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Abstract

Performing a successful penetration test highly depends on being stealthy and remaining un-
detected. While being on assignment, the Red Team performing the test has to avoid triggering
traps and getting caught by the Blue Team. In this paper we take a close look at a popular class
of systems used for detecting or preventing intrusions - the so called IDS or IPS. A promising
idea is to place such a device under the control of the Red Team so that it can prevent them from
performing tests noticeable by their opponents. In the paper we show how this system can also
be utilised to further help the attacker blend in with the evaluated environment. First we look at
the capabilities of the engines to manipulate the traffic through their normalisers. Then, for the
scenarios where they come short, we also propose tools from the toolbox of the defensive team
and show a way to integrate them with the IPS device. Finally we evaluate their effectiveness
against the de-facto standard for network scanner - Nmap.
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1 I N T R O D U C T I O N

Cybersecurity professionals have borrowed a term originally used by the military during train-
ing. The teams get divided into a Blue Team having defensive functions and a Red Team having
offensive tasks. So in the terms of the cybersecurity, the Red Team is performing a penetration
test while the Blue Team is monitoring the systems trying to detect them. A typical engage-
ment of the Red Team has several stages and usually begins with reconnaissance and gradually
flows into exploitation of identified vulnerabilities. However, at each stage of the engagement,
the penetration testers might get detected, usually by unintentionally rising an alert into the
Intrusion Detection System or Intrusion Prevention System (IDS or IPS) under the Blue Team‘s
control. This happens mainly when they make an easily identifiable mistake. So what would be
the outcome if the Red Team has the same powerful solutions as the ones used by the other side
to catch them? That raised our main question:

To which extend could the covertness of Red Team engagements be im-
proved by utilising an IDS/IPS device under their control?

Some of the most popular current open source IDS/IPS engines were investigated. The main
area in which a focus was placed is:

(1)
How applicable would a current IDS/IPS system be in filtering out suspi-
cious behaviour of the Red Team during their operations?

Answering this question aims at preventing the Red Team from executing suspicious attacks
inadvertently. However, soon we found out that the engine itself would not be able to handle all
the situations a penetration tester might find himself into. It appeared to be very straightforward
to prevent him from executing well-known attacks, so we moved our attention into preventing
him from being passively or actively fingerprinted. Our second question got the following
formulation:

(2)
Could an IDS solution be customised in a way that it raises alerts when
the offencive team is getting scanned and disguise their identity.

As we checked the possibilities provided by the IDS/IPS engines we also looked at some
other ways in which tools typically used by the defensive teams might be utilised to prevent the
attacker‘s presence from being detected.

The remainder of the this paper is structured as follows: In chapter 2 on the following
page we provide a brief overview of the theoretical background that we based our research on,
including IPS solutions, kernel routing, OS-detection, honeypots and port knocking. Chapter 3

on page 8 summarises relevant research that has already been conducted in this field. The setup
of our isolated test environment and the design of the conducted experiments are presented
in chapter 4 on page 10. In chapter 5 on page 18 we present our results which we discuss in
chapter 6 on page 21. We conclude our research and present ideas for future research in chapter 7

on page 22.
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2 T H E O R E T I C A L B A C KG R O U N D

In this chapter we present important concepts that we based our research on. We also use it
to make the reader aware of some of the technologies we have investigated and their working
mechanisms.

2.1 ids/ips solutions
In the title of this subsection we introduce the terms IPS and IDS interchangeably. It means
either an Intrusion Prevention System or Intrusion Detection System. The reason we take this
liberty is because a certain system, no matter if it is IDS or IPS, uses the same engine for finding
malicious activities in the network traffic. The difference between the two comes when they
actually identify a threat. The IDS can only raise an alert that something is happening, while the
IPS can actively make a decision to drop the traffic that seems bad-natured in addition to raising
the alert.

There are different ways of identifying a threat. The most popular ones are by using signa-
tures or by making a comparison between the current metrics of the traffic1 and a predefined
baseline of the same metrics. Those two methods are also known as signature-based detection
or anomaly-based detection. The reader should be aware that signature-based detection can
also be used for certain anomalies in the traffic, but those anomalies are rather violations of
the protocols and the standards than variations from a baseline as the one specified above. So
when one talks about anomaly-based intrusion detection he usually means the deviation from
the norms rather than protocol misbehaviour. Two good examples for signature-based detection
are the open-source tools Snort and Suricata. An example for anomaly-based detection is the
Bro software.

There is also a third type of system capable of finding and alerting for intrusions in the
network. It is called Security Information and Event Management (SIEM) system. It does not
look at the traffic flowing in the network but rather collects and aggregates events logged at
different places in the network - switches, routers, firewalls, servers, etc. and tries to correlate
them. It is not an IDS/IPS system in the classical sense, but can still be a powerful tool for
identifying threats in the network.

Given all the above an anomaly-based IDS/IPS system would not be applicable for short-
term engagement, as it needs to know in advance what is the baseline for the network traffic. Of
course such data may be leaked or obtained by other means, but it would require specific fine-
tuning for each separate Red Team engagement. The situation with the SIEM solutions is similar,
as it is highly unlikely for the attacker to have the real-time logging data from the devices in the
network. Moreover, those two systems would only be able to notify the attacker that he might
have gave away his presence in the network and not prevent him from revealing himself in the
first place. This is why we placed our focus on researching signature-based IDS/IPS systems.
They are capable of standing inline for the traffic and actively making a decision whether to
forward a certain packet or not, thus having a better chance to improve the covertness of the
attacker.

1 like for example bandwidth, latency, response time, packets per second, communicating computers, etc.
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2.2 kernel network traffic processing 4

2.2 kernel network traffic processing
The Linux kernel is capable of handling network traffic not only as an end-host in the network,
but also as an intermediary device. Depending on the layer of the OSI model at which the
decision for whether and where to forward the traffic is made we can distinguish a few separate
terms:

• with bridging the decision is based on Ethernet MAC addresses found at OSI Layer 2.

• with routing the forwarding decisions are based on fields like destination IP address found
at OSI Layer 3.

A Linux machine can also act as a firewall and take forwarding decisions based on the aforemen-
tioned fields in the data and the TCP/UDP port numbers available at the Transport layer (Layer
4). netfilter is the packet filtering framework inside the Linux kernel which also provides mul-
tiple hooks on which external processes might attach and listen to traffic. A general overview
of the hooks is shown in Figure 1[13]. We have made further use of a program called ebtables

which provides a means for defining the filtering rules in a bridged environment, as the one our
transparent solution needs.

It is worth mentioning that the Linux kernel developers have come up with multiple ways for
processing traffic in both incoming and outgoing direction. Some of them are more suitable for
multithreaded environments, while others are not. There are also multiple ways in which traffic
can be acquired. Two of them were analysed further: AF_PACKET and NFQUEUE. The first one
supports raw packet acquisition while the other one supports some preprocessing and filtering
by the netfilter framework and then passing the filtered data in a queue [15].

Figure 1: Traversal process and kernel hooks of ebtables 2

2.3 os detection
This section discusses the background of operating system (OS) detection which is predomi-
nantly used for determining vulnerabilities of target hosts, tailoring custom exploits and social
engineering. Another area of application which is particularly relevant for our research is the
detection of unauthorised and dangerous devices on a network. [10] When connecting to the
targeted network, chances are high that an attentive system administrator detects the new device
and starts investigating it. In a corporate network predominantly populated with Windows desk-
tops a Linux machine will definitely raise suspicion. Therefore, it is important to understand

2 www.ebtables.netfilter.org/br_fw_ia/br_fw_ia.html#section2

www.ebtables.netfilter.org/br_fw_ia/br_fw_ia.html#section2


2.3 os detection 5

how OS detection works and how it might be defeated. The most common and capable tool for
this purpose is the network exploration tool Nmap. We will therefore focus on the OS detection
mechanisms of Nmap.

2.3.1 TCP/IP fingerprinting

The primary idea behind Nmap’s OS detection is to investigate the details of the TCP/IP stack
implementation of a machine. This investigation mainly focuses on features that are not specified
in the respective RFCs. It sends up to 16 TCP, UDP and ICMP probes to open and closed ports
of the examined machine. The OS-specific implementations of the TCP/IP stack are different
enough to use the behaviour, observed through the responses, as fingerprints.[10]

One implementation specific property is the way sequences are generated. So the first prop-
erty examined by Nmap is sequence generation. The tool sends six TCP SYN packets with different
TCP options and TCP window field values. The sequence and acknowledgement numbers are
randomly generated and and saved, so Nmap can differentiate responses. The probing packets are
sent exactly 100 milliseconds apart because some sequence algorithms are time dependent. The
remaining tests include ping replies, the support for TCP explicit congestion notifications, the
greatest common divisor of the initial sequence number (ISN), the ISN counter rate and the TCP
initial window size. Furthermore, since RFC 793

3 did not specify the ordering of the TCP header
options, these orderings provide further information about a particular TCP/IP implementation.
Nmap collects the results of all tests in its own fingerprint format. As seen in listing 2.1 this format
represents the result of the various tests (SEQ, OPS, WIN, ECN, T1 - T7, U1 and IE) and maps them
to a human readable OS description. The known fingerprints are stored in the nmap-os-db file
which is part of Nmap. Once, an OS scan is performed, the resulting fingerprint is compared to
the existing fingerprints in order to find a match. [10]

1 Fingerprint Apple Mac OS X 10.4.11 (Tiger) (Darwin 8.11.0, PowerPC)

2 Class Apple | Mac OS X | 10.4.X | general purpose

3 CPE cpe:/o:apple:mac_os_x:10.4.11

4 SEQ(SP=C-1DA%GCD=1-6|>1000000%ISR=D0-122%TI=I%CI=I%II=I%SS=S%TS=1)

5 OPS(O1=M5B4NW5NNT11SLL%O2=M5B4NW5NNT11SLL%O3=M5B4NW5NNT11%O4=M5B4NW5NNT11SLL%O5=M5B4NW5NNT11SLL%O6=

M5B4NNT11SLL)

6 WIN(W1=FFFF%W2=FFFF%W3=FFFF%W4=FFFF%W5=FFFF%W6=FFFF)

7 ECN(R=Y%DF=Y%T=3B-45%TG=40%W=FFFF%O=M5B4NW5SLL%CC=N%Q=)

8 T1(R=Y%DF=Y%T=3B-45%TG=40%S=O%A=S+%F=AS%RD=0%Q=)

9 T2(R=N)

10 T3(R=N)

11 T4(R=Y%DF=Y%T=3B-45%TG=40%W=0%S=A%A=Z%F=R%O=%RD=0%Q=)

12 T5(R=Y%DF=N%T=3B-45%TG=40%W=0%S=Z%A=S+%F=AR%O=%RD=0%Q=)

13 T6(R=Y%DF=Y%T=3B-45%TG=40%W=0%S=A%A=Z%F=R%O=%RD=0%Q=)

14 T7(R=Y%DF=N%T=3B-45%TG=40%W=0%S=Z%A=S%F=AR%O=%RD=0%Q=)

15 U1(DF=N%T=3B-45%TG=40%IPL=38%UN=0%RIPL=G%RID=G%RIPCK=G%RUCK=0%RUD=G)

16 IE(DFI=S%T=3B-45%TG=40%CD=S)

Listing 2.1: Example of an Nmap TCP/IP fingerprint.

Nmap’s OS detection mechanism can be defeated by manipulating the way packets are crafted
to match that of another OS. Tools such as IP Personality4 and Fingerprint Fucker5 are kernel
modules which provide this functionality. They manipulate the TCP/IP stack in order to make it
behave like a specific TCP/IP implementation. This solution is not very flexible, since it requires
the kernel to be recompiled. Furthermore, these modules are not maintained anymore and their
last versions are only suitable for Linux kernels 2.4 and 2.2 respectively, which renders them
useless for recent Linux versions. [10]

3 www.rfc-editor.org/rfc/rfc793.txt
4 ippersonality.sourceforge.net/
5 nmap.org/misc/defeat-nmap-osdetect.html#FF

www.rfc-editor.org/rfc/rfc793.txt
ippersonality.sourceforge.net/
nmap.org/misc/defeat-nmap-osdetect.html#FF
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2.3.2 Passive OS fingerprinting

Methods exist that make it possible to identify the Operating System of a certain network-
connected computer by only studying the traffic that it generates. They do not require the
host to respond to any specifically generated packet but still need to look at existing traffic flows
between the machine under investigation and some other computer. The fields in the traffic that
go under investigation are the ones that are not specified strictly in the standards describing the
networking protocol and that each OS vendor is free to interpret and implement in whatever
way he finds appropriate. [10]

2.3.3 Service and version detection

Another way to determine a network device’s OS is to examine its services. Nmap is capable
of detecting distinct versions of services which help to identify the OS on which the service is
running on. As seen in line 8 and 10 of listing 2.2, a service scan against a Ubuntu machine
running an ssh service reliably detects the OS.

1 $ sudo nmap -sV 10.0.0.220

2

3 Starting Nmap 7.01 ( https://nmap.org ) at 2017-02-03 16:31 CET

4 Nmap scan report for 10.0.0.220

5 Host is up (0.000065s latency).

6 Not shown: 999 closed ports

7 PORT STATE SERVICE VERSION

8 22/tcp open ssh OpenSSH 7.2p2 Ubuntu 4ubuntu2.1 (Ubuntu Linux; protocol 2.0)

9 MAC Address: 00:0C:29:40:E7:6A (VMware)

10 Service Info: OS: Linux; CPE: cpe:/o:linux:linux_kernel

11

12 Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .

13 Nmap done: 1 IP address (1 host up) scanned in 1.94 seconds

Listing 2.2: Nmap service scan against a Ubuntu machine running an ssh daemon.

The services are simply detected by reading the nmap-services file which statically maps
port numbers to services. The more valuable information about the exact version of the service
is derived from the nmap-service-probes file. When detecting an open TCP or UDP port Nmap
sends probes from this file to the services and compares the received responses with the expected
responses from the file. Furthermore, it also tries to interact with the service in order to obtain
additional service details such as the application name, version number, device type and OS
family. [10]

2.4 honeypots
Honeypots are isolated network devices that are intended to attract the attacker’s attention by
exposing known vulnerabilities which let them appear as easy targets. They are deployed to
facilitate the detection of an attack and to learn more about the attacker’s approach. There is
a large variety of honeypots which can roughly be divided into high-interaction honeypots and
low-interaction honeypots. [11]

High-interaction honeypots are complete OSes with fully functional services that let an at-
tacker interact with the honeypot the same way as with a real OS. Is usually logs the all interac-
tions in order to analyse the attacker’s behaviour and is isolated from the network so that it can
be fully compromised without posing a thread. [11]
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Low-interaction honeypots merely simulate a subset of the OS, typically the networks stack
and a few services. In contrast to high-interaction honeypots they gather less information about
an attack and are easier to detect but the fact that they are more flexible and light-weight makes
them very suitable for our research because it allows us to simulate OS-specific services. [11]
The Honeyd service, which is discussed in more detail in section 3.4 on the next page is even
capable of simulating OS-specific TCP/IP fingerprints.

2.5 port knocking
Originally, port knocking is a method that is intended to provide authentication for protected
services via communication with closed ports. Even though it is not possible to communicate
with closed ports directly, since there are no services to interact with, attempted connections to
a closed port are still registered and can be monitored. Amongst others, the registered infor-
mation includes the IP address of the initiating host, the contacted port and a timestamp. This
information allows to detect sequences of attempted connections to closed ports by a certain IP
address. A host that wants to connect to a protected service can contact closed ports in a given
sequence in order to authenticate itself, similarly to entering a PIN number. Once the contacted
host detects that given port sequence, it offers the specified service to the IP address the port
sequence came from. Usually, a temporary exception for that IP address is added to the IP filter
which opens the port behind which the protected service is running. Thus, by "knocking" closed
ports in a certain order, another port opens which reveals the protected service. [6] [8]

In section 4.3.2 on page 14 we present how we repurposed the idea of port knocking to hide
open ports that could raise a system administrator’s suspicion.



3 R E L AT E D W O R K

Since there was no directly related research to be found, this section presents conducted research
that is relevant for certain aspects of our project.

3.1 ids/ips engine
The Evaluation studies of three intrusion detection systems under various attacks and rule sets
[16] paper points at similar performance metrics of Snort, Suricata and Bro.

Another feature of the IDS/IPS engines that we will look into further is their ability to do
traffic normalisation. Adversarial attacks against this feature are described in the Evasion, traffic
normalization, and end-to-end protocol semantics paper[7].

3.2 kernel network traffic processing
In their work Eric Leblond and Giusepe Longo study the different packet acquisition methods
available for Suricata [9]. Also the ebtables documentation is quite extensive on traffic process-
ing routines[12].

3.3 other traffic processing tools
Kees van Reeuwijk and Herbert Bos do some nice work with their Ruler[17] framework. How-
ever we were not able to find its application in the traffic processing that we need, as it does not
deal with header recalculation and manipulation.

3.4 virtual honeypots
Provos [14] conducted extensive research about virtual honeypots. He developed the Honeyd

framework, that allows to simulate entire network topologies of honeypots including network
latency and packet loss. Each node in the virtual network is a highly configurable low-interaction
honeypot. The framework allows to open individual TCP or UDP ports open, disable ICMP,
proxy connections to other hosts on the network and is able to call user-defined scripts that
can, for example, simulate a web service like telnet. Another outstanding feature of Honeyd is
its personality engine which can simulate the TCP/IP stack of various operating systems. The
TCP/IP fingerprints are stored in the same format as Nmap’s fingerprints. Therefore, the Honeyd

can easily be expanded with fingerprints of operating systems that are not included in its original
fingerprint collection.

Since we are merely looking for a way to evade OS detection, we are not interested in simulat-
ing an entire network topology. A single virtual honeypot is sufficient. A configuration file that
defines a single honeypot with a Windows XP personality is shown in listing 3.1 on the next page.
In line 6, all connections to port 22 are reflected back to the source IP address, line 7 forwards
connections to RDP port 3389 on another machine in the network and line 8 calls a BASH script

8



3.4 virtual honeypots 9

that simulates a low-interaction Telnet service behind port 23, mimicking always failing login
attempts.

1 create winxp

2 set winxp personality "Microsoft Windows XP Professional SP1"

3 set winxp default tcp action reset

4 set winxp default udp action reset

5 set winxp default icmp action open

6 add winxp tcp port 22 proxy $ipsrc:22 # ssh

7 add winxp tcp port 3389 proxy 10.0.0.60:3389 # rdp

8 add winxp tcp port 23 "/etc/honeypot/scripts/fake_telnet.sh" # telnet

9

10 bind 10.0.0.200 winxp

Listing 3.1: Example of a Honeyd configuration file that defines a single honeypot.



4 M E T H O D O LO GY

4.1 general environment setup
The test environment we deployed during our research was entirely virtualised. As a hypervisor
we used VMware ESXi 5.5.0 build-3116895 deployed on Dell PowerEdge R230 server with Intel
Xeon CPU E3-1240L v5 and 16GiB of DDR4 RAM. We choose the supervisor due to its good
support of the Microsoft Windows operating system, as we intended to use it as a Guest OS
to better simulate a typical Windows-based corporate environment. The hypervisor was ran
with unlimited feature set for the duration of the 60-day trial license, which was enough to
conduct the experiments we had planned. We divided the 8 vCPUs and the amount of RAM in
a proportional manner, so each virtual machine received 1 vCPU and 2 GiB of RAM.

The test environment included a Windows 7 machine as an example of old but still sup-
ported OS1 and a Windows 10 machine representing a new and current OS. We also used the
current Long Term Support release of Ubuntu Server 16.04.1 LTS (GNU/Linux 4.4.0-59-generic
x86_64). It was chosen due to our good familiarity with it and also the good community support
available. However, we managed to use no functionality specific to the OS. The issues we faced
and described further were related to the kernel itself, which is shared by all the other flavours
of open-source operating systems. We have also armed the simulated attacker with Kali Linux
version 2016.2.

Figure 2: Virtual environment overview

Both networks marked on figure 2 as Cor-
porate Network and Red Team Network are
created with the standard virtual switch avail-
able within the ESXi hypervisor. By doing this
we are trying to mimic a typical Red Team
engagement where they simulate what a dis-
gruntled employee or a malicious guest might
achieve. The Red Team Network is usually
not separated from the Corporate Network
under investigation, but in order to introduce
the IPS inline we had to make them disjointed.
Moreover, the device should be introduced
as a bump-in-the-wire, making its two inter-
faces part of the same network. So we had to
arrange an important trade-off which would
make a difference compared to a corporate en-
vironment and this is the mode in which the
virtual switches are running. Their default
configuration does not permit MAC address
changes and forged transmits2. So the only
way we could make traffic run through the IPS
engine and pass it between the two networks
was when we enabled promiscuous mode and

allowed forged transmits in the network. It was required because when traffic is bridged through
the IPS engine it does not rewrite the MAC address placed in the Ethernet frame by the attacker‘s
computer. More on bridging will follow in Section 4.4 on page 16. The third interface of the IPS

1 Under extended support until January 14, 2020

2 transmitting data with a MAC address different than the address assigned to the machine by the hypervisor

10



4.2 testing ips/ids engines 11

device in the figure is used for management purposes. It is also the only one with assigned IP
address. We were not able to verify a working solution where the management is done through
the other interfaces.

4.2 testing ips/ids engines
One of the main goals we have set for the research was to find out how an IPS engine can help
the attackers to remain more stealthy and raise less suspicion in the surrounding environment.
We took the ability of the Intrusion Prevention System to actually prevent the attacker from
executing a well-known attack with abundance of signatures that can identify it and took a
decision to not question it and take for granted. The more interesting aspect was how to use the
IPS engine to further minimise the possibility of active and passive fingerprinting of the attackers
OS and the probable services running on it. It was also not obvious how to do all the above
without making an additional OSI Layer 3 hop and keep the device operating transparently at
OSI Layer 2.

OS TTL TCP window (B)

Windows 7 128 8192

Windows 10 128 8192

Kali Linux 64 29200

Figure 3: Default TTL and initial TCP window sizes

In terms of passive OS fingerprinting we
checked whether the engines were capable of
rewriting the Time-To-Live (TTL) value in the
IP header and also the advertised initial win-
dow sizes found in the TCP header during the
three-way handshake. Some common values
can be found in an article by Netresec cover-
ing the topic of passive OS fingerprinting [5].
Table 3 points out the values relevant to the
systems in the test environment.

The goal in the further tests would be to
find a way to adapt the values of the Kali machine to the ones common for the Windows oper-
ating systems. Upon successful completion the modification would also have consequences that
should be pointed out. The TTL manipulation will interfere with the ability of the attacker to
use tools such as traceroute. On the other hand, if successfully performed, the initial window
size value downscale from 29200 Bytes to 8192 Bytes would not interfere with the ability of the
attacker to establish TCP sessions. Nevertheless, it might affect the data transfer speed, which is
a problem common for every OS and is also known as TCP slow start. It might also reduce the
ability of the attacker to make use of vulnerabilities in the TCP/IP stack of the victim through
the initial packet of the TCP three-way handshake. However, those attacks are easily detectable,
so they either should not be used, or should be filtered by the Red Team IPS before they reach
the victim‘s network.

In order for the traffic to pass between the interfaces of the machine hosting the IPS engine,
first the network adapters needed to be set in promiscuous mode. This mode allows the NIC to
receive data that was not originally destined to the machine. The relevant settings are shown in
Listing 4.1. Two additional settings are given in lines 3 and 4 in the same listing. The abbrevia-
tions gro and lro stand for Generic Receive Offload and Large Receive Offload. They allow the
kernel to receive and prepare for transmit packets with greater size than the Maximum Trans-
mission Unit (MTU) while the NIC handles the segmentation and reassembly. This technique
should be disabled to let the IPS engine gather maximum visibility and control over the packets
flowing through it. During the tests of the three IPS solutions, all the packets were fed to the
respective engine using the AF_PACKET acquisition method. It was chosen due to its ability to get
the packets directly from the interface‘s buffers.
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1 up ifconfig $IFACE 0.0.0.0 up

2 up ip link set $IFACE promisc on

3 post-up ethtool -K $IFACE gro off

4 post-up ethtool -K $IFACE lro off

Listing 4.1: Adjustments for the promiscious interfaces

We have also considered using an engine capable of performing inline substitutions of cer-
tain fields in the packets based on regular expressions, like for example Ruler[17]. That idea
was found unfeasible, as both the TTL value and TCP window size value are included in the
calculation of the checksum in the respective header. This means, that upon replacement of the
value, the checksum also needs to be recalculated, which we didn‘t find possible with a regular
expression.

4.2.1 Snort 2.9.9.0

For the initial test we decided to use Snort version 2.9.9.0 GRE (Build 56). As of the time of
executing the experiments this is the current stable version of Snort, also available in the reposi-
tories for the OS we chose. Its working state can be reproduced by following the guides by Noah
Dietrich[1]. In order to enable the normalizers, the configuration option -enable-normalizer

should be added while building from source.
The normalisers (or preprocessors) we considered to achieve the goals we already highlighted

were for IP and TCP. Their original purpose is to deserialise the data captured from the wire in
a way similar to the operating systems which might be under attack. The goal is to minimise
the chance an attack packet evades the inspection due to differences in the way the reassembly
is done between Windows and Linux for example.

We were successful with changing the TTL value of the packets by using the IP normaliser. It
was set up with the additional options shown in Listing 4.2. They are an exempt from the Snort
configuration. In the example the TTL value is changed to 128 for all packets that have a value
lower than 65.

1 config min_ttl: 65

2 config new_ttl: 128

Listing 4.2: IP TTL value rewriting

Unfortunately, we did not have the same success with the modification of the size of the
initial TCP window. We tried adjusting it as an option in the stream5 preprocessor, but it did
not support it. We also tested the option to reassemble the data as a Windows target, but
that did not work either. A summary of the tested options can be found in Listing 4.3. It
represents an exempt from the snort.conf configuration file. Some of the options tested were
quite aggressive. Limiting the window size to 8192 Bytes is a quite desperate measure which
might also fire an alert in an anomaly-based IDS engine. Still we were not able to see the result
of the preprocessor‘s actions in the traffic processed by the engine.

1 preprocessor normalize_tcp: ips trim_win ecn stream

2 preprocessor stream5_tcp: policy windows, max_window 8192

Listing 4.3: TCP initial window size change

The ability of the IPS engine to react to active reconnaissance against the attacker was also
investigated. Except for triggering an alert in the event of a portscan or service fingerprinting



4.2 testing ips/ids engines 13

activity we also looked for a way to make the engine interactively respond and mask the identity
of the unusual for the corporate environment computer of the attacker. However, the possibilities
given by flexresp - the engine that takes care for this, are limited to various forms of TCP resets
and ICMP unreachable messages. We could not find a way to customise them. This is why we
decided to look for tools which will be able to help the attacker to remain undetected, or at least
make the detection harder. They are explained further in section 4.3 on the following page.

4.2.2 Snort 3 alpha

The second test we did was with the new version of Snort which is still an alpha version - 3.0.0-a4

(Build 223). Again the working state of this machine can be reproduced by following the guide
Noah Dietrich has put together[2]. The working configuration of the Snort 2.9.9.0 was copied
and parsed with the snort2lua conversion tool provided with the newer engine. The tests were
rerun with the same level of success.

Upon careful reading of the improvements made between the Snort versions [4] one might
notice that main changes were made in favour of performance gain. What grabbed our focuse
was the addition of LuaJIT 3 which might have added more possibilities for customisation. How-
ever, the only one that we found was the addition of the find option which can be added during
the signature rule definition. We were not able to make it fire an external script upon matching
a rule.

4.2.3 Suricata 3.2

The last engine we put to the test was the Suricata 3.2 engine. It was built with the instructions
provided by the official documentation [3] with the additional options to enable LuaJIT support -
-with-libluajit-includes and -with-libluajit-libraries. We wanted to test the Lua script-
ing capabilities as the documentation did not suggest TTL rewrite features as the ones we tested
with Snort. We were also not able to modify the behaviour of the TCP reassembly engine. It
could have been helpful in reducing the initial TCP window size.

Although it lacks the normalisers that Snort has, the Suricata engine allows for further traffic
inspection by passing a given packet that matches a rule to the LuaJIT engine. Then a Lua script
is triggered to check for additional anomalies or signs of compromise. The script should return
either a 0, telling Suricata that a match has not been found, or a 1, indicating a match. A script
call can be placed inside a rule configured to drop traffic when its conditions are met, thus
preventing some forms of attack. An example is given in Listing 4.4

drop tcp 10.0.0.200 any -> any any (msg:"Inspected TCP SYN by LUA"; flags:S; sid 1000002; rev:001;

luajit:tcpinspect.lua;)

Listing 4.4: Call Lua script inside Suricata rule

We were able to verify that the Lua script can even call system executables from the under-
lying OS. It does it with the privileges of the user that started Suricata at the first place. Such
type of behaviour makes it possible to execute commands modifying the traffic processing capa-
bilities of the host in a way that can be modelled for different purposes. An example might be a
ebtables rule as the ones mentioned in Section 4.4 on page 16. It can also be used for dropping
the original packet while copying its specific values into a new packet. The later can be designed
to fit the OS specifics described in Section 4.2 on page 11.

3 Just-in-Time compiler for the Lua scripting language
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4.3 defeating os detection
As explained in section 2.3 on page 4, there are two main methods to detect an operating system.
In this section we present our approaches of evading the active fingerprinting method.

4.3.1 Evading TCP/IP fingerprinting

One way to evade TCP/IP fingerprinting is to modify the TCP/IP implementation of the ma-
chine. IP Personality4 is an open-source patch that can be compiled into Linux kernels. It
is based on the netfilter5 framework and can be configured to resemble different operating
systems. The fact that the module needs to be recompiled into kernel, each time a different OS
should be simulated greatly reduces the flexibility of the tool. Furthermore, IP Personality is
only compatible with kernel versions 2.4 which would require us to either downgrade the kernel
4.4 of the IPS machine or rewrite the tool for kernel version 4.4. Due to performance and security
reasons we decided against downgrading the kernel. A rewrite to kernel version 4.4 requires
deep insights into kernel programming which we do not exhibit. Therefore, we ruled out the
possibility of making use of this tool.

Instead, we made use of the Honeyd framework presented in section 3.4 on page 8 which
is capable of creating virtual honeypots with OS-specific TCP/IP fingerprints. In order to let
a potential Nmap scan inspect the honeypot, instead of the Red Team’s machine, we bound the
honeypot to the Red Team’s IP address. Since we want to keep the IPS as transparent as possible,
we want to direct as much traffic as possible to the Red Team’s machine and merely direct certain
ports to the honeypot. A closer look at Nmap’s source code 6 revealed that its OS scan is looking
for three specific ports: A closed UDP port, a closed TCP port and an open TCP port. Nmap will
choose the first suitable ports it finds. Therefore, we need to direct at least three ports to the
honeypot.

The Honeyd daemon needs to listen to an interface of the IPS machine, while still maintaining
the ability to get its traffic filtered. The attachment point under number 2 from Figure 4 was
chosen. This gave us the ability to configure rules on which traffic should be forwarded to to
the daemon and which - to the attacker‘s machine. More on this will follow in section 4.4. The
relevant settings can be found in listing 3 on page 27 in the appendices.

It is worth mentioning that Honeyd did not make use of either the MAC address assigned to
interface br192 on which it was listening to, nor the MAC address in its configuration. This was
troublesome as it also responded with a wrong address to the ARP requests for the IP it shares
with the attacker‘s machine. The issue is also addressed in the following section.

4.3.2 Hiding open ports

During the course of the work we were also considering a scenario in which the attacker hosts
a malware Command and Control (CnC) server. The server should be reachable for the beacons
of the malware that have been deployed during or prior to the assignment. At some point the
attention of the systems administrator at the evaluated company may actually get focused on the
attacker‘s computer. A logical next step for him is to scan the suspicious system. The least thing
that he expects is to find an open port which should not be there. So how could we prevent the
port from appearing to be open?

Different techniques exist in the IPS engine itself to drop data based on the content being
exchanged inside a TCP or UDP session. However, none of them can actually prevent a session
from being established in the first place. And it is the initial session establishment, which is
being evaluated by network scanners like Nmap to evaluate which ports are open and which are
not. So a reaction was needed as early as the first step of the TCP three-way handshake.

4 ippersonality.sourceforge.net
5 www.netfilter.org
6 www.github.com/nmap/nmap/blob/master/osscan2.cc#L1139-L1225

ippersonality.sourceforge.net
www.netfilter.org
www.github.com/nmap/nmap/blob/master/osscan2.cc#L1139-L1225
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A closer look was needed at how Nmap works and what is the sequence in which the ports
are being evaluated. We found out that the general scan, which takes place when no ports are
specified at the command line, probes 1000 ports. According to Nmap’s documentation, the ports
are scanned in random order but well-known ports were scanned first. In order to get a better
understanding about which ports are scanned first, we ran 1000 Nmap scans to find out which
ports were scanned before the port we want to hide is reached. The script we used to run the
experiment and the obtained pcap files can be found in our GitHub repository 7. Based on the
results presented in section 5.2.2 on page 19 we decided to consider every connection to any of
the well-known ports as a potention port scan. We configured knockd to react when it detects a
port scan and close (rather than open as it is usually used to) the port used by the malware for
communication, so that the scanning engine does not detect it. knockd closes a port by adding
the according rule to iptables and optionally removing it after a certain timeout.

Unfortunately, knockd can only detect sequences of knocked ports and can therefore not react
on single ports. A sequence turned out to consist of at least two ports. Since Nmap scans ports
in random order, we generated rules for each possible sequence in which the well-known ports
could be scanned. An exempt of the resulting configuration file is shown in listing 4.5. How-
ever, running knockd with this configuration file revealed another restriction of the tool: knockd
only listens to the first listed sequence of rules with the same first port. Thus, when using the
configuration shown in listing 4.5, after knocking port 199, knockd would only detect a sequence
when port 3306 is the second port. Knocking port 554 will not be detected by the tool. Our final
solution to this problem was to split the configuration file and run multiple instances of knockd
which all listened to different sequences in parallel.

1 [close80_199_3306]

2 sequence = 199,3306

3 seq_timeout = 15

4 tcpflags = syn,ack

5 start_command = iptables -A INPUT -s %IP% -p tcp -m multiport --dports 80 -j REJECT

6 cmd_timeout = 10

7 stop_command = iptables -D INPUT -s %IP% -p tcp -m multiport --dports 80 -j REJECT

8 [close80_199_554]

9 sequence = 199,554

10 seq_timeout = 15

11 tcpflags = syn,ack

12 start_command = iptables -A INPUT -s %IP% -p tcp -m multiport --dports 80 -j REJECT

13 cmd_timeout = 10

14 stop_command = iptables -D INPUT -s %IP% -p tcp -m multiport --dports 80 -j REJECT

15 ...

Listing 4.5: Exempt from knockd.conf

It should be noted that there is a difference between a probe being dropped and being rejected
and Nmap can notice it. So it is important to configure the rules properly. The default system
behaviour is to reject the connections to closed ports with a TCP Reset, instead of not replying to
the probe. A port scanner usually displays the difference between the two as it reports a given
port respectively as closed or filtered.

It is also worth mentioning that the port knocking daemon supports executing a second
command after a given time period from the triggering knocking activity. In the current scenario
this translates to being able to automatically open the closed port again and reenable the malware
communication.

Since our solution for hiding a port depends on detecting a sequence of two scanned ports,
there will inherently be situations in which the port cannot be closed on time. This is especially
the case when Nmap starts its port scan with the port that is to be hidden. In such a case Nmap

will always find the port to be opened. As a consequence, our solution merely reduces the

7 github.com/hopfenzapfen/rp1/tree/master/Experiments/ScannedPorts

github.com/hopfenzapfen/rp1/tree/master/Experiments/ScannedPorts
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probability of a port to be found open. In order to investigate the reliability of the solution, we
ran another 1000 port scans and checked how often our hidden port was found to be open. We
also investigated the reliability of hiding two ports with the same method. The script we used
to run the experiment and the obtained pcap files can also be found in our GitHub repository 8

4.4 integration and deployment
The packets flowing between the Red Team Network and the Corporate Network should be able
to pass through the device hosting the IPS engine only upon successfully being inspected. A chal-
lenge was to make this happen while the attacker‘s machine was having the same IP address as
the one used by the daemon supposed to be spoofing the attacker computer‘s identity. Solutions
like NAT were not applicable, as they would have interfered with the desired transparency. To
prevent addressing conflicts Honeyd had to handle only those parts of the traffic destined to the
attacker that are needed to properly deceive the scanning activities by the defensive personnel.
Neither iptables nor nftables were effective in that filtering, as with all the test configurations
either the traffic was received by both the attacker and Honeyd or by none of them. That made us
look a layer below and find ebtabes - a solution that was able to make the distinction between
the two parts of the traffic - for Honeyd and for the attacker.

Figure 4: IPS interface layout

In order for an ebtables rule to be
processed it needs to be applied to an
interface, which is part of a bridge. Ini-
tially there were no bridge interfaces in
the setup, so the workaround was to
build bridge interfaces which had only
one physical interface attached to them,
instead of two or more as it is by defi-
nition. The layout is shown in figure 4.
This allowed us to have four different
attachment points for the different pro-
cesses running on the system (e.g. ID-
S/IPS engine, honeypot, etc). It also gave
us greater options to adjust the filtering
rules. We did not study whether the
bridges have a negative impact on the
traffic processing performance. However,
if they do, we do not expect it to be high, as all the processing is done in the kernel space without
the need to switch to user space.

In order to enable the bridging in the kernel, some adjustments were needed. First of all
the br_netfileter module had to be loaded. A way of doing this during system boot is by
adding the module‘s name in the /etc/modprobe file. To finally enable the filtering capabilities,
the sysctl changes listed in listing 4.6 were made.

1 net.bridge.bridge-nf-call-arptables = 1

2 net.bridge.bridge-nf-call-ip6tables = 1

3 net.bridge.bridge-nf-call-iptables = 1

Listing 4.6: sysctl adjustments for ebtables

Given this configuration, the IPS engine was always attached between points 1 and 3 in
Figure 4. This provided the ability to filter traffic to and from the attacker‘s machine on interface

8 github.com/hopfenzapfen/rp1/tree/master/Experiments/HidePorts

github.com/hopfenzapfen/rp1/tree/master/Experiments/HidePorts
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ens224. In the same time the spoofing daemon was listening on interface br192, having the label
2 in Figure 4 on the previous page. This enabled the ebtables filtering rules on interface ens192

to effectively handle the connection filtering for traffic incoming or outgoing to the IPS machine.
We also had to find a solution to the problem of directing only certain ports to the honeypot

software, as already mentioned in Section 4.3.1 on page 14. Without manipulation all the traffic
entering the IPS machine was able to reach both the attacker and the Honeyd. So in order to allow
a certain packet to reach only one of them, the packet should be prevented from reaching the
other. An example configuration for blocking a port to the attacker‘s machine, thus permitting it
only to the Honeyd is shown in Listing 4.7. A similar rule should be in place for interface ens192

in order to drop all ports except for those used by the honeypot for fingerprint evasion.

1 ebtables -A OUTPUT -o ens224 --ip-dst 10.0.0.200 -p ipv4 --ip-protocol 6 --ip-destination-port 3389 -j

DROP

Listing 4.7: ebtables rules to permit only specific ports to Honeyd

A problem that we faced during the integration of the IPS engine with Honeyd was that when
Honeyd handled the traffic, it produced a response with a MAC address different than the one
of the attacker‘s computer. It was also responding to ARP requests with the wrong hardware
identifier. This issue was resolved by using the settings shown in Listing 4.8. The command
in line 2 was handling the Ethernet source MAC address, while the one in line 4 was handling
the MAC address specified in the ARP packets. Such a setting also does not interfere with the
ability of the attacker to perform ARP spoofing attacks, as all the ARP packets that he uses will
also have the same source MAC as the one specified in the rewriting commands.

1 # rewrite source MAC address as well as the one in the ARP replies

2 $ ebtables -t nat -A POSTROUTING -o ens192 -j snat --to-src 00:0C:29:71:FD:4D --snat-arp

Listing 4.8: ebtables rules to rewrite the source MAC address of Honeyd

It is also worth mentioning that a transparent configuration like this can also be used to
protect the attacker‘s presence from being detected with periodic ping sweeps. During a ping
sweep a large group of hosts are being contacted by something as simple as an ICMP echo
request. Even though some of them may have filtered the ICMP protocol in their host firewall,
they are still responding to the ARP packets trying to bind their IP addresses with their MAC
address. A fine-tuned IPS or the respective rate limitng rules in ebtables shown in Listing 4.9

1 ebtables -A INPUT -i ens192 -p ARP --limit 20/second -j ACCEPT

2 ebtables -A INPUT -p ARP -i ens192 -j DROP

Listing 4.9: ebtables rules to rate limit ARP



5 R E S U LT S

In this section we present the results of the experiments that we explained in the previous section.

5.1 ids/ips engines tests
The tests we ran against the three different open source IDS/IPS engines are summarised in
Table 1. Only two of the three tested engines were able to change the TTL value of the packets
flowing through them. Moreover, none of them was able to change the value of the TCP window
size, negotiated during the three-way handshake.

IPS Engine TTL handling TCP window handling

Snort 2.9.9.0 yes no
Snort 3 alpha yes no
Suricata 3.2 no no

Table 1: Results from the IPS comparison

However, with reasonable additional development Suricata might be able to regenerate the
TCP segments that are in question. It should also be able for the engine to handle the TTL rewrite
in a similar manner, however it might lead to a lot of additional overhead as the operation should
be done for every packet, not only the initial packet of the TCP session establishment.

5.2 defeating os detection
This section presents in how far we were able to defeat OS detection by evading TCP/IP finger-
printing and hiding ports that we do not want to be found open by an Nmap scan.

5.2.1 TCP/IP fingerprinting

We managed to mislead Nmap’s OS detection by deflecting a certain portion of ports to Honeyd

configured to mimic the behaviour of a Windows host. We were able to stir the port scanner
from concluding that the attacker is running Linux, which Kali actually is, into giving indetermi-
nate result. Furthermore, when using Nmap with the -osscan-guess option, which also lists the
probable but not conclusive guesses, Nmap showed that the system might be running a Windows-
based OS. We consider this as a success, as the Windows 10 host in our environment which we
used as a reference in the scans also caused the OS fingerprinting to give inconclusive results.
An example is given in listing 1 on page 26. A port scan was also ran for comparison against a
Windows 10 machine. The inconclusive result is shown in Listing 2 on page 27

However, during the year prior to the experiments Nmap also made a change in the way the OS
fingerprints were defined. This made them incompatible with Honeyd, so an up to date version
of the signatures will not be available for the attacker if he wants to mimic another OS relevant
to the environment which is being evaluated.
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5.2.2 Hiding open ports

In Figure 5 we list the results of the 1000 port scans we ran in order to find determine the well-
known ports that Nmap scans first. We checked which port is always scanned before ports 80 and
443. Note that these ports are just examples of ports that can be used as Cnc ports. An arbitrary
port can be picked instead of those two, but the randomisation of the sequence in which those
ports are checked will always bring similar results. The results show, that there are only 29 ports
that Nmap considers "well-known" ports. Furthermore, we can see that each port is equally likely
to be scanned before the port we want to hide. The third chart of Figure 5 indicates that less
ports are scanned before either port 80 or 443 is scanned. This result indicates that it is harder to
react on a port scan on time, when trying to hide two ports. Based on these results we decided
to listen to all these ports to detect an Nmap scan.

Figure 5: Distribution of ports that were scanned before port 80 and 443 were reached out of 1000 port
scans.

With the proposed solution for running multiple knockd instances, it is possible to reduce the
rate at which the CnC port appears as being open. Figure 6 on the following page shows our
success rates when one or two ports need to be hidden. As expected, there are cases in which
our solution fails to close the ports on time. This is caused by Nmap scans that start scanning with
the hidden port and by the reaction time of Honeyd.
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Figure 6: Success rate in hiding CnC ports



6 D I S C U S S I O N

We found that there was an IPS engine capable of changing one of the two investigated values -
the TTL of the IP packet. This might reduce the chances of being detected by slow scans utilising
ICMP echo requests and reading the TTL values of the responses. However, such a modification
should be studied further against anomaly detection IDS engines, as there might be no OS
with the combination of the TTL value specific for Windows and the initial TCP window size
characteristic for Linux.

An observation that we made while testing the honeypot software was that it added a few
milliseconds of delay in the probe responses compared to the attacker‘s computer on whose
behalf it was responding. However, scanning software like Nmap, which was used as a de facto
standard for network scanners, does not report on delays, but rather on the total time the scan
required. Moreover, a custom implementation of a port scanner might be needed in order for
the latency anomaly between the responses to be detected. Whether an anomaly detection IDS
is capable of pinpointing it is a matter of future work.

A similar issue is present when working with the port knocking daemon. It does not execute
the rules for closing the supposed malware CnC port quick enough to actually make the service
undetectable in a timely manner. If the port chosen for malware communication is between
the first ports scanned by Nmap, one might expect the port will be scanned as first or second in
less than 10% of the scans. However, based on the results, such expectation does not appear to
be feasible. The delay in the reaction might be contributed to the bursty nature of the scan as
some of the probe packets might already be in the input buffer of the interface before the rules
that should filter them are processed and triggered. However, this requires further investigation
before a proper conclusion is reached.
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In this report we have shown that it is possible for the studied IPS engines to be used for
improving the covertness of the Red Team. This is shown to be possible not only through their
ability to drop suspicious traffic but also through the way they can modify non-malicious flows.
This was shown to be feasible either through the traffic normalisation preprocessors or suggested
to be done by external utilities triggered by predefined rules.

Where we could not find a solution built in the tested products against the active fingerprint-
ing methods, we looked further into other tools primarily used by the Blue Team. By the use
of a honeypot software we successfully prevented a network scanner such as Nmap from finding
out that the attacker‘s machine is running a Linux distribution. We also show that it is possible
to evade a port scan by utilising a port knocking daemon. Although the success rate was about
2/3 it is still statistically better to run such a service than to stay unprotected.

A solution for filtering traffic in an environment with bridged interfaces is also successfully
deployed. It allows further integration of other daemons within the same host as the IPS/IDS
engine. Overall the solution is flexible, but would still require some automation to become easy
to use.

future work
We suggest the following topics as possible future work.

• Some of the features that we suggest in multiple pieces of software might be tested for
interchangeability. For example could the port scanning protection provided by knockd

be exchanged with a similar or better success rate if triggered by a Suricata rule with
LuaJIT script attached to it? Also does any IDS/IPS engine provide customisation of the
responses triggered by the rules configured to drop traffic? Is it possible to simulate some
of the low-interaction capabilities of the honeypots by those customised responses?

• Although we deem a solution which is improving the covertness by some measurable met-
rics against popular intrusion detection and reconnaissance software, they might make the
behaviour of the attacker more suspicious for the engines focused on detecting anomalies.
It is worth investigating further whether a solution like the one we propose is not having
an adverse effect on the detection rate of the attacker when anomalies in the network are
being observed.

• As already discussed, the Honeyd software is not up to date with the latest operating sys-
tems and requires an update of the way it handles port scans. It will also be beneficial if
templates for newer operating systems like Windows 10 get included by default.

• Currently the solutions we suggest require additional configuration in order to make them
fit each separate Red Team engagement. A future work can be done in the direction of
automation and making the solution Plug-and-Play.
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A P P E N D I C E S

1 # OS Scan performed against unprotected Kali machine

2

3 clone@ubuntu-srv:~$ sudo nmap -O --osscan-guess 10.0.0.200

4

5 Starting Nmap 7.01 ( https://nmap.org ) at 2017-02-09 17:01 CET

6 Nmap scan report for 10.0.0.200

7 Host is up (0.00027s latency).

8 All 1000 scanned ports on 10.0.0.200 are closed

9 MAC Address: 00:0C:29:71:FD:4D (VMware)

10 Warning: OSScan results may be unreliable because we could not find at least 1 open and 1 closed port

11 Device type: general purpose

12 Running: Linux 2.4.X|2.6.X

13 OS CPE: cpe:/o:linux:linux_kernel:2.4.20 cpe:/o:linux:linux_kernel:2.6

14 OS details: Linux 2.4.20, Linux 2.6.14 - 2.6.34, Linux 2.6.17 (Mandriva), Linux 2.6.23, Linux 2.6.24

15 Network Distance: 1 hop

16

17 OS detection performed. Please report any incorrect results at https://nmap.org/submit/ .

18 Nmap done: 1 IP address (1 host up) scanned in 3.94 seconds

19

20 # OS Scan performed against the Kali machine running behind the IPS engine and Honeyd used for spoofing.

21

22 sudo nmap -O --osscan-guess 10.0.0.200

23

24 Starting Nmap 7.01 ( https://nmap.org ) at 2017-02-09 17:09 CET

25 Nmap scan report for 10.0.0.200

26 Host is up (0.012s latency).

27 Not shown: 998 closed ports

28 PORT STATE SERVICE

29 445/tcp open microsoft-ds

30 3389/tcp open ms-wbt-server

31 MAC Address: 00:0C:29:71:FD:4D (VMware)

32 Aggressive OS guesses: Microsoft Windows 7 SP0 - SP1 (91%), Microsoft Windows Server 2008 SP2 or Windows

10 Tech Preview or Xbox One (89%), Microsoft Windows Vista SP0 - SP2, Windows Server 2008, or

Windows 7 Ultimate (89%), Microsoft Windows Vista, Windows 7 SP1, or Windows 8.1 Update 1 (89%),

Microsoft Windows Vista (89%), Microsoft Windows 7 or Windows Server 2008 R2 (89%), Windows 7

Professional SP1 (89%), Microsoft Windows 7 (89%), Microsoft Windows Vista SP1 (89%), Microsoft

Windows Vista SP2 or Windows 7 Ultimate SP0 - SP1 (89%)

33 No exact OS matches for host (If you know what OS is running on it, see https://nmap.org/submit/ ).

34 TCP/IP fingerprint:

35 OS:SCAN(V=7.01%E=4%D=2/9%OT=445%CT=1%CU=32225%PV=Y%DS=1%DC=D%G=Y%M=000C29%T

36 OS:M=589C92AD%P=x86_64-pc-linux-gnu)SEQ(SP=FD%GCD=1%ISR=10E%TI=I%CI=I%II=I%

37 OS:SS=O%TS=7)SEQ(SP=105%GCD=2%ISR=10D%TI=I%TS=7)SEQ(SP=103%GCD=1%ISR=105%TI

38 OS:=I%CI=RD%TS=7)OPS(O1=M5B4NW0NNT11%O2=M5B4NW0NNT11%O3=M5B4NW0NNT11%O4=M5B

39 OS:4NW0NNT11%O5=M5B4NW0NNT11%O6=M5B4NW0NNT11)WIN(W1=2000%W2=2000%W3=2000%W4

40 OS:=2000%W5=2000%W6=2000)ECN(R=Y%DF=Y%T=FFFE%W=2000%O=M5B4NW0NNT10%CC=N%Q=)

41 OS:T1(R=Y%DF=Y%T=FFFE%S=O%A=S+%F=AS%RD=0%Q=)T2(R=Y%DF=Y%T=FFFE%W=0%S=A%A=S%

42 OS:F=AR%O=%RD=0%Q=)T3(R=Y%DF=Y%T=FFFE%W=0%S=A%A=Z%F=AR%O=%RD=0%Q=)T4(R=Y%DF

43 OS:=Y%T=FFFE%W=0%S=A%A=Z%F=R%O=%RD=0%Q=)T5(R=Y%DF=Y%T=3E%W=0%S=Z%A=S+%F=AR%

44 OS:O=%RD=0%Q=)T6(R=Y%DF=Y%T=3E%W=0%S=A%A=Z%F=R%O=%RD=0%Q=)T7(R=Y%DF=Y%T=3E%

45 OS:W=0%S=Z%A=S+%F=AR%O=%RD=0%Q=)U1(R=Y%DF=N%T=3E%IPL=164%UN=0%RIPL=G%RID=G%

46 OS:RIPCK=G%RUCK=G%RUD=G)IE(R=Y%DFI=N%T=3E%CD=Z)

47

48 Network Distance: 1 hop

49

50 OS detection performed. Please report any incorrect results at https://nmap.org/submit/ .

51 Nmap done: 1 IP address (1 host up) scanned in 68.55 seconds

Listing 1: Sample Nmap result from scans prior to and after the manipulations
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1 sudo nmap -O --osscan-guess 10.0.0.60

2

3

4 Starting Nmap 7.01 ( https://nmap.org ) at 2017-02-09 17:11 CET

5 Nmap scan report for 10.0.0.60

6 Host is up (0.00016s latency).

7 Not shown: 998 filtered ports

8 PORT STATE SERVICE

9 3389/tcp open ms-wbt-server

10 5357/tcp open wsdapi

11 MAC Address: 00:0C:29:1E:BE:B8 (VMware)

12 Warning: OSScan results may be unreliable because we could not find at least 1 open and 1 closed port

13 Device type: general purpose

14 Running (JUST GUESSING): FreeBSD 6.X (94%)

15 OS CPE: cpe:/o:freebsd:freebsd:6.2

16 Aggressive OS guesses: FreeBSD 6.2-RELEASE (94%)

17 No exact OS matches for host (test conditions non-ideal).

18 Network Distance: 1 hop

19

20 OS detection performed. Please report any incorrect results at https://nmap.org/submit/ .

21 Nmap done: 1 IP address (1 host up) scanned in 24.19 seconds

Listing 2: Sample Nmap result from scans of a Windows 10 machine

1 cat /etc/honeypot/honeyd.conf

2

3 create windows

4 set windows default icmp action open

5 set windows default tcp action reset

6 set windows default udp action reset

7 set windows personality "Windows-7"

8 add windows udp port 53 closed

9 add windows udp port 139 open

10 add windows tcp port 445 open

11 add windows tcp port 3389 open

12

13 set windows ethernet "00:0c:29:16:3c:80"

14 bind 10.0.0.200 windows

Listing 3: Sample Honeyd configuration for achieving the results above
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1 #Translation table configuration listed by ebtables -t nat -L

2

3 Bridge table: nat

4

5 Bridge chain: PREROUTING, entries: 0, policy: ACCEPT

6

7 Bridge chain: OUTPUT, entries: 0, policy: ACCEPT

8

9 Bridge chain: POSTROUTING, entries: 1, policy: ACCEPT

10 -o ens192 -j snat --to-src 0:c:29:71:fd:4d --snat-arp --snat-target ACCEPT

11

12 #Filtering rules configuration listed by ebtables -L

13

14 Bridge table: filter

15

16 Bridge chain: INPUT, entries: 4, policy: ACCEPT

17 -p IPv4 -i ens192 --ip-dst 10.0.0.200 --ip-proto tcp --ip-dport 0:21 -j DROP

18 -p IPv4 -i ens192 --ip-dst 10.0.0.200 --ip-proto tcp --ip-dport 23:444 -j DROP

19 -p IPv4 -i ens192 --ip-dst 10.0.0.200 --ip-proto tcp --ip-dport 446:3388 -j DROP

20 -p IPv4 -i ens192 --ip-dst 10.0.0.200 --ip-proto tcp --ip-dport 3390:65535 -j DROP

21

22 Bridge chain: FORWARD, entries: 0, policy: ACCEPT

23

24 Bridge chain: OUTPUT, entries: 4, policy: ACCEPT

25 -p IPv4 -o ens224 --ip-dst 10.0.0.200 --ip-proto tcp --ip-dport 22 -j DROP

26 -p IPv4 -o ens224 --ip-dst 10.0.0.200 --ip-proto udp --ip-dport 53 -j DROP

27 -p IPv4 -o ens224 --ip-dst 10.0.0.200 --ip-proto tcp --ip-dport 445 -j DROP

28 -p IPv4 -o ens224 --ip-dst 10.0.0.200 --ip-proto tcp --ip-dport 3389 -j DROP

29 snorty@ubuntu-snort:~$

Listing 4: Resulting ebtables configuration
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