
System and Network Engineering • January 2017

Automatic comparison of photo
response non uniformity (PRNU) on

Youtube
Marcel Brouwers & Rahaf Mousa

∗

UNIVERSITY OF AMSTERDAM
MASTER OF SYSTEM AND NETWORK ENGINEERING

February 12, 2017

Abstract

It is possible to extract PRNU patterns from a set of videos and find a correlation to their matching source
camera. Past researches have shown that this was also possible for videos uploaded to YouTube. In this
research we tested if the correlation process based on the PRNU pattern still works with YouTube videos.
Furthermore, we have tested which video resolutions and methods of PRNU pattern extraction are suitable
for mobile phone cameras with YouTube videos. Using a test with different mobile prone cameras it is
shown that this correlation is possible but depends on the type of camera. Additionally the distribution of
the process of PRNU pattern extraction was tested and a method was found to limit the data transfer from
YouTube.

I. Introduction

Cameras have become a part of our daily
life, as almost every person nowadays car-
ries at least one camera in the pocket in

the form of a mobile phone. This spread of cam-
eras and their constant usage is associated with
the rapid growth of video streaming websites,
such as YouTube. As each minute passes, 300
hours of videos are uploaded to YouTube, as
published by Statistic Brain Research Institute in
September 2016.[1] This huge amount of video
uploads, in addition to the variety of content
YouTube has, turned camera identification into
a research target. It became especially important
from the forensics point of view. Assuming there
is a suspect who has taken videos or images of
an unlawful act, camera identification helps in
considering them as evidence even if the videos
or images are deleted from the camera. Photo
response non uniformity (PRNU) pattern extrac-
tion and comparison can be used to compare

images and videos in order to conclude if they
were possibly taken with a specific camera.

Since some of the videos might end up on
video sharing websites like YouTube, it might
be desirable to extract the PRNU pattern from
videos on YouTube. Videos from YouTube can
be downloaded and fed into software that ex-
tracts the PRNU and compares the suspected
videos with a reference video made with the
suspect camera. Nevertheless, when intending
to process a big number of videos, the process
becomes more complicated. For this reason we
worked in this project on automating the pro-
cess of downloading the videos in an efficient
way, and feeding the downloaded material to the
PRNU pattern extraction software. Afterwards
the patterns from the suspected videos can be
compared with the patterns extracted from the
reference video.

The most important issue faced when dealing
with videos downloaded from YouTube is the
compression YouTube applies on videos. This

∗Special thanks to the project supervisor dr.Zeno Geradts

1



System and Network Engineering • January 2017

compression is suspected to be affecting the
PRNU making it harder to extract a good PRNU
pattern.

In this project we have researched if the dif-
ferent video formats available on YouTube are
suitable for PRNU pattern extraction. Further-
more, we have tested the PRNU extraction meth-
ods currently available in the PRNU Compare
software 1 with a set of YouTube videos from
mobile phone cameras. Additionally we have
performed a test in which the pattern extraction
is distributed over 2 machines.

This report contains six sections that con-
secutively discuss the theoretical background
that the research is based on, the former related
work, the methodology followed through out the
project, the results, in addition to the conclusion
and possible future work.

II. Related Work

Using photo response non uniformity (PRNU)
to identify videos from YouTube was researched
by Van Houten, Wiger and Geradts [2]. In their
paper, which was published in 2009, they also
used the PRNU Compare software from NFI and
were able to confirm that it is possible to identify
the correct cameras based on videos originating
from webcameras after they have been uploaded
to YouTube.2 The webcamera that was used had
a native resolution of 640x480, while at the time
the experiments were conducted, the highest res-
olution to view or download on YouTube was
480x360. That caused resizing of the uploaded
videos. In addition, the videos were initially
compressed by XViD or WMV before they were
uploaded to YouTube.
The latest research that was conducted on cam-
era identification on YouTube was in 2012 by
Scheelen and Van der Lelie [4]. In their research,
they investigated if the PRNU can be used to
identify the original camera after the video has
been re-encoded using the Advanced Video

Codec (H.264/MPEG-4). The video resolutions
they researched were 640x480 and 1280x720. The
conclusion of their research was that even after
a video is re-encoded, it is still possible to link
some videos to their original camera.[4]

III. Theory

In this section the most important concepts re-
lated the research are explained.

I. Photo Response None-Uniformity
(PRNU)

PRNU is a type of sensor pattern noise that is
caused primarily by pixel non-uniformity (PNU).
PNU is defined as different sensitivity of pixels
to light caused by the inhomogenity of silicon
wafers and imperfections during the sensor man-
ufacturing process[3]. The character and origin
of the PNU noise make it unlikely that even sen-
sors coming from the same wafer would exhibit
correlated PNU patterns [3], which provides a
unique sensor fingerprint[5]. This fingerprint
can be used in proving that a number of videos
or images were taken with a specific camera, or
to link images and videos taken with the same
camera without having the camera in possession.
This method of camera identification was pro-
posed by Lukáš, Fridrich and Goljan in 2005.[3]

To assert a match between PRNU patterns,
three steps have to be taken. The first step is
the PRNU noise extraction from an image or a
video’s frame under investigation:

W = I − F(I) (1)

where I is the original image, F the denoising
operator and F(I) the denoised image.[6] The
most well known denoising algorithms are the
Wavelet filter [3], Anisotropic Diffusion (AD)
filtering[7], Adaptive Spatial (AS) filtering [8]
and FSTV algorithm [6].

1Provided to us by the Netherlands Forensic Institute
2In their experiments they used a wavelet filter from Lukáš et al. [3]

2



System and Network Engineering • January 2017

The second step is to obtain the Sensor Pat-
tern Noise (SPN), which is the estimation of the
PRNU pattern. That can be done by averaging
flat-field3 images or video’s frames. There are
several ways to do this, such as Basic SPN, MLE
SPN and Phase SPN.[6]

The third step is to detect whether a suspect
image correlates to a reference SPN. For this
either the Normalized Correlation or the Peak-
to-Correlation Energy (PCE) ratio can be used.
Peak-to-Correlation Energy ratio was introduced
by Goljan [9] as a replacement for the normal-
ized correlation detector. According to Goljan:
“Properties of PCE are especially useful when
a periodic signal common to images from var-
ious cameras (like the linear pattern) enter the
image noise residuals.”[9] Which means that it
prevents false positives when images from dif-
ferent cameras have a common periodic signal
because they will have a lower PCE. It also low-
ers the PCE of true positives, but the PCE of true
positives is usually so high that this difference is
not significant to the end result. It should also
be possible to define a universal threshold with
PCE, while for normal correlation this thresh-
old differs per camera.[10] For these reasons we
have used PCE in our experiment instead of the
normalized correlation.

II. YouTube

Videos uploaded to Youtube get re-encoded in
a variety of different formats. These formats
are combinations of different resolutions, codecs
and containers. The list of formats for a spe-
cific video can be obtained by downloading
the get_video_info file for the video, which is
a file in an XML based format listing video
formats available for the video. Currently the
get_video_info file can be obtained using the fol-
lowing URL4: https://www.youtube.com/get_
video_info?&video_id=. The video id of the
video is to be filled in after video_id=. The

get_video_info file often contains a reference
to the MPD DASH manifest file for streaming
purposes. The MPD DASH manifest contains
references to segments of the video in differ-
ent resolutions. Each segment contains a short
amount of playback time for the video, and
the player on the client device plays the seg-
ments consecutively. This way the client side
player can switch between resolutions depend-
ing on the bandwidth available and the resolu-
tion selected by the user. For the experiments
described in this report, only the video formats
in the get_video_info file are used since the
DASH video parts would not get accepted by
the PRNU Compare software. In table 1 the for-
mats used in our experiments are listed. We
chose these formats because they are available
for most YouTube videos and are accepted by
the PRNU Compare software.

Itag Resolution Codec Container
17 176 x 144 mp4v 3gp
18 640 x 360 H.264 mp4
22 1280 x 720 H.264 mp4
36 320 x 180 mp4v 3gp

Table 1: Itag formats used in our experiments

IV. Methodology

In this chapter we are going to describe the soft-
ware and hardware environment used in the ex-
periment. Furthermore, we are going to describe
the approach we followed while conducting the
experiments.

I. Experimental Environment

I.1 PRNU Compare software

The PRNU Compare software from NFI is the es-
sential element in the experiments we conducted.
The software is used to extract the PRNU pat-

3Images or videos which are homogeneously coloured and evenly lit, such as a white paper or a blue sky
4We found the URL to download these files in the source code of the youtube-dl program. It was not found in the

documentation for the YouTube API so this method might not work in the future

3

https://www.youtube.com/get_video_info?&video_id=
https://www.youtube.com/get_video_info?&video_id=


System and Network Engineering • January 2017

terns from images and videos, in addition to
comparing the patterns. The software consists
of a Java jar file which can be used to extract
the PRNU pattern from the video. The PRNU
Compare software averages the PRNU extracted
from a configurable number of frames and saves
the extracted PRNU patterns in a pattern file.
Furthermore, it keeps a list of extracted patterns
in a an XML file. A special version of the PRNU
Compare software that accepts CLI parameters
was made available to us for the experiment in
order to automate the process of PRNU extrac-
tion. The software supports 4 different filters
for PRNU extraction: 2nd order (FSTV) extrac-
tion filter, 4th order extraction filter [11], wavelet
Daubechies filter [3] and a wavelet Coiflet filter
[3]. The required filter can be set when perform-
ing the extraction. The number of frames from
the video to be taken to average the PRNU pat-
tern can also be set using the commandline. The
comparison of the PRNU patterns can currently
only be done using the graphical interface of the
software.

I.2 Downloading the videos

The different video formats available for down-
loading of a video on YouTube are listed in the
get_video_info file as explained in section II. To
save developing time, the software youtube-dl
is used to extract the different video formats
available from the get_video_info and manifest
files generated by YouTube. The different for-
mats are indicated by Youtube using different
"Itags". The output of Youtube-dl is parsed using
a PHP script which selects a preferred (Itag) for-
mat. Then Youtube-dl is used again to obtain the
URL of the file for the specific format. Youtube-
dl can be used to download whole video files
from Youtube. However, downloading the whole
videos from Youtube would be a waste of band-
width if only 200 frames of the video are needed.
For this, a feature of FFmpeg comes in handy.
FFmpeg can be set to download only part of the
file. FFmpeg will send a TCP reset packet to the
server when a big enough part of the video is

received, signaling the file transfer to stop. This
saves bandwidth and speeds up the processing
of a batch of videos. FFmpeg can also be used to
skip the first several seconds of a video in case
there is a title or leader at the beginning of the
video. However, the first seconds of the video
that are skipped will still be downloaded.

I.3 Search and queue management

In order to make the process of selecting the
videos for PRNU extraction simple, we created
a web interface to search the videos using the
Youtube API. The videos can be selected and
are then added to the queue (a table within a
MySQL database) for processing. To start the
processing of the queue, a script is set up to
run using crontab. The script checks if there
is anything in the queue to process. We ran a
maximum of 3 instances of the PRNU Compare
software at once per machine in order to effi-
ciently use the CPU. Once added to the queue,
jobs can also be removed from the queue using
the web interface.

I.4 Hardware

The cameras used to conduct the experiment
were solely mobile phone cameras. In total 12
different mobile phone cameras are used in the
experiment. The set consists of 5 Apple Iphone
devices, a Windows Phone device and 6 Android
devices of which two Huawei and 4 Samsung de-
vices. An overview of the mobile phone cameras
used in the experiments can be found in table 2.

Camera Model Recorded
resolution

Frame
rate ≈

1 Apple
Iphone 5

1920 x 1080 30

2 Microsoft
Lumia 950

1920 x 1080 25

3 Apple
Iphone 5

1920 x 1080 30

4



System and Network Engineering • January 2017

Camera Model Recorded
resolution

Frame
rate ≈

4 Huawei
Y530

1280 x 720 30

5 Samsung S5 1920 x 1080 30
6 Apple

Iphone 6
1920 x 1080 30

7 Apple
Iphone 6s

1920 x 1080 30

8 Apple
Iphone 5s

1920 x 1080 30

9 Samsung
GTI9301I

1920 x 1080 30

10 Samsung
SM-G531F

1920 x 1080 30

11 Samsung
Galaxy
Note 2

1920 x 1080 30

12 Huawei P8
Lite

1920 x 1080 30

Table 2: Cameras

For extracting the PRNU patterns from the
YouTube videos, we used a server with an Intel
Xeon E3-1240L v5 CPU clocked at 2.10GHz and
equipped with a Crucial BX200 SSD. For the dis-
tribution experiment where we let two servers
work in parallel, we used an additional server
equipped with the same hardware. The two
servers have a 1000 Mbit link between them and
a connection to the internet of adequate speed.

I.5 Putting it all together

For letting everything work together a number
of PHP scripts is made and a MySQL database
is created. The MySQL database is used to keep
track of what is in the queue for processing and
the status of the processing. The PHP scripts are
used to invoke the youtube-dl software, down-
load the videos using FFmpeg, and extracting
the PRNU patterns using the PRNU Compare
software. As an extra, the PHP scripts are writ-
ten such that the workload can be distributed

over multiple servers to speed up the processing
of the videos. The PHP scripts, set as cronjobs
on the "slave server", periodically contact the
master server to check if there are any videos in
the queue that can be processed. This is done
with an HTTP request and a video id is received
back as a response if a video is in the queue for
processing. The slave server will then receive a
video id of a video to be processed if items are in
the queue. If the slave server has successfully ex-
tracted the PRNU pattern the pattern file is sent
to the master server using the HTTP POST re-
quest method, after which the extracted pattern
is stored on the master server.

V. Conducted Experiments

In our research, we have conducted three exper-
iments which are related to each other in their
results but not necessarily in their set up. In
this section we will explain the approach we
followed in the three experiments separately.

I. Experiment 1: Testing video formats
and extraction methods

Before starting the automation process of PRNU
extraction of videos from YouTube, we were
faced with a substantial question:

To which extent is it still possible to match
PRNU patterns of videos on YouTube with the
originating cameras?

The purpose of this first experiment is an-
swering this question and find the optimal set-
tings that can be used in the later experiments.

In order to collect the necessary data for our
research we recorded videos with the mobile
devices mentioned in Table 2. With each mobile
phone camera we recorded three videos with
a length of 40 seconds. The first video is the
flat-field video of a white surface (a wall or
a white paper) with a slight movement. The
other two videos (which we call Natural videos)
were taken in a room or outside of the build-

5We have done that in order to make our experiment more realistic

5



System and Network Engineering • January 2017

ing, disregarding the lighting or the repeat of
scenes between the two videos.5 In the research
conducted by van Houten et al [2], they have
proven that a reliable estimate is found by av-
eraging the patterns from approximately 200
images. Depending on this conclusion, we have
recorded videos of 40+ seconds that at least con-
tain between 1000 and 1200 frames each, thus
containing enough frames to average the PRNU
from at least 200 frames. We have chosen this
video length in order to spread the frames taken
to extract the PRNU pattern.
After collecting the videos, we first uploaded
all the videos, including the flat-field videos,
to YouTube. When downloading the flat-field
videos from YouTube and use the PRNU pat-
terns extracted from these flat-field videos to
identify the other videos, no videos could be
correctly matched to their PRNU pattern ex-
tracted from the flat-field video downloaded
from YouTube. We suspected that because the
flat-field videos are homogeneously coloured,
they are losing a lot of data in the compression
YouTube applies on the uploaded videos. For
this reason, we started uploading only the two
natural videos to YouTube without specifying
any special settings. Then we used the script we
wrote to download those videos and feed them
to the PRNU Compare software with the needed
configurations specified in the configuration file.
In the general case the configurations specified
four video formats with the itags 17,18,22 and
34. 1 on page 3 We have chosen these formats
because they cover low and high resolutions, in
addition to the fact that those are the formats
accepted by the PRNU Compare software. We
also extracted the PRNU patterns using the four
available methods in the PRNU Compare soft-
ware.

In parallel to the aforementioned process, we
have re-encoded the original flat-field videos to
H.264 encoded files with resolutions correspond-
ing to the formats from YouTube. We made sure
the least possible compression was used (CRF
value of 0) in order to minimize the loss in PRNU

data. We did not truncate the flat-field videos
but kept them at their original length of between
40 and 50 seconds. After that we fed the result-
ing videos to the PRNU Compare software with
the four available methods of PRNU extraction.
The last step was comparing the flat-field video
with the whole set of natural videos that have the
matching format and PRNU extraction method.

II. Experiment 2: Identifying the cor-
rect camera from a larger set of videos

In this experiment we have tested PRNU extrac-
tion with a larger set of videos. In order to
conduct this experiment, we have added 1000
videos to the queue for processing, including the
Natural videos for the different mobile phone
cameras we have uploaded to YouTube. The
videos, other than the Natural videos from our
earlier test, are videos that we selected from
YouTube using the search interface that we cre-
ated. The Itag formats that we processed were
in the preference order: 22, 18, 36 and 17. We
downloaded 30 seconds of the video and fed it
to the PRNU Compare software for extracting
the PRNU. For that, we have chosen the 2nd
order extraction filter as it gave the most correct
results in the first experiment. In addition to
testing this with 30 second fragments we have
repeated this experiment with 10 second frag-
ments of the videos.
We have done this experiment in order to test if
the videos can be matched to their correct cam-
eras when part of a larger set of videos.
Secondly, we wanted to find out if we succeeded
with limiting the data transferred for a large
number of videos.

III. Experiment 3: Distributing the
PRNU pattern extraction over multiple
machines

For this experiment we adapted the experimental
environment in order to make the downloading
and the pattern extraction of the videos dis-
tributed. We designated one of the servers as

6



System and Network Engineering • January 2017

the master server and adapted the worker script
such that it would request a video id to process
from the master server via an HTTP request and
then start working on the specific video. When
the pattern extraction of the video is done the
script will send the pattern file using an HTTP
POST request method to the master server where
the pattern file is then stored. Along with the
pattern file, information about the pattern is
sent to the master server such as the resolution
and the extraction method. This information
is required for building the XML file which is
required by the PRNU Compare software to do
the comparison of the patterns. Additionally,
the error handling of the script was edited such
that possible errors that occurred are also sent to
the master server and show up in our interface.

After performing small tests to see if the dis-
tributed processing of the videos worked, we
added the set of 1000 videos to the queue in
order to be able to benchmark the distributed
processing. The Itag formats that are processed
are in their preferred order: 22, 18, 36 and 17.
The goal of the experiment is to be able to show
that it is possible to improve the speed of down-
loading and extracting the PRNU pattern from
the YouTube videos by distributing the process-
ing over multiple machines. We kept track of
the time and the number of successfully pro-
cessed videos. Additionally, we kept track of the
amount of data traffic on each server. For this
experiment we used two servers both equipped

with an Intel Xeon E3-1240L v5 CPU clocked at
2.10GHz. We processed the set of 1000 videos
3 times with a single server and 3 times with
both servers in parallel and averaged the results
to be able to do a comparison. The same set of
1000 videos was used each time. For this exper-
iment 15 seconds of the video are downloaded
of which the last 10 seconds are used for the
pattern extraction using 200 frames.

VI. Results

In this section we will present the results of the
three conducted experiments.

I. Results of experiment 1: Testing
video formats and extraction methods

At the end of this experiment, we had a set of
results that consists of 16 comparisons for each
camera.6 In order to be able to assert that the
camera is identified, both natural videos taken
with a specific camera should give a PCE value
that is higher than the first mismatch when com-
pared with the matching flat-field PRNU pat-
tern. We expect the PRNU match results to give
a high difference in PCE values between the sec-
ond match and the first mismatch. Analyses of
the results is separated into two steps; the first
step was finding the format that yields the most
correct results. While the second step was find-
ing the PRNU extraction method that yields the
most correct results.

6For each camera we had 3 videos in four formats and for each format the PRNU was extracted using 4 different
methods.

7



System and Network Engineering • January 2017

Figure 1: PCE values for the 12 cameras’ videos in format 17 with 2nd Order PRNU extraction method

A sample of the format test results 7 of this
experiment is presented in Figure 1. In this plot,
the red X’s represent the first mismatch and the
other two dots represent the matches with the
two natural videos. This is the plot for the test
with Itag format 17 with a resolution of 176 x 144.
The results presented in this plot show that that
9 of the tested cameras gave low PCE values for
the matches and higher PCE values for the first
mismatching pattern. Furthermore, the remain-
ing 3 cameras gave a high PCE value for one of
the matching patterns, yet the second match got
a lower PCE value than the first mismatch. We
also tested the matching with the Itag formats
18, 36 and 22.

A sample of the results with the Itag 22 for-
mat (1280 x 720) is presented in Figure 2 on the

next page. In this plot we can see that 6 of the
12 cameras gave high PCE values for the two
matching patterns which are higher than the
PCE value of the first mismatching pattern. Fur-
thermore, the remaining 6 cameras gave a PCE
value for the first mismatching pattern that is
either higher than one or both of the matching
patterns. We have drawn this plot in the logarith-
mic scale because the range of the PCE values is
big.8

Another sample of the results is presented in
Figure 3 on the following page, which is a plot
of the results from the Itag 22 format with the
wavelet Daubechies filter. In this plot we can see
that all the cameras gave a PCE value for the
first mismatching pattern that is higher than one
or both of the matching patterns.

7Based on the final results of this experiment, we have chosen to present the results of 2nd order method combined with
the lowest resolution we worked with.

8The results contained negative values, for that reason we added the constant number 2 to the plot of the whole set in
order to plot the data in the logarithmic scale.

8



System and Network Engineering • January 2017

Figure 2: PCE values for the 12 cameras’ videos in format 22 with 2nd Order PRNU extraction method

Figure 3: PCE values for the 12 cameras’ videos in format 22 with Wavelet Daubechies PRNU extraction method

9



System and Network Engineering • January 2017

Figure 4: PCE values for comparing the 962 videos with the flat-field videos

II. Results of experiment 2: Identifying
the correct camera from a larger set of
videos

The results of this experiment, in which we scale
the total set of videos up to 1000 videos 9 from
which we try to identify the videos from the dif-
ferent cameras. Out of the list of 1000 videos
962 PRNU patterns were successfully extracted
10. The results of this experiment are presented
in Figure 4. In this plot we can see that for 6
out of the 12 cameras, at least one of the two
videos resulted in a PCE value higher than their
mismatch, thus correctly identifying the mobile
phone camera. Furthermore, for the remaining 6
cameras the PCE value for the first mismatching
pattern was higher than the PCE value of the
correct videos.

III. Results of experiment 3: Distribut-
ing the PRNU pattern extraction over
multiple machines

When running the experiment with the one
server setup, the patterns of on average 974
videos got extracted successfully, as presented in
Table 3 on the following page. For the one server
setup the videos got processed in an average
time of 203.2 minutes (average out of 3 tests),
resulting in a rate of 288 patterns extracted per
hour. In the one server setup, we can see we
received about 4.16 GB (average out of 3 tests)
of data from YouTube servers for the 974 videos.
The two servers setup showed, as presented in
Table 3 on the next page, that an average of 971
videos were downloaded and processed success-
fully in an average time of 97 minutes (average
out of 3 tests). The rate of pattern extracting for
the videos ended up around 601 videos an hour.

9We have collected these videos from YouTube by searching for different subjects, we have also included the video id’s
of the natural videos taken in the first experiment.

10Not all videos were always successfully processed. Videos can turn out to be live streams, deleted in the meanwhile or
the formats we use for extracting are not available at the time of requesting in the get_video_info file.

10



System and Network Engineering • January 2017

Measure (Avg. of 3) 1 server 2 servers
Successfully processed
videos 974.3 971
Time (minutes) 203.2 97
Videos/hour 288 601

Table 3: 1 server setup compared with the 2 server setup.
Average out of 3 tests for each setup.

VII. Discussion

In this section we are going to discuss the results
from the three experiments.

I. Discussion of experiment 1: Testing
video formats and extraction methods

The results of the first part of this experiment
showed that the lower the resolution of the com-
pared videos is, the less it is possible to correctly
identify the matching camera. In the case of low
resolution videos 11, presented in Figure 1 on
page 8 the first mismatching pattern is giving
higher PCE values than the two matching pat-
terns in most cases.
For this reason we have excluded the low resolu-
tion video formats (Itag 36, 18 and 17) from the
experiment at that point and moved on to testing
the PRNU extraction methods implemented in
PRNU Compare software.

In the plot shown in Figure 2 on page 9 we
see that most of the cameras gave high PCE
values for the matching patterns, yet low PCE
values for the first mismatching pattern. That
indicates that for some cameras we can correctly
link videos to the originating camera. Never-
theless, the results for a number of the cameras
showed that linking videos to their originating
cameras is not possible (i.e. with the iPhone mo-
biles’ cameras). We have noticed in the results
that the 4th order method gave matches that are
close to those given by the 2nd order method, yet

the 2nd order method gave higher matches. The
results of comparing PRNU patterns extracted
with other methods than the 2nd order method
can be found in the appendix.

While the 2nd order method, yielded high
matches for a number of cameras, the two
Wavelet methods 12 yielded less correct matches.
That can be seen clearly in Figure 3 on page 9
where we show a plot of the Duabechies method.

II. Discussion of experiment 2: Identi-
fying the correct camera from a larger
set of videos

Results from this experiment show that it is still
possible to match the videos with their originat-
ing cameras. In the results of the first experi-
ment, we saw that the PCE values of mismatch-
ing patterns were not much higher than 10. In
this experiment, we see that if the total set of
videos is bigger the chances of higher mismatch
values increase. Mismatch values in this experi-
ment could go up to values above 40.

III. Discussion of experiment 3: Dis-
tributing the PRNU pattern extraction
over multiple machines

A point of notice in the third experiment is that
the average number of videos processed per
hour with the two server setup is more than dou-
ble the rate at which the videos get processed
with the one server setup. The expectation for
this experiment, was to have a rate at which the
videos get processed faster than the one server
setup but less than double. However, one of
the servers runs the database and has to store
the pattern files. In the two server setup, one of
the machines uses the database from the master
server to request video ids for processing and
storing additional information like the resolution
and extraction method. Additionally all the pat-
tern files get sent to the master server. Thus the

11The itag 17 represents the resolution 176 x 144
12Wavelet Coiflet and Wavelet Daubechies in the way the are implemented in PRNU Compare software.

11



System and Network Engineering • January 2017

master server might have less resources available
for extracting the PRNU patterns, which might
explain the rate of videos processed an hour is
more than doubled in the two server setup.

From certain videos the PRNU pattern could
not be extracted due to various reasons; such
as the video being removed from YouTube in
the meanwhile, the video id belonging to a
livestream or that non of the itag formats we
used in the experiment are available for the spe-
cific videos. Using the two server setup, it was
possible to speed up the process of download-
ing and extracting the PRNU patterns from the
videos in our test set. For the two server test,
the same set of videos used to test the 1 server
configuration. Just like the 1 server setup, we
ran the test of the two server setup three times
and averaged the results. This is a rate which is
more than twice as fast as we measured for the
one server setup.

VIII. Conclusions

Results from the experiments show that it is
possible, for videos made with certain types of
mobile phone cameras, to extract PRNU patterns
from YouTube videos and find a correlation with
their matching camera. However the success of
this is dependent on the type of mobile phone
camera. The Itag 22 format (1280 x 720), the
highest resolution we tested, combined with the
2nd order (FSTV) filter as currently implemented
in the PRNU Compare software, gives the most
correct correlations at this moment in time. It
can also be concluded that the process of down-
loading videos from YouTube and extracting the
PRNU pattern can be automated. In the process,
it has proven possible to limit the amount of
data transferred by downloading a segment of
the video. Additionally it is demonstrated that
it is possible to distribute the process of PRNU
pattern extraction in order to speed up the pro-
cess of PRNU pattern extraction for larger sets
of videos.

IX. Future Work

Within this experiment the pattern extraction
was distributed over multiple servers. However,
the matching of the patterns against the flat-field
patterns takes place on a single machine. For
future work it might be interesting to research
the distributing of this process. Furthermore it
would be interesting to perform the tests with
more different devices and perhaps a multiple
for each device. Finally the indexing and fast
search of the PRNU Patterns might be a topic of
interest for future work.

X. Acknowledgements

We would like to thank the Netherlands Foren-
sic Institute for providing us with the PRNU
Compare software for this experiment. Addi-
tionally we would like to thank Zeno Geradts
for supervising the project.

References

[1] Statistic Brain Research Insti-
tute. Youtube company statistics.
http://www.statisticbrain.com/
youtube-statistics/, 2016. URL
http://www.statisticbrain.com/
youtube-statistics/.

[2] Wiger Van Houten and Zeno Geradts. Us-
ing sensor noise to identify low resolution
compressed videos from youtube. In Inter-
national Workshop on Computational Forensics,
pages 104–115. Springer, 2009.

[3] Jan Lukas, Jessica Fridrich, and Miroslav
Goljan. Digital camera identification from
sensor pattern noise. IEEE Transactions on
Information Forensics and Security, 1(2):205–
214, 2006.

[4] Yannick Scheelen and Jop van der Lelie.
Camera identification on youtube.

[5] G Chierchia, S Parrilli, G Poggi, L Verdo-
liva, and C Sansone. Prnu-based detection

12

http://www.statisticbrain.com/youtube-statistics/
http://www.statisticbrain.com/youtube-statistics/
http://www.statisticbrain.com/youtube-statistics/
http://www.statisticbrain.com/youtube-statistics/


System and Network Engineering • January 2017

of small-size image forgeries. In Digital Sig-
nal Processing (DSP), 2011 17th International
Conference on, pages 1–6. IEEE, 2011.

[6] Floris Gisolf, Anwar Malgoezar, Teun Baar,
and Zeno Geradts. Improving source cam-
era identification using a simplified total
variation based noise removal algorithm.
Digital Investigation, 10(3):207–214, 2013.

[7] Wiger van Houten and Zeno Geradts. Us-
ing anisotropic diffusion for efficient extrac-
tion of sensor noise in camera identifica-
tion. Journal of forensic sciences, 57(2):521–
527, 2012.

[8] Alan J Cooper. Improved photo response
non-uniformity (prnu) based source camera
identification. Forensic science international,
226(1):132–141, 2013.

[9] Miroslav Goljan. Digital camera identi-
fication from images–estimating false ac-
ceptance probability. In International Work-
shop on Digital Watermarking, pages 454–468.
Springer, 2008.

[10] Floris Gisolf. Student id: 5600464 36 ec 6
februari 2012–6 july 2012 msc in forensic
science. 2012.

[11] Teun Baar, Wiger van Houten, and Zeno J.
M. H. Geradts. Camera identification by
grouping images from database, based on
shared noise patterns. CoRR, abs/1207.2641,
2012. URL http://arxiv.org/abs/1207.
2641.

13

http://arxiv.org/abs/1207.2641
http://arxiv.org/abs/1207.2641


System and Network Engineering • January 2017

A. Appendix

Mobile phone ρm1 ρm2 ρmm
1. Apple Iphone 5s -0.177129 0.401102 3.773802
2. Microsoft Lumia 950 -0.175443 -1.579272 3.395653
3. Apple Iphone 5s 0.122929 -0.707257 5.183939
4. Huawei Y530 3.017369 0.215268 1.836242
5. Samsung S5 1.513014 -0.940633 4.961946
6. Apple Iphone 6 4.500314 -0.152984 1.870462
7. Apple Iphone 6s 1.389558 -0.026348 2.286574
8. Apple Iphone 5s -0.514208 1.402262 2.29726
9. Samsung GTI9301 6.225871 0.581295 2.04757
10. Samsung SM-G531F 0.000509 -0.382002 2.263757
11. Samsung Note 2 1.468258 -1.114662 3.302357
12. Huawei P8 Lite 1.697553 -1.13193 2.815413

Table 4: Itag 17 format with 2nd order (FSTV) filter

Mobile phone ρm1 ρm2 ρmm
1. Apple Iphone 5s 3.34338 0.2548 8.43965
2. Microsoft Lumia 950 9.903549 2.95854 2.194641
3. Apple Iphone 5s 1.278622 -4.504052 8.296134
4. Huawei Y530 4.488281 1.830243 4.488223
5. Samsung S5 7.975279 0.106543 4.569173
6. Apple Iphone 6 8.795529 0.416817 6.039873
7. Apple Iphone 6s 0.431319 0.018963 4.215653
8. Apple Iphone 5s 0.000995 -0.218826 2.9229921
9. Samsung GTI9301 101.031067 -0.225542 6.620474
10. Samsung SM-G531F 16.907707 0.180126 5.267784
11. Samsung Note 2 21.78717 0.44343 2.17736
12. Huawei P8 Lite 7.109772 6.211234 2.95071

Table 5: Itag 36 format with 2nd order (FSTV) filter

14



System and Network Engineering • January 2017

Mobile phone ρm1 ρm2 ρmm
1. Apple Iphone 5s 6.202249 0.006859 1.493879
2. Microsoft Lumia 950 8.6815 4.632438 6.879198
3. Apple Iphone 5s 1.510593 -1.72916 1.281656
4. Huawei Y530 7.338791 0.467483 1.930481
5. Samsung S5 10.599456 7.497791 4.655661
6. Apple Iphone 6 1.831168 -0.173506 3.182783
7. Apple Iphone 6s 0.000041 -0.025312 6.221945
8. Apple Iphone 5s 4.277181 -0.472199 2.407648
9. Samsung GTI9301 110.452377 3.19986 3.6513
10. Samsung SM-G531F 42.35508 1.274687 5.795496
11. Samsung Note 2 61.931297 12.701159 4.719409
12. Huawei P8 Lite 15.888545 1.246686 3.297715

Table 6: Itag 18 format with 2nd order (FSTV) filter

Mobile phone ρm1 ρm2 ρmm
1. Apple Iphone 5s 0.145145 -0.275735 2.792469
2. Microsoft Lumia 950 197.514832 171.500107 2.125504
3. Apple Iphone 5s 1.654127 1.438749 3.83806
4. Huawei Y530 320.819855 90.433739 3.550675
5. Samsung S5 141.668884 86.725296 9.756674
6. Apple Iphone 6 -0.072351 -1.368708 1.576358
7. Apple Iphone 6s 2.199716 0.157972 3.519242
8. Apple Iphone 5s 0.230641 -0.166466 1.576358
9. Samsung GTI9301 4237.684082 46.260273 9.040846
10. Samsung SM-G531F 596.160645 -0.021758 3.468436
11. Samsung Note 2 833.377563 536.378357 5.052656
12. Huawei P8 Lite 72.100372 30.47897 6.04894

Table 7: Itag 22 format with 2nd order filter

15



System and Network Engineering • January 2017

Mobile phone ρm1 ρm2 ρmm
1. Apple Iphone 5s -0.007655 -0.177742 4.060404
2. Microsoft Lumia 950 131.665619 127.012032 2.402721
3. Apple Iphone 5s 7.009462 0.197778 1.984898
4. Huawei Y530 311.620087 87.657043 2.970427
5. Samsung S5 82.196548 73.240982 4.761385
6. Apple Iphone 6 0.211762 0.004098 1.423713
7. Apple Iphone 6s 1.045292 0.018497 2.237353
8. Apple Iphone 5s 0.273609 -0.179469 1.996719
9. Samsung GTI9301 1425.912354 40.242451 9.248312
10. Samsung SM-G531F 319.826385 -0.081802 4.794073
11. Samsung Note 2 259.504517 183.552246 2.514012
12. Huawei P8 Lite 26.853085 5.053776 4.097392

Table 8: Itag 22 format with 4th order filter

Mobile phone ρm1 ρm2 ρmm
1. Apple Iphone 5s 71.464409 -65.574638 323.76297
2. Microsoft Lumia 950 1883.948486 739.239197 1789.522827
3. Apple Iphone 5s 38.975536 -577.012756 3482.82251
4. Huawei Y530 521.487183 -108.956558 3230.001465
5. Samsung S5 402.668549 -5.669655 495.675171
6. Apple Iphone 6 9.98511 -1.136031 149.016724
7. Apple Iphone 6s 336.165955 -48.495636 633.075867
8. Apple Iphone 5s 262.377716 1.13964 5704.317871
9. Samsung GTI9301 5258.844727 -25.617983 2045.573835
10. Samsung SM-G531F 129.556442 14.474392 166.177322
11. Samsung Note 2 476.210541 141.615631 2704.412598
12. Huawei P8 Lite 22.991848 -20.66033 691.578369

Table 9: Itag 22 format with Coiflet filter

16



System and Network Engineering • January 2017

Mobile phone ρm1 ρm2 ρmm
1. Apple Iphone 5s 199.967514 -28.097988 114.643532
2. Microsoft Lumia 950 1412.478394 272.581665 913.896606
3. Apple Iphone 5s 93.188461 -104.270889 789.3797
4. Huawei Y530 206.852509 -5.548405 1565.675293
5. Samsung S5 182.858932 4.945631 167.52092
6. Apple Iphone 6 24.318363 15.528453 74.66848
7. Apple Iphone 6s 237.758667 -1.705553 790.57373
8. Apple Iphone 5s 128.020248 26.211637 2114.861572
9. Samsung GTI9301 4049.134521 -2.992535 1276.855103
10. Samsung SM-G531F 286.575348 4.034087 157.957336
11. Samsung Note 2 313.225067 129.451965 789.688782
12. Huawei P8 Lite -84.045197 -552.218628 512.134521

Table 10: Itag 22 format with Daubechies filter

Mobile phone ρm1 ρm2 ρmm
1. Apple Iphone 5s 0.120625384 -0.19932938 34.676517
2. Microsoft Lumia 950 255.418015 20.539165 30.340464
3. Apple Iphone 5s 24.637943 0.06275389 33.953735
4. Huawei Y530 341.71475 69.018105 33.69216
5. Samsung S5 130.32199 82.029434 36.10736
6. Apple Iphone 6 0.14599928 -22.364832 31.247087
7. Apple Iphone 6S 1.1176726 0.92868745 37.313114
8. Apple Iphone 5S 0.58487904 -0.06048749 31.47116
9. Samsung GTI9301 711.0564 40.74926 34.070354
10. Samsung SM-G531F 606.14417 0.08128629 31.981623
11. Samsung Note 2 828.44196 522.95123 38.41599
12. Huawei P8 Lite 25.972715 18.742098 30.639076

Table 11: Results of 1000 videos with 2nd order filter, itag 22, 30 seconds analyzed per downloaded video

17



System and Network Engineering • January 2017

Mobile phone ρm1 ρm2 ρmm
1. Apple Iphone 5s 20.49686 0.48957378 35.357864
2. Microsoft Lumia 950 99.13967 -28.724852 30.192146
3. Apple Iphone 5s -0.19546966 0.25030282 30.065182
4. Huawei Y530 23.832335 -25.778994 38.79837
5. Samsung S5 19.57411 -31.101841 32.05532
6. Apple Iphone 6 -22.364832 0.046843186 33.034157
7. Apple Iphone 6s 1.1813881 0.03744992 34.886024
8. Apple Iphone 5s 1.8863258 0.7486062 30.697187
9. Samsung GTI9301 1408.4209 19.690107 45.514305
10. Samsung SM-G531F 252.10266 18.53082 32.14834
11. Samsung Note 2 465.95117 23.588686 36.34564
12. Huawei P8 Lite 48.888634 10.357987 30.504707

Table 12: Results of 1000 videos with 2nd order filter, itag 22, 10 seconds analyzed per downloaded video

Figure 5: PCE values for the 12 cameras’ videos in format 18 with 2nd Order PRNU extraction method

18



System and Network Engineering • January 2017

Figure 6: PCE values for the 12 cameras’ videos in format 36 with 2nd Order PRNU extraction method

Figure 7: PCE values for the 12 cameras’ videos in format 22 with 4nd Order PRNU extraction method

19



System and Network Engineering • January 2017

Figure 8: PCE values for the 12 cameras’ videos in format 22 with Coiflet PRNU extraction method

20


	Introduction
	Related Work
	Theory
	Photo Response None-Uniformity (PRNU)
	YouTube

	Methodology
	Experimental Environment
	PRNU Compare software
	Downloading the videos
	Search and queue management
	Hardware
	Putting it all together


	Conducted Experiments
	Experiment 1: Testing video formats and extraction methods
	Experiment 2: Identifying the correct camera from a larger set of videos
	Experiment 3: Distributing the PRNU pattern extraction over multiple machines

	Results
	Results of experiment 1: Testing video formats and extraction methods
	Results of experiment 2: Identifying the correct camera from a larger set of videos
	Results of experiment 3: Distributing the PRNU pattern extraction over multiple machines

	Discussion
	Discussion of experiment 1: Testing video formats and extraction methods
	Discussion of experiment 2: Identifying the correct camera from a larger set of videos
	Discussion of experiment 3: Distributing the PRNU pattern extraction over multiple machines

	Conclusions
	Future Work
	Acknowledgements
	Appendix

