
Security and Performance Analysis of
Encrypted NoSQL Databases

M.W. Grim BSc., Abe Wiersma BSc.
Supervisor: F. Turkmen PhD

February 6, 2017

University of Amsterdam



Introduction

Problem
Securely storing BigData on NoSQL database systems.

Necessary because:
• PRISM
• Security vulnerabilities

1. Ashley Madison
2. Yahoo
3. LinkedIn

Solution
Encrypt your plain-text data.

1



Introduction

Problem
Securely storing BigData on NoSQL database systems.

Necessary because:
• PRISM
• Security vulnerabilities

1. Ashley Madison
2. Yahoo
3. LinkedIn

Solution
Encrypt your plain-text data.

1



Introduction

Problem
Securely storing BigData on NoSQL database systems.

Necessary because:
• PRISM
• Security vulnerabilities

1. Ashley Madison
2. Yahoo
3. LinkedIn

Solution
Encrypt your plain-text data.

1



Introduction
Plain data

2



Introduction
Encryption at rest

3



Introduction
Encryption at rest

4



Introduction
Research questions

• How is SQL-aware encryption realised in NoSQL database engines?
• What kind of security does it provide?
• How does it compare to encryption at rest?

• What is the performance impact of enabling encryption?
• What limitations are their in terms of functionality?

5



Computation over encrypted
data



Computation over encrypted data
End-to-end encrypted database

• Key stored at client.
• Encryption and decryption by client (end-to-end).

• Server can’t read data, how to query?
• Homomorphic encryption / Order Revealing Encryption

6



Computation over encrypted data
End-to-end encrypted database

• Key stored at client.
• Encryption and decryption by client (end-to-end).
• Server can’t read data, how to query?

• Homomorphic encryption / Order Revealing Encryption

6



Computation over encrypted data
End-to-end encrypted database

• Key stored at client.
• Encryption and decryption by client (end-to-end).
• Server can’t read data, how to query?
• Homomorphic encryption / Order Revealing Encryption

6



Computation over encrypted data
Paillier

• Partially homomorphic.
• Encrypted addition.

E(m1) + E(m2) = E(m1 + m2)

7



Computation over encrypted data
ElGamal

• Partially homomorphic.
• Encrypted multiplication.

E(m1) ∗ E(m2) = E(m1 ∗ m2)

8



Computation over encrypted data
Order Revealing Encryption

Public compare function on encrypted data.

-1 smaller
x > y 0 equal

1 greater

9



SecureMongo



SecureMongo

• Based on work by Alves et al.
• Python connector wrapper.
• Logic at client side.
• End-to-end encrytption with queries on encrypted data.

Our work:

• Sequential inserts.
• Serialized AVL tree.
• Tree balancing at server side.

10



SecureMongo

• Based on work by Alves et al.
• Python connector wrapper.
• Logic at client side.
• End-to-end encrytption with queries on encrypted data.

Our work:

• Sequential inserts.
• Serialized AVL tree.
• Tree balancing at server side.

10



SecureMongo
AVL tree

Self-balancing binary search tree.

Algorithm Average Worst Case
Space O(n) O(n)
Search O(log n) O(log n)
Insert O(log n) O(log n)
Delete O(log n) O(log n)

11



SecureMongo
overview

12



SecureMongo
selection

13



SecureMongo
insertion

14



Method



Method
Our work

• Studied homomorphic / order revealing encryption
• Improved earlier work by Alves et al.
• Evaluated performance and security

1. Encryption at rest
2. End-to-end encryption

15



Method
Plain vs. encryption at rest

YCSB

16



Method
Plain vs. encryption at rest

• YCSB default core workload.
• Adjustable with parameters.
• Can extend framework with alternative workloads.

recordcount 16,000,000
operationcount 100,000
readproportion 0.5
updateproportion 0.5

17



Method
Plain vs. computation over encrypted data

• BenchmarkDB
• Python framework
• IMDB movies

18



Results encryption at rest



Results
Performance encryption at rest

9000 9400 9800 10200
Insert operations per second

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040
Not encrypted

9000 9400 9800 10200
Insert operations per second

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040
Encryption at rest

140 160 180 200 220
Read/update operations per second

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Not encrypted

140 160 180 200 220
Read/update operations per second

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Encryption at rest

19



Results
Performance encryption at rest

Insert
8000

8500

9000

9500

10000

10500

m
ed

ia
n(

op
s/

s)

Not encrypted
Encryption at rest

Read/Update
150

160

170

180

190

200

m
ed

ia
n(

op
s/

s)

Not encrypted
Encryption at rest

Insert Read/Update
4.9% lower throughput 7.3% lower throughput 20



Results
Performance encryption at rest

Read Update
20000

25000

30000

35000

40000

45000

50000

55000

60000

m
ea

n(
La

te
nc

y 
(u

s)
)

Not encrypted
Encryption at rest

Insert
550

600

650

700

750

800

850

900

m
ea

n(
La

te
nc

y 
(u

s)
)

Not encrypted
Encryption at rest

Insert Read Update
5.2% slower 7.4% slower 7.5% slower 21



Results SecureMongo



Results
Performance SecureMongo

1000 10000 100000
Database size

0.00

0.02

0.04

0.06

0.08

0.10

A
ve

ra
ge

 la
te

nc
y

Mongo read
MongoSecure read

1000 10000 100000
Database size

0.00

0.02

0.04

0.06

0.08

0.10

A
ve

ra
ge

 la
te

nc
y

Mongo write
MongoSecure write

22



Results security



Results
Security threat model

Threat 1
Full access to the database server, both logical and physical.

Threat 2
The application server and database server are compromised arbitrarily.

23



Results
Security threat model

Threat 1: plain
Issue
The plain-text data is there no elbow grease required for access.

24



Results
Security threat model

Threat 1: encrypted at rest
Issue
Key is continuously needed on server.

1. Cold-boot extraction from memory (always).
2. Extract from hard-disk (if key is stored on disk).
3. Retrievable from secondary server by posing as the database-server

(can be negated by two factor key retrieval).

The AES used is AES-256CBC which is IND-CPA secure. The AES
cryptosystem is run using OpenSSL in accordance with FIPS 140-2.

25



Results
Security threat model

Threat 1: SecMongo framework

1. AES encryption used in AES-128CBC is IND-CPA secure. PyCrypto
is used with a randomly generated IV for every encryption.

2. ORE proposed by Lewi and WU offers IND-OCPA.
3. ElGamal is proven IND-CPA secure.
4. Paillier is proven IND-CPA secure.
5. The AVL-tree implementation negates inference attack robustness.

26



Results
Security threat model

Threat 2: plain
Issue
The plain set-up is still utterly compromised.

27



Results
Security threat model

Threat 2: encrypted at rest
Issue
Key retrieval was already possible using a cold-boot attack, threat
expansion means decrypted data can be retrieved by posing as the
application.

28



Results
Security threat model

Threat 2: SecMongo framework
Issue
Key is continuously needed by the application.

29



Conclusion



Conclusion

Solution

Encrypt your plain-text data.

✓
TradeOff
Security ↔ Performance

30



Conclusion

Solution

Encrypt your plain-text data.✓

TradeOff
Security ↔ Performance

30



Conclusion

Solution

Encrypt your plain-text data.✓
TradeOff
Security ↔ Performance

30



Discussion & Future work



Discussion & Future work

• Native Tree traversal in MongoDB would increase performance for
Secure Mongo Framework, iterative tree traversal would be done on
the server.

• Although range requests are possible using the ORE encryption, they
are not yet implemented.

31



Questions?

31


	Introduction
	Computation over encrypted data
	SecureMongo
	Method
	Results encryption at rest
	Performance

	Results SecureMongo
	Results security
	Conclusion
	Discussion & Future work

