Security and Performance Analysis of
Encrypted NoSQL Databases

M.W. Grim BSc., Abe Wiersma BSc.
Supervisor: F. Turkmen PhD

February 6, 2017

University of Amsterdam

Introduction

Securely storing BigData on NoSQL database systems.

Introduction

Securely storing BigData on NoSQL database systems.

Necessary because:
= PRISM

= Security vulnerabilities

1. Ashley Madison
2. Yahoo
3. LinkedIn

Introduction

Securely storing BigData on NoSQL database systems.

Necessary because:
= PRISM

= Security vulnerabilities

1. Ashley Madison
2. Yahoo
3. LinkedIn

Solution

Encrypt your plain-text data.

Introduction

Plain data

a 0000

TLS connection (XEXNNNNN}
I plaintext data

plaintext data

Introduction

Encryption at rest

a 0000

TLS connection (XEXNNNNN}
I plaintext data

decryption key

encrypted data

Introduction

Encryption at rest

Application

Application data is encrypted by application itself
before storing it to disk.

File system

Individual files and directories are encrypted by the
filesystem when stored to disk.

Block manager

Data blocks are encrypted by the driver before they are
written to disk.

Hardware

Encryption of data is fully handled by the firmware of
the disk.

Introduction

Research questions

= How is SQL-aware encryption realised in NoSQL database engines?
= What kind of security does it provide?
= How does it compare to encryption at rest?

= What is the performance impact of enabling encryption?

= What limitations are their in terms of functionality?

Computation over encrypted
data

Computation over encrypted data

End-to-end encrypted database

& 0ooo

TLS connection

——

encrypted data
decryption key I

encrypted data

= Key stored at client.

= Encryption and decryption by client (end-to-end).

Computation over encrypted data

End-to-end encrypted database

& 0ooo

TLS connection

——

encrypted data
decryption key I

encrypted data

= Key stored at client.
= Encryption and decryption by client (end-to-end).

= Server can't read data, how to query?

Computation over encrypted data

End-to-end encrypted database

& 0ooo

TLS connection

——

encrypted data
decryption key I

encrypted data

= Key stored at client.
= Encryption and decryption by client (end-to-end).
= Server can't read data, how to query?

= Homomorphic encryption / Order Revealing Encryption

Computation over encrypted data

Paillier

= Partially homomorphic.

= Encrypted addition.

E(my) + E(mp) = E(my + mp)

Computation over encrypted data

ElGamal

= Partially homomorphic.

= Encrypted multiplication.

E(my) * E(my) = E(my % my)

Computation over encrypted data

Order Revealing Encryption

Public compare function on encrypted data.

2016
'@ore '@ORE
-1 smaller . .
x>y 0 equal \?cl:(ﬁEp
1 greater om
x>y =-1

SecureMongo

= Based on work by Alves et al.
= Python connector wrapper.
= Logic at client side.

= End-to-end encrytption with queries on encrypted data.

10

= Based on work by Alves et al.
= Python connector wrapper.
= Logic at client side.

= End-to-end encrytption with queries on encrypted data.

Our work:

= Sequential inserts.
= Serialized AVL tree.

= Tree balancing at server side.

10

SecureMongo

AVL tree

Self-balancing binary search tree.

Algorithm Average Worst Case

Space O(n) O(n)

Search O(logn) O(log n)
Insert O(logn) O(log n)
Delete O(logn) O(log n)

11

SecureMongo

overview

movies_idx_

movies_idx_
rate

_|__| The Shawshank Redemption, |_ | [R
1994,9 :

Rain Men,
1988, 8

The Dark Knight, :

The Boys from Brazil, J |
1978,7

i 7 1. Interstellar, B I I
2014,9
I Memento, B I i
2000, 9
S R . The Usual Suspects N T
1995, 9 °

ﬁOrder Revealing encryption HAES encryption HOrder Revealing encryption

12

SecureMongo

selection

Client

PUStIVWRIxVaY870mar
mo7S+swUCLdrzoCKaSCd

ChTbZAozWpOnBPCSRS!
NukICWMZXEO/CARG

k32b1rxa2/x1XNiud

N\ AN 9AD1L/L3xsulige)Qp/

Step 1 . XeLQK

1 (ross) fore—(Tacit) 61xQKSaRoWwLe1qsM
\/ \/ ©e3yCOAXWKBIUHOXmG3

Aetoh-, _-fetch-.___fetch.._
% v

H ¥
Step2 (+GuN) (Go@ (W) (xeLak
kbax:) |

IFux+MLoK+Ka2TeGoAm
Xy2hu3Azm4QO2j+657
Yi+/GuQekaM43NdMijn

RNTnTelixuqsPeRrVB

2) sz (anac) ()
o
The Usual Suspects
s doorypt 1995,9

06K7LyKXbQd61bTbR2
LPx9cpNSPyHOKaoEeNx

13

SecureMongo

insertion

Client movies_idx_
year

pUstiVWR{xVaY870m8r
mo7S+swUCLdrzoCKqSCd

ChTbZAozWpOnBPcSR5f
NukiCWMzXEO/xcARe

k32b1rxa2/x1XNiud
9Ab1L/L3xsulligeQp/

6txQKSaRoWwLe1g5M
e3yCOAXWKBIUHOXmG3

JFux+MLoK+Ka2TeGcAm
xy2hu3Azm4QO2j+6S7
Yi+/GuQekaM43NdMijjn
RNTnTelixugsPeRrVB
" 0BK7LyKXbQd61bTbR2
LPx9cpNSPyHOKaoEeNx

14

Method

Method

Our work

= Studied homomorphic / order revealing encryption
= |mproved earlier work by Alves et al.

= Evaluated performance and security

1. Encryption at rest
2. End-to-end encryption

15

tion at rest

YCSB

Command-line parameters
- DB to use

+ Target throughput

* Number of threads

Workload
parameter file

YCSB client

* RIW mix

ant S
+ Record size - Client 7

+ Data set Workload threads
. executor

‘ / Stats. r

Extensible: define new workloads |

DB client

ZiN

Ho0d

| Extensible: plug in new clients

16

Method

Plain vs. encryption at rest

= YCSB default core workload.
= Adjustable with parameters.

= Can extend framework with alternative workloads.

recordcount 16,000,000
operationcount 100,000
readproportion 0.5
updateproportion 0.5

17

Method

Plain vs. computation over encrypted data

= BenchmarkDB

= Python framework

= |[MDB movies

Client movies_idx_
year
PUStiVWRIxVaY870msr
TN mo7S+swUCLdrzoCKqSCd
(+/GuN'\
| kbax2 | ChTbZAozWpOnBPCSRSf
- NUKICWMZXEO/XCARC
I QkaEp Qo@j k32b1rxa2/x1XNiud
‘YChom L=s23 9Ab1L/L3xsu/ligeJQp/
6txQKSaRoWwLe1q5M
"""""""""" Bore ©3yCOAXWKBIUHOXmGS

insert|

\Z4Ae)

S
/

IFux+MLoK+Ka2TeGcAm
xy2hu3Azm4QO2j+657
Yi+/GuQekaM43NdMjjn
RNTnTelixugsPeRrVB
" 0BK7LyKXbQd61bTbR2
LPx9cpNSPyHOKaoEeNx

18

Results encryption at rest

Results

Performance encryption at rest

0.0040 0.07
0.0035 Not encrypted 0.06 1 Not encrypted
0.0030 ﬂ 0.05
0.0025

‘ 0.04
0.0020 [/
0.0015 i r“ 0.03
0.0010 7 ‘ 0.02 al

\ [z {
0.0005 ‘ ‘ 0.01 | ‘
0.0000 0.00 ! “
9000 9400 9800 10200 140 160 180 200 220
Insert operations per second Read/update operations per second
0.0040 0.07
0.0035 Encryption at rest 0.06 [T Encryption at rest
0.0030 0.05 r
0.0025 0.04
0.0020 0.03
0.0015 ’ ’——‘
0.0010 0.02
0.0005 0.01
0.0000 0.00
9000 9400 9800 10200 140 160 180 200 220
Insert operations per second Read/update operations per second

19

Results

Performance encryption at rest

10500 200
[Not encrypted [Not encrypted
I Encryption at rest I Encryption at rest
10000 190
+
a —~
¥ 9500 ¥ 180
Q. Q.
))
c c
Kl S
‘8 9000 8 170
IS S
8500 160
8000 150
Insert Read/Update
Insert Read/Update

4.9% lower throughput 7.3% lower throughput 20

Results

Performance encryption at rest

900
1 Not encrypted 60000 1 Not encrypted
850 I Encryption at rest I Encryption at rest
55000
__ 800 e 50000 —E
B B
- = 45000
& 750 I
g g
] < 40000
:C', 700 :C‘,
8 S 35000
E 650 E
30000
600 25000
550 20000
Insert Read Update
Insert Read Update

5.2% slower 7.4% slower 7.5% slower 21

Results SecureMongo

Results

Performance SecureMongo

Mongo read Mongo write
@ MongoSecure read @ MongoSecure write

0.10 0.10

0.08 0.08
> >
(5] [5)
] g
@ 0.06 T 0.06
[o
j=2] j=2)
s o
2 g
< 0.04 < 0.04

0.02 0.02

0.00 0.00

1000 10000 100000 1000 10000 100000
Database size Database size

22

Results security

Results

Security threat model

Client E Server '

i 7 =

. > '

i application query ! NoSQL = -/-+{{ O i

- - - l

i 0 o ° |

! 4 0 query on storedas || |

1 decrypt on client? 1 x data X !

i / ' i

i 7 i ‘

i 0 i
Threat 1

Full access to the database server, both logical and physical.

Threat 2

The application server and database server are compromised arbitrarily.
23

Results

Security threat model

Threat 1: plain

The plain-text data is there no elbow grease required for access.

24

Results

Security threat model

Threat 1: encrypted at rest
Issue

Key is continuously needed on server.

1. Cold-boot extraction from memory (always).
2. Extract from hard-disk (if key is stored on disk).

3. Retrievable from secondary server by posing as the database-server
(can be negated by two factor key retrieval).

The AES used is AES-256CBC which is IND-CPA secure. The AES
cryptosystem is run using OpenSSL in accordance with FIPS 140-2.

25

Results

Security threat model

Threat 1: SecMongo framework

1.

A A

AES encryption used in AES-128CBC is IND-CPA secure. PyCrypto
is used with a randomly generated IV for every encryption.

ORE proposed by Lewi and WU offers IND-OCPA.
ElGamal is proven IND-CPA secure.
Paillier is proven IND-CPA secure.

The AVL-tree implementation negates inference attack robustness.

26

Results

Security threat model

Threat 2: plain

The plain set-up is still utterly compromised.

27

Results

Security threat model

Threat 2: encrypted at rest

Key retrieval was already possible using a cold-boot attack, threat
expansion means decrypted data can be retrieved by posing as the
application.

28

Results

Security threat model

Threat 2: SecMongo framework

Key is continuously needed by the application.

29

Conclusion

Conclusion

Solution

Encrypt your plain-text data.

30

Conclusion

Solution

Encrypt your plain-text data.v’

30

Conclusion

Solution

Encrypt your plain-text data.v’

TradeOff
Security < Performance

30

Discussion & Future work

Discussion & Future work

= Native Tree traversal in MongoDB would increase performance for
Secure Mongo Framework, iterative tree traversal would be done on
the server.

= Although range requests are possible using the ORE encryption, they
are not yet implemented.

31

Questions?

	Introduction
	Computation over encrypted data
	SecureMongo
	Method
	Results encryption at rest
	Performance

	Results SecureMongo
	Results security
	Conclusion
	Discussion & Future work

