authenticated users with its permissions. The third statement is
attribute, which contains the kind of specific information about a subject with identifying
properties.[12]

3.2 Single Sign On

3.2.1 The definition of Single Sign On

Single Sign On is a concept whereby a user authenticates against an Identity Provider
once and gets access to several Service Providers. To implement Single Sign On, SAML
Authentication Request Protocol is used in the background in conjunction with a front-channel
binding such as HTTP Redirect, HTTP POST or HTTP Artifact. The Single Sign On
concept is handled by the Identity Providers, which keeps the sessions information of the
users.[11] Figure 3 illustrates a basic template of Single Sign On.

7

Figure 3: SAML 2.0 - Single Sign On [11]

1. The user initiates a login request.

2. The Service Provider determines the Identity Provider and which binding it can use.

3. The Service Provider sends an authentication request via the user agent to the
determined Identity Provider.

4. The user is identified by the Identity Provider.

5. The Identity Provider sends a response message to the Service Provider via the user
agent.

6. Based on the Identity Provider the Service Provider may respond to the user agent
with its own status code.

3.2.2 Authentication Request Protocol

The first SAML message is a <AuthnRequest> message request and this message contains
an <Issuer> element. This element contains the unique identifier of the requesting
Service Provider. The authentication request needs to conform the Identity Providers
requirements. If the request does not conform the requirements the Identity Provider
respond with a response message, which contains a specific error status code. According
to OASIS[11] the <AuthnRequest> message may be signed if the HTTP Artifact binding
is used. Authentication of the parties is optional but when they are not authenticated,
signed or integrity protected, they must not be trusted. When an error occurs during
responding, then the response message contains no assertions.

8

If the request is successful, then every response element has to conform to the following
rules: [11]

• The <Issuer> element may be omitted, but if it is present then it must contain a
unique identifier.

• The response must have at least one <Assertions> element. The <Assertions> must
contain one or more <AuthnStatement>.

• The <AuthnStatement> must contain a <Subject> element with at least one
<SubjectConfirmation> element containing a <Method>.

• If the assertions or responses includes a signature, the Service Provider has to verify
them.

• The Service Provider must verify the <Recipient> attribute in any carrier
<SubjectConfirmationData> matches the assertion consumer service URL.

• The Service Provider must verify that the <NotOnOrAfter> attribute in any carrier
<SubjectConfirmationData> has not expired, subject to allowable clock skew between
the providers.

• The provided assertions must be signed when the HTTP POST binding is used to
deliver the <Response> messages by the Service Provider and must protect the
messages against replaying of the messages.

• The metadata defines different kinds of endpoint elements for Single Sign On to
describe the supported bindings, locations certificate and signatures. These locations
can be used by Service Providers to send request to an Identity Provider.

3.3 Single Logout

3.3.1 Single Logout definition

The Single Logout protocol, which is described in section 3.7 of the SAML core and section
4.4 of the SAML profiles. OASIS[10] [11] says:

”The Single Logout protocol provides a message exchange protocol by which all sessions
provided by a particular session authority are near-simultaneously terminated.”

In the Single Logout protocol different participants participate. The first one is the
principal, which refers to the (end) user, the second one is the session participant which
refers to the Service Provider and the last participant is the session authority, which refers
to the Identity Providers or users. [10]

In Single Logout, the principal has an authenticated session with session participants
and session authorities. Figure 4 illustrates a high-level view of an authenticated session

9

between the two participants.

Figure 4: SAML 2.0 - Authenticated session

The Single Logout protocol exists of two elements; the LogoutRequest and LogoutResponse
elements.

According to OASIS[10]: ”The session participant MUST send a <LogoutRequest> message
to the session authority, when the principal invokes the Single Logout process at a session
participant.”

According to OASIS[10]: ”The session authority SHOULD send a <logoutRequest> message
to each session participant to which it provided assertions containing authentication statements
under its current session with the principal, except the session participant which send the
request message to the session authority. This count only when either the principal invokes
a logout at the session authority, or a session participant send a logout request to the
session authority specifying the principal itself.”

Different kinds of bindings
The profile can be used to combine a synchronous or asynchronous binding to define
how Single Logout messages with SAML 2.0 can be transported. An example of a
synchronous binding (back-channel) is the SOAP or PAOS binding. An example of an
asynchronous binding (front-channel) is the HTTP Redirect, POST or Artifact bindings.
The asynchronous binding needs to be used in cases, where a user’s session state exists
only in a user agent in the form of a cookie and/or direct interaction between the session
participant or session authority and the user agent. The synchronous binding needs to
be used in cases where a user wants to communicate directly with the Identity Provider.

10

The session participants should propagate the required messages to each other. The
synchronous/asynchronous binding can only be used for communication when a logout
request/response is issued by the Service Provider to Identity Provider. When the Identity
Provider initiates the logout request then the Identity Provider has to examine the identifier
and <SessionIndex> elements and define the set of sessions to be terminated [11]

The working of Single Logout
Figure 5 illustrates a sequence diagram of the working of the Single Logout protocol.

Figure 5: SAML 2.0 - Single Logout [11]

1. The user initiates a logout to start the Single Logout process.

2. The Service Provider sends a <LogoutRequest> to the Identity Provider and terminate
the session.

3. The Identity Provider determines which sessions exist with the services providers.

4. The Identity Provider sends the LogoutRequest through to all the determined services
providers one by one after receiving a LogoutResponse.

5. The Service Provider terminates the session and sends a LogoutResponse back to the
Identity Provider. If there are more Service Providers participating in the session,
step 3 and 4 will repeated.

6. After receiving all LogoutResponses from the participating Service Providers the
Identity Provider send a LogoutResponse back to the Service Provider.

11

3.3.2 Logout Request element

Either the session participant or session authority will indicate that a session has terminated
by sending a <LogoutRequest> message. It is recommended that every request is signed.
The logout request element has a complex type of a LogoutRequestType sub element,
which extends a RequestAbstractType and is used to add extra attributes or sub elements.
According to OASIS[10] the following sub elements and attributes can be added to the
Logout Request element:

• <saml:BaseID> or <saml:NameID> or <saml:EncryptedID> [Required] This sub
element contains the identifier and associated attributes, which specify a specific user
as currently recognized by the corresponding Identity Provider and Service Provider.

• <SessionIndex> [Optional] This sub element contains the identifier, which indexes
the corresponding session at the message of the receiver. As shown in Figure 6 the
SessionIndex can contain multiple values.

• <Reason> [Optional] This sub element contains the reason for the log out, in a URI
reference form. The sender of the message may use this attribute to indicate the
reason of the logout request. There are two value possible:

– <urn:oasis:names:tc:SAML:2.0:logout:user> This value can be sent if the user
wants to terminate a indicated/corresponding session.

– <urn:oasis:names:tc:SAML:2.0:logout:admin> This value can be sent if the
administrator of a Service Provider wants to terminate a indicated or corresponding
session.

The schema fragment in Figure 6 defines the <logoutRequest> element:

Figure 6: SAML 2.0 - LogoutRequestType [10]

12

In a <LogoutRequest> the <Issuer> element is required and must contain a unique
identifier of the requesting entity. According to OASIS[11]: ”the Format attribute MUST
be omitted or have a value of ”urn:oasis:names:tc:SAML:2.0:-nameidformat:entity”. If the
request origins from a Service Provider, the <SessionIndex> element is required.

3.3.3 Logout Response element

The receiver of a LogoutRequest message must always respond with a StatusResponseType
message. It is recommended to sign the Logout Response element.[10]

The following schema fragment defines the <LogoutResponse> element:
<element name=LogoutResponse type=samlp:StatusResponseType/>
In a <LogoutResponse> the <Issuer> element is required and have to contain a unique
identifier of the responding entity. According to OASIS[11]: ”the <Format> attribute have
to be omitted or have a value of urn:oasis:names:tc:SAML:2.0:nameid-format:entity”.

3.3.4 Metadata

The metadata is used to define an endpoint: <md:SingleLogoutService> that describes the
supported bindings and location(s). The endpoint is used by the entity to send requests
and responses to.

3.4 SURFconext

SURFnet is a company that provides services to higher educations and research institutes.
For example SURFconext is a service provided by SURFnet.

SURFconext is an infrastructure for online collaboration. It gives the users access to
a range of services through their identity provided by an institute.[17]

SURFconext make uses of a hub and spoke model. 99% of the Service Providers by
SURFconext use SAML 2.0 for exchanging information and they currently2 provide the
platform for 173 Identity Providers and 800 Service Providers[4]. Table 1 gives an overview
of the usage and which products the Identity Providers use.

SURFconext is the hub between the Service Providers and the Identity Providers. They
represent themself as a Service Provider to the Identity Providers and as an Identity
Provider to the Service Providers. Figure 8 illustrates a schematic overview of SURFconext.
Graph 7 illustrates the logins per week over the last 5 years. As the graph shows, the
logins which SURFconext processes increases every year. ”This trend seems to continue”
[4] The expection is that more Service Providers will use OpenID Connect in the future[3].

231 January 2017

13

Figure 7: SURFconext - Login overview [22]

Figure 8 illustrates the hub and spoke model of SURFconext. On the left side the Identity
Providers are illustrated and on the right side the Service Providers are illustrated.

Figure 8: SURFconext - Schemetic overview [20]

14

Percentage Product

114 65.9% MS ADFS

32 18.5% SimpleSAMLphp

13 7.5% NetIQ/Novell AM

5 2.9% Oracle AM/OpenSSO

3 1.7% Shibboleth

2 1.2% OpenASelect

1 0.6% Onegini

1 0.6% Mujina

1 0.6% OpenConext

1 0.6% CAS

Table 1: SURFconext - Identity Providers product overview (13 January 2017) [4]

15

4 Methodology

We started this project with interviewing Service Providers, to determine the expectation
of the users, when they want to log out at the corresponding application.
Initially we intended to interview the end-users, however, due to time limitation it was
impossible to interview enough end-users to get a global overview. With those in mind we
chose to interview the Service Providers. The Service Providers represents in our research
the end-users.[4]

The contacted Service Providers are:

• Labservant - Providing a ”framework of laboratory safety as efficient as possible and
to contribute to a healthier workplace with less effort”. [6]

• Omnicard - Providing card solutions [13]

• SURFcumulus - Providing a ”hybrid infrastructure-as-a-service (IaaS) service from
SURFnet” [18]

• SURFdrive - Providing ”personal cloud storage service for the Dutch education and
research community” from SURFsara.[19]

• SURFspot - Providing a ICT webshop for students and staff from SURFmarket.[23]

The question to the Service Provider:

What do the users expect, when they press on the ”logout” button of the corresponding
application?

In parallel we started conducting a desk research. Based on the desk research and the
expectation of the users we have determined possible solutions. Every possible solution will
be provided with advantages and disadvantages. After validating the requirements with
the advantages and disadvantages of the possible solution, one solution will be worked out
further in technical detail. The most feasible solution will be experimented as described
in section 5.3.

The expectation of the users, possible solutions and results of the experiments are discussed
in section 5.

16

5 Results

5.1 User expectations

Based on the answers of the Service Providers:
All contacted Service Providers have the same view of what the users expect when they
want to log out. The expectation is that they only log out at the corresponding application.
All other application(s) in the session must stayed logged on. We have defined this as
Partial Logout.

One Service Provider (SURFspot)[23] has suggested an extra feature. This feature needs
to be a portal where users has the ability to control their authenticated session.

Another Service Provider (SURFcumulus)[18] suggested another extra feature. This feature
must have the possibility that an authorized user can force a user to log out. For instance,
in case of suspected behavior with the users session, or if a user was forgetting to log out
on a public computer. There are other cases where this feature has benefits. This feature
will due to time constraints not be researched in this project.

Example:
The figure 9 illustrates the expectation of the users. In this situation, the user has an
authenticated session to at least two different Service Providers and wants to log out at
the first Service Provider.

1. User initiates a log out request.

2. The Service Provider terminates the authenticated session and sends the logout
request to SURFconext.

3. SURFconext checks for authenticated sessions known by SURFconext.

4. SURFconext sends the logout request to the Identity Provider.

5. The Identity Provider checks the authenticated session known by the Identity Provider
and terminates the session.

6. The Identity Provider sends an acknowledgement to SURFconext.

7. SURFconext sends the acknowledgement to the Service Provider.

17

Figure 9: SURFconext - Log out expectation

5.2 Possible solutions

Based on the user’s expectations and the possibilities in the SAML 2.0 protocol we
conceived different possible solutions.

In a SAML federation there are at least three participants. The user agent, Service
Provider and the Identity Provider. In a hub and spoke model there is an extra participant.
The hub is a participant that acts as an Identity Provider to the Service Providers and
acts as a Service Provider to the Identity Provider.

The solution can be sought by the four SAML participants. There are possible solutions
for user agents by building a plugin that can handle the SAML logout request. The user
agents (mostly browsers) differs too much and building or maintaining a plugin for all
browser takes too much time. Therefore, we have decided to that seeking a solution by
the user agent is not practical.

The possible solutions that we devised in this research are:

1. Disabling Single Sign On.

2. Defining a new protocol.

3. Using the Single Logout Protocol.

4. ForceAuthn option in the authentication request.

18

5.2.1 Disabling Single Sign On

The first possible solution is to disable Single Sign On, but keep up the federation trust
between the Service Providers and the Identity Providers. This results in that users need to
re-authenticate themselves, because every session with an another Service Providers needs
to authenticate with the Identity Provider. To avoid that users needs to authenticate
themselves every time they access another application, users can make use a password
manager. Disabling Sign Sign On can be disabled by the Identity Providers itself, this is
not a global configuration in SURFconext where all Identity Providers needs to conform to.

Advise: We advise SURFconext from security perspective to inform the Identity Providers
about this possibility.

This possible solution has an effect; users have to authenticate themselves every time
they access a new application. To avoid this, users can use a password manager. Each
Identity Provider in principal can decide to disable Single Sign On.
Advantages:

• Users having awareness where they logged on.

• Users have one identity that they need to remember for accessing application.

• Partial Logout problem is solved.

• Possible to configure at the identity provider.

Disadvantages:

• The Single Sign On features are missing.

• Decreases users satisfaction or lowers the productivity.

• ”Many Identity Providers have indicated to SURFconext that they think the Single
Sign On feature is important to them.”[4]

• Doesn’t work for applications where Single Sign On is a vital necessity.

5.2.2 Defining a new protocol for Partial Logout

The second possible solution is to define a new protocol for Partial Logout. The new
protocol can be developed to facilitate what users expect, when they want to log out.
Defining a new protocol takes a long time to develop, test and implement and has
the limitation that not all Service Providers and Identity Providers can implement non
standard protocols. The new protocol can be developed outside or inside of SAML.

19

Advantages:

• Flexibility in a way how it should work.

Disadvantages:

• Design considerations.

• Implementation time.

• Implementation limits, not all Identity Providers and Service Providers can add new
protocols to the SAML standard.

5.2.3 Using the Single Logout protocol for Partial Logout

The third possible solution is to implement the Single Logout protocol as defined by
OASIS. The additional Reason attribute in the Logout Request, gives the opportunity
to use this attribute for Partial Logout. The Identity Provider can decide based on the
value in the Reason attribute, which action to take with the request. Based on the value
in the reason attribute, the Identity Provider (SURFconext) can decide, which action to
do with the request. There are two standard values defined in Single Logout protocol: [10]

urn:oasis:names:tc:SAML:2.0:logout:user user terminates session and initiates log out
urn:oasis:names:tc:SAML:2.0:logout:admin admin terminates session and initiates log out

The values of the reason attribute are only specified as an indicator.

We have defined that when a Service Provider provides the Reason attribute of the
LogoutRequest with the value ”urn:oasis:names:tc:SAML:2.0:logout:user” then the Identity
Provider (SURFconext) needs to process the LogoutRequest as a Partial Logout. The
Identity Provider(SURFconext needs to process all other values or non values in the
Reason attributed need as a standard Signle Logout. Figures 10 and 11 illustrates the
Logout process.

20

Figure 10: SURFconext - Logout process

21

Figure 11 illustrates a Partial Logout request:

Figure 11: SURFconext - Partial Logout

1. The user initiates a log out by the Service Provider.

2. The Service Provider sends a logout request to the SURFconext.

3. SURFconext checks the value of the Reason attribute.

4. If the Reason is ”urn:oasis:names:tc:SAML:2.0:logout:user”, SURFconext sends a
logout request to the Identity Provider of the user.

5. The Identity Provider determines the session at the Identity Provider and terminates
the session.

6. The Identity Provider sends a logout response to SURFconext.

7. SURFconext sends a logout response back to the Service Provider.

If the user is partially logged out and wants to access an application that needs to
authenticate against the Identity Provider, the user needs to authenticate again against
the Identity Provider.
To keep control which users having authenticated sessions, SURFconext needs to record
information about the sessionIDs and Service Providers. With this information, it is
possible to terminate authenticated sessions by the Identity Provider and Service Providers.
This gives the possibility to get a fully controlled federation.

22

Statuses
We have defined three possible statuses, where a session can state in. The statuses are
specified in table 2. A session always starts without a status. The session will get the
status Session trusted after the SURFconext receives a successful authentication response
from the Identity Provider.

Status Definition

Session trusted Session of the user is fully trusted

Session partial trusted Session is partially trusted

Session untrusted Session is not trusted

Table 2: SURFconext - Status definitions

Status Session partial trusted
When a user wants to log out at a single application, the user initiates a log out by the
Service Provider. The Service Provider sends a logout request to SURFconext with the
value ”urn:oasis:names:tc:SAML:2.0:logout:user” in the Reason attribute. SURFconext
sends a logout request to the Identity Provider. After SURFconext receives a successful
logout response from the Identity Provider, SURFconext deletes the row of the Service
Provider in the SESSION SESSIONS table and changes the status in the
SESSION STATUS table. SURFconext sends a logout response back to the Service
Provider, where the log out was initiated. All other applications which have a authenticated
session keep working.

Status Session untrusted
When a user wants to perform a Single logout, the user can go to ”profile.surfconext.nl”
and click on logout. The Service Provider ”profile.surfconext.nl” sends a logout request to
SURFconext. SURFconext sends a logout request to all participants (except profile.surfconext.nl)
including the Identity Provider, if the status is Session trusted. The participants send
a logout response back to the SURFconext. If all participants have responded with a
successful logout response, the responses will be deleted from the SESSION SESSIONS
table and the status will be changed in the SESSION STATUS to Session unstrusted.

Tables
To be able to store the data, SURFconext needs to create a database with two tables (see
Figure 12). Table SESSION STATUS stores the SESSIONID and status.
Table SESSION SESSIONS stores the SESSIONID, SERVICEPROVIDER,
SESSIONSTARTTIME and SESSIONENDTIME. The values can be deducted from
the authentication requests and responses.

• SESSIONID is the cookie-id of the session

• SERVICEPROVIDER is the value of element Issuer in the authentication request

• SESSIONSTARTTIME will be the value of the attribute AuthnInstant in the
AuthnStatement of the authentication response

23

• SESSIONENDTIME will be the value of the attribute SessionNotOnOrAfter in
the AutnStatement of the authentication response

After each successful authentication a new row will be added in the second table and the
status in the SESSIONID will updated based on the status of the user.

Figure 12: SURFconext - Database session tables

24

Figure 13 illustrates a visual overview of when a status changes.

Figure 13: SURFconext - Session Statuses

Advantages:

• Flexibility: SURFconext can define what to do with a logout request, based on
attributes in the logout request.

• Security: The Service Providers can trust SURFconext, because SURFconext is
handling logout request.

25

• Implementation by the Service Providers is simplified, because Single Logout is a
standard protocol in SAML 2.0.

Disadvantages:

• Service Providers need to be able to send logout requests with the Reason attribute.

• SURFconext needs to record data, the infrastructure of SURFconext needs to be
examined and possible be extended.

5.2.4 ForceAuthn option in the authentication request

The fourth possible solution is making use of the ForceAuthn attribute in the authentication
request. This attribute forces the users who wants to access an application to re-authenticate
again against the Identity Provider. If all Service Providers set this option, it is better
from security perspective to disable Single Sign On. The advantages and disadvantages
of the first possible solution are the same as for this solution.

Advantages:

• Flexibility by the Service Providers. Service Providers can decide if they want to set
this option in their authentication request.

• This option is a standard feature of the authentication request. The Identity Providers
support this by default, if they follow the standard.

• Users are forced to log in again. Users do not need to logout from the Identity
Provider, because the Service Providers are using this option and handle the logout.

Disadvantages:

• Security: If the Identity Provider accepts authentication requests that aren’t signed,
there is a possibility to send a SAML request on behalf of a Service Provider without
the ForceAuthn element in the request to access the application. SURFconext
currently does not require signed authentication requests. Therefore, we consider
the current implementation of ForceAuthn in SURFconext to be insecure. [4]

We advise SURFconext to instruct all Service Providers to sign their authentication
request.

26

5.3 Experiments & Results

SimpleSAMLphp is an application led by UNINETT, which deals with authentication.
Although the main focus of SimpleSAMLphp is providing support for SAML 2.0 as Service
Provider and/or Identity Service. SimpleSAMLphp also supports other identity protocols
and frameworks. SimpleSAMLphp is a model based application, which gives users the
ability to extend the application with own written modules.[16]

”UNINETT develops and operates the Norwegian national research and education network,
interconnecting about 200 Norwegian educational and research institutions and more than
300 000 users, as well as giving them access to international research networks. We are
a neutral party, and the business is run non-profit.” [24]

SURFconext uses the libraries of SimpleSAMLphp.

The experiments are divided in two parts (See Figure 14).

Figure 14: SURFconext - Experiment

The experiment environment of experiment 1 and 2 consists of three Service Providers
and one Identity Provider. All the Service Providers as the Identity Providers making
use of SimpleSAMLphp applications on a Ubuntu 16.04 installation. The user have in
experiment 1 and 2 an authenticated session against the Identity Provider and all three
Service Providers.

5.3.1 Experiment 1 Single Logout

Sending a Single Logout request to observe what the behavior is of the Service Providers
and the Identity Provider.

27

Results
The result of the experiment is that the authenticated session terminated by all the Service
Providers and Identity Provider. When the users wanted to access a new application
(Service Provider), the user needed to provide his credentials to the Identity Provider
before getting access to the application.

5.3.2 Experiment 2 Partial Logout

Sending a Partial Logout request as described in section 5.2.3 to observe what the behavior
is of the Service Providers and the Identity Provider.

Results
The result of performing a Partial Logout, as described in section 5.2.3 resulted in that
the user logged out only by the application (Service Provider) where the partially logout
was initiated and the Identity Provider. The sessions by the other applications (Service
Providers) remained authenticated. When the users wanted to access a new application
(Service Provider), the user needed to provide his credentials to the Identity Provider
before getting access to the application.

5.3.3 Experiments 3 between the Identity Provider and SURFconext

The third part consist of one Service Provider and three Identity Providers. The Service
Provider and one Identity Providers are SimpleSAMLphp applications on a Ubuntu 16.04
installation. One Identity Provider make use of ADFS version 2 installed on a Windows
2008 R2 installation. The last Identity Provider make use of ADFS version 3 installed on
a Windows 2012 R2 installation.

For this part we create three situations:

1. A user has an authenticated session to a SimpleSAMLphp Identity Provider and the
Service Provider.

2. A user has an authenticated session to an ADFS version 2 Identity Provider and the
Service Provider.

3. A user has an authenticated session to an ADFS version 3 Identity Provider and the
Service Provider.

In all three situations we will perform a Single Logout request to observe what the behavior
is of the Service Provider and the Identity Providers.

Results
All the experiments had the same results. The authenticated session of the user were
terminated by the Identity Providers and by the SURFconext emulator.

28

6 Conclusion

During this research project, we have researched the possibilities of federated log out. One
aim of this research was to define the user’s expectation of federated log out. The end
users define federated logout as Partial Logout. Partial logout is a concept whereby a
user terminates the authenticated session of the corresponding application and not every
authenticated sessions. The second aim to research possible solutions in an SAML 2.0 hub
and spoke model of SURFconext. Based on the desk research we have defined four possible
solutions; disabling Single Sign, defining new protocol for Partial Logout, using the Single
Logout protocal for Partial Logout and using the ForceAuthn option in the authentication
request. The most feasible solution for Partial Logout as what users expected is; to
implement the ”Single Logout protocol with the additional reason attribute” as described
in section 5.2.3. The last aim of this research is to prove that the most feasible solution
can work in a SAML 2.0 hub and spoke model. The experiments proved that the solution
works in a hub and spoke model. The solutions can be implemented in phases and can
work for all participants which implemented the Single Logout protocol. SURFconext
needs to record session information.

7 Discussion

During this research we faced that the reason attribute is not used in by default. MS ADFS
ignores the Consent, Destination, NotOnOrAfter and Reason attributes by default.[8] This
means that the solution can only work for Service Providers that are able to extend the
logout request with the reason attribute.
SURFconext needs to store session information. With the minimum information as
described in Section 5.2.3 it ’s not possible to trace a person. With the session information
it’s not possible to trace a person.
During the experiments, we used SimpleSAMLphp to build a proof of concept, because
we had to less experience in PHP, we split the environment into two parts.
If the user has an authenticated session and access an application that doesn’t have an log
in button, the user will automatically (mostly without knowing) be logged in. The user
can only logout by application that provide a logout button. We recommend the Service
Provider to provide their applications with log in and log out functionality. In addition
to turn off Single Sign On and use the reason attribute we have thought about using the
ForceAuthn attribute, but this element requires again for user credentials, but it does not
close the session and this is also undesirable.

29

8 Future Work

During our research we also thought about the additional features suggested by the Service
Providers SURFcumulus and SURFspot and the following things can be done in the future.

• There are two types of bindings and these bindings are the front-channel and the
back-channel. With the front-channel binding the users will be directed to another
website. With the back-channel the user remains on the website and the Service
Provider or Identity Provider will handle the request and response. Researching
which type of binding is preferred for Partial Logout that is initiated from another
Service Provider (for example a portal with the session overviews) in a hub and spoke
model.

• In situations where a user wants to perform a Single Logout and one Service Provider
did not respond. The authenticated session is terminated by the Identity Provider.
The other Service Provider did not receive a logout request and their sessions are
still authenticated. To increase the confidentiality in an federation, a research can
be done to which opportunities there are for Service Providers to check if the token
is still valid with the Identity Provider.

• Investigate what possibilities the new OpenID Connect protocol, which SURFconext
starts to support in 2017, provides for implementing log out.

30

9 Acknowledgment

We want to express our gratitude to our supervisors Thijs Kinkhorst and Joost van Dijk.
We also want to thank the Service Providers we interviewed for their time and Dick Visser
(GÉANT) for sharing his knowledge about SimpleSAMLphp.

31

References

[1] Sneha Thakkar Dwiti Pandya, Khushboo Ram Narayan. An overview of various
authentication methods and protocols. http://www.ijcaonline.org/research/

volume131/number9/pandya-2015-ijca-907389.pdf, 2015.

[2] Carol Geyer. History of saml. http://saml.xml.org/history, 2007.

[3] Nicole Harris. Refeds survey. https://refeds.org/a/1561, 2016.

[4] Thijs Kinkhorst and Joost van Dijk. As told to us by the surfconext team. 2017.

[5] Sherif Koussa. Federated identities: Openid vs saml vs oauth. https:

//softwaresecured.com/federated-identities-openid-vs-saml-vs-oauth/,
2013.

[6] labservant. The lab servant. http://www.labservant.nl, 2017.

[7] Paul Madson. Liberty alliance project white paper: Liberty id-wsf people service
- federated social identity. http://www.projectliberty.org/liberty/content/

download/387/2720/file/Liberty_Federated_Social_Identity.pdf, 2005.

[8] Microsoft. Single sign-out saml protocol. https://

docs.microsoft.com/en-us/azure/active-directory/develop/

active-directory-single-sign-out-protocol-reference, 2017.

[9] OASIS. Assertions and protocols for the oasis security assertion markup language
(saml) v2.0. http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.

0-os.pdf, 2005.

[10] OASIS. Saml v2.0 assertions and protocols. https://docs.oasis-open.org/

security/saml/v2.0/saml-core-2.0-os.pdf, 2005.

[11] OASIS. Saml v2.0 profiles. https://docs.oasis-open.org/security/saml/v2.0/
saml-profiles-2.0-os.pdf, 2005.

[12] OASIS. Saml v2.0 technical overview. https://docs.oasis-open.org/security/

saml/Post2.0/sstc-saml-tech-overview-2.0.html, 2008.

[13] Omnicard. Over omnicard. http://www.omnicard.nl/over-omnicard/, 2017.

[14] Joonas Ruuskanen Sanna Suoranta, Asko Tontti and Tuomas Aura. Logout
in single sign-on systems. https://pdfs.semanticscholar.org/e4b0/

20decd4e522f1390a89b73f6449f6766e0b1.pdf, 2015.

[15] Shibboleth. Sloissues. https://wiki.shibboleth.net/confluence/display/

CONCEPT/SLOIssues, 2015.

[16] SimpleSAMLphp. Simplesamlphp. https://www.simplesamlphp.org, 2016.

32

http://www.ijcaonline.org/research/volume131/number9/pandya-2015-ijca-907389.pdf
http://www.ijcaonline.org/research/volume131/number9/pandya-2015-ijca-907389.pdf
http://saml.xml.org/history
https://refeds.org/a/1561
https://softwaresecured.com/federated-identities-openid-vs-saml-vs-oauth/
https://softwaresecured.com/federated-identities-openid-vs-saml-vs-oauth/
http://www.labservant.nl
http://www.projectliberty.org/liberty/content/download/387/2720/file/Liberty_Federated_Social_Identity.pdf
http://www.projectliberty.org/liberty/content/download/387/2720/file/Liberty_Federated_Social_Identity.pdf
https://docs.microsoft.com/en-us/azure/active-directory/develop/active-directory-single-sign-out-protocol-reference
https://docs.microsoft.com/en-us/azure/active-directory/develop/active-directory-single-sign-out-protocol-reference
https://docs.microsoft.com/en-us/azure/active-directory/develop/active-directory-single-sign-out-protocol-reference
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
https://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
https://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
https://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf
https://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf
https://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html
https://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html
http://www.omnicard.nl/over-omnicard/
https://pdfs.semanticscholar.org/e4b0/20decd4e522f1390a89b73f6449f6766e0b1.pdf
https://pdfs.semanticscholar.org/e4b0/20decd4e522f1390a89b73f6449f6766e0b1.pdf
https://wiki.shibboleth.net/confluence/display/CONCEPT/SLOIssues
https://wiki.shibboleth.net/confluence/display/CONCEPT/SLOIssues
https://www.simplesamlphp.org

[17] SURFconext. Over surfconext. https://www.surf.nl/en/

services-and-products/surfconext/index.html, 2017.

[18] SURFcumulus. Over surfcumulus. https://www.surf.nl/en/

services-and-products/surfcumulus/index.html, 2017.

[19] SURFdrive. Over surfdrive. https://www.surf.nl/en/services-and-products/

surfdrive/surfdrive.html, 2017.

[20] SURFnet. Documentation of service providers. https://wiki.surfnet.nl/

display/surfconextdev/Documentation+for+Service+Providers, 2017.

[21] SURFnet. Faq service provider. https://wiki.surfnet.nl/display/

surfconextdev/FAQ+SP#FAQSP-DoesSURFconext.supportSingleLogout?, 2017.

[22] SURFnet. statistic overview. https://stats.surfconext.nl/, 2017.

[23] SURFspot. Over surfspot. https://www.surf.nl/en/services-and-products/

surfspot/index.html, 2017.

[24] Uninett. Uninett. https://www.uninett.no, 2016.

33

https://www.surf.nl/en/services-and-products/surfconext/index.html
https://www.surf.nl/en/services-and-products/surfconext/index.html
https://www.surf.nl/en/services-and-products/surfcumulus/index.html
https://www.surf.nl/en/services-and-products/surfcumulus/index.html
https://www.surf.nl/en/services-and-products/surfdrive/surfdrive.html
https://www.surf.nl/en/services-and-products/surfdrive/surfdrive.html
https://wiki.surfnet.nl/display/surfconextdev/Documentation+for+Service+Providers
https://wiki.surfnet.nl/display/surfconextdev/Documentation+for+Service+Providers
https://wiki.surfnet.nl/display/surfconextdev/FAQ+SP#FAQSP-DoesSURFconext.supportSingleLogout?
https://wiki.surfnet.nl/display/surfconextdev/FAQ+SP#FAQSP-DoesSURFconext.supportSingleLogout?
https://stats.surfconext.nl/
https://www.surf.nl/en/services-and-products/surfspot/index.html
https://www.surf.nl/en/services-and-products/surfspot/index.html
https://www.uninett.no

	Introduction
	Research Questions
	Scope

	Related Work
	Desk Research
	SAML 2.0
	SAML 2.0 introduction
	SAML 2.0 concept architecture
	Statements

	Single Sign On
	The definition of Single Sign On
	Authentication Request Protocol

	Single Logout
	Single Logout definition
	Logout Request element
	Logout Response element
	Metadata

	SURFconext

	Methodology
	Results
	User expectations
	Possible solutions
	Disabling Single Sign On
	Defining a new protocol for Partial Logout
	Using the Single Logout protocol for Partial Logout
	ForceAuthn option in the authentication request

	Experiments & Results
	Experiment 1 Single Logout
	Experiment 2 Partial Logout
	Experiments 3 between the Identity Provider and SURFconext

	Conclusion
	Discussion
	Future Work
	Acknowledgment

