
Security and Performance Analysis of
Encrypted NoSQL Databases

M.W. Grim BSc., Abe Wiersma BSc.
Supervisor: F. Turkmen PhD

February 6, 2017

University of Amsterdam



Introduction

Problem
Securely storing BigData on NoSQL database systems.

Necessary because:
• PRISM
• Security vulnerabilities

1. Ashley Madison
2. Yahoo
3. LinkedIn

Solution
Encrypt your plain-text data.
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Introduction
Plain data
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Introduction
Encryption at rest
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Introduction
Encryption at rest
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Introduction
Research questions

• How is SQL-aware encryption realised in NoSQL database engines?
• What kind of security does it provide?
• How does it compare to encryption at rest?

• What is the performance impact of enabling encryption?
• What limitations are their in terms of functionality?
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Computation over encrypted data
End-to-end encrypted database

• Key stored at client.
• Encryption and decryption by client (end-to-end).

• Server can’t read data, how to query?
• Homomorphic encryption / Order Revealing Encryption
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Computation over encrypted data
Paillier

• Partially homomorphic.
• Encrypted addition.

E(m1) + E(m2) = E(m1 + m2)
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Computation over encrypted data
ElGamal

• Partially homomorphic.
• Encrypted multiplication.

E(m1) ∗ E(m2) = E(m1 ∗ m2)
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Computation over encrypted data
Order Revealing Encryption

Public compare function on encrypted data.

-1 smaller
x > y 0 equal

1 greater
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SecureMongo

• Based on work by Alves et al.
• Python connector wrapper.
• Logic at client side.
• End-to-end encrytption with queries on encrypted data.

Our work:

• Sequential inserts.
• Serialized AVL tree.
• Tree balancing at server side.
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SecureMongo
AVL tree

Self-balancing binary search tree.

Algorithm Average Worst Case
Space O(n) O(n)
Search O(log n) O(log n)
Insert O(log n) O(log n)
Delete O(log n) O(log n)
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SecureMongo
overview
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SecureMongo
selection
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SecureMongo
insertion
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Method



Method
Our work

• Studied homomorphic / order revealing encryption
• Improved earlier work by Alves et al.
• Evaluated performance and security

1. Encryption at rest
2. End-to-end encryption
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Method
Plain vs. encryption at rest

YCSB
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Method
Plain vs. encryption at rest

• YCSB default core workload.
• Adjustable with parameters.
• Can extend framework with alternative workloads.

recordcount 16,000,000
operationcount 100,000
readproportion 0.5
updateproportion 0.5
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Method
Plain vs. computation over encrypted data

• BenchmarkDB
• Python framework
• IMDB movies
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Results
Performance encryption at rest
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Results
Performance encryption at rest
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Results
Performance encryption at rest

Read Update
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Results
Performance SecureMongo
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Results
Security threat model

Threat 1
Full access to the database server, both logical and physical.

Threat 2
The application server and database server are compromised arbitrarily.
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Results
Security threat model

Threat 1: plain
Issue
The plain-text data is there no elbow grease required for access.
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Results
Security threat model

Threat 1: encrypted at rest
Issue
Key is continuously needed on server.

1. Cold-boot extraction from memory (always).
2. Extract from hard-disk (if key is stored on disk).
3. Retrievable from secondary server by posing as the database-server

(can be negated by two factor key retrieval).

The AES used is AES-256CBC which is IND-CPA secure. The AES
cryptosystem is run using OpenSSL in accordance with FIPS 140-2.
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Results
Security threat model

Threat 1: SecMongo framework

1. AES encryption used in AES-128CBC is IND-CPA secure. PyCrypto
is used with a randomly generated IV for every encryption.

2. ORE proposed by Lewi and WU offers IND-OCPA.
3. ElGamal is proven IND-CPA secure.
4. Paillier is proven IND-CPA secure.
5. The AVL-tree implementation negates inference attack robustness.
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Results
Security threat model

Threat 2: plain
Issue
The plain set-up is still utterly compromised.
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Results
Security threat model

Threat 2: encrypted at rest
Issue
Key retrieval was already possible using a cold-boot attack, threat
expansion means decrypted data can be retrieved by posing as the
application.
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Results
Security threat model

Threat 2: SecMongo framework
Issue
Key is continuously needed by the application.
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Conclusion

Solution

Encrypt your plain-text data.

✓
TradeOff
Security ↔ Performance
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Discussion & Future work

• Native Tree traversal in MongoDB would increase performance for
Secure Mongo Framework, iterative tree traversal would be done on
the server.

• Although range requests are possible using the ORE encryption, they
are not yet implemented.
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Questions?
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