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Solution

Encrypt your plain-text data.
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Introduction

Encryption at rest

Application

Application data is encrypted by application itself
before storing it to disk.

File system

Individual files and directories are encrypted by the
filesystem when stored to disk.

Block manager

Data blocks are encrypted by the driver before they are
written to disk.

Hardware

Encryption of data is fully handled by the firmware of
the disk.




Introduction

Research questions

= How is SQL-aware encryption realised in NoSQL database engines?
= What kind of security does it provide?
= How does it compare to encryption at rest?

= What is the performance impact of enabling encryption?

= What limitations are their in terms of functionality?
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= Homomorphic encryption / Order Revealing Encryption



Computation over encrypted data

Paillier

= Partially homomorphic.

= Encrypted addition.

E(my) + E(mp) = E(my + mp)



Computation over encrypted data

ElGamal

= Partially homomorphic.

= Encrypted multiplication.

E(my) * E(my) = E(my % my)



Computation over encrypted data

Order Revealing Encryption

Public compare function on encrypted data.
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= Based on work by Alves et al.
= Python connector wrapper.
= Logic at client side.

= End-to-end encrytption with queries on encrypted data.
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= Based on work by Alves et al.
= Python connector wrapper.
= Logic at client side.

= End-to-end encrytption with queries on encrypted data.

Our work:

= Sequential inserts.
= Serialized AVL tree.

= Tree balancing at server side.
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SecureMongo

AVL tree

Self-balancing binary search tree.

Algorithm Average Worst Case

Space O(n) O(n)

Search O(logn)  O(log n)
Insert O(logn)  O(log n)
Delete O(logn)  O(log n)
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SecureMongo

overview
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SecureMongo

selection
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SecureMongo

insertion
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Method

Our work

= Studied homomorphic / order revealing encryption
= |mproved earlier work by Alves et al.

= Evaluated performance and security

1. Encryption at rest
2. End-to-end encryption
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tion at rest
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Method

Plain vs. encryption at rest

= YCSB default core workload.
= Adjustable with parameters.

= Can extend framework with alternative workloads.

recordcount 16,000,000
operationcount 100,000
readproportion 0.5
updateproportion 0.5
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Method

Plain vs. computation over encrypted data

= BenchmarkDB

= Python framework

= |[MDB movies

Client movies_idx_
year
PUStiVWRIxVaY870msr
TN mo7S+swUCLdrzoCKqSCd
(+/GuN'\
| kbax2 | ChTbZAozWpOnBPCSRSf
- NUKICWMZXEO/XCARC
I QkaEp Qo@j k32b1rxa2/x1XNiud
‘YChom L=s23 9Ab1L/L3xsu/ligeJQp/
6txQKSaRoWwLe1q5M
"""""""""" Bore ©3yCOAXWKBIUHOXmGS

insert|

\Z4Ae )

S
/

IFux+MLoK+Ka2TeGcAm
xy2hu3Azm4QO2j+657
Yi+/GuQekaM43NdMjjn
RNTnTelixugsPeRrVB
" 0BK7LyKXbQd61bTbR2
LPx9cpNSPyHOKaoEeNx

18



Results encryption at rest




Results

Performance encryption at rest
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Results

Performance encryption at rest
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Results

Performance encryption at rest
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Results

Performance SecureMongo
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Results

Security threat model

Client E Server '
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Threat 1

Full access to the database server, both logical and physical.

Threat 2

The application server and database server are compromised arbitrarily.
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Results

Security threat model

Threat 1: plain

The plain-text data is there no elbow grease required for access.
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Results

Security threat model

Threat 1: encrypted at rest
Issue

Key is continuously needed on server.

1. Cold-boot extraction from memory (always).
2. Extract from hard-disk (if key is stored on disk).

3. Retrievable from secondary server by posing as the database-server
(can be negated by two factor key retrieval).

The AES used is AES-256CBC which is IND-CPA secure. The AES
cryptosystem is run using OpenSSL in accordance with FIPS 140-2.
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Results

Security threat model

Threat 1: SecMongo framework

1.

A A

AES encryption used in AES-128CBC is IND-CPA secure. PyCrypto
is used with a randomly generated IV for every encryption.

ORE proposed by Lewi and WU offers IND-OCPA.
ElGamal is proven IND-CPA secure.
Paillier is proven IND-CPA secure.

The AVL-tree implementation negates inference attack robustness.
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Results

Security threat model

Threat 2: plain

The plain set-up is still utterly compromised.
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Results

Security threat model

Threat 2: encrypted at rest

Key retrieval was already possible using a cold-boot attack, threat
expansion means decrypted data can be retrieved by posing as the
application.
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Results

Security threat model

Threat 2: SecMongo framework

Key is continuously needed by the application.
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Conclusion

Solution

Encrypt your plain-text data.
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Conclusion

Solution

Encrypt your plain-text data.v’
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Conclusion

Solution

Encrypt your plain-text data.v’

TradeOff
Security < Performance
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Discussion & Future work

= Native Tree traversal in MongoDB would increase performance for
Secure Mongo Framework, iterative tree traversal would be done on
the server.

= Although range requests are possible using the ORE encryption, they
are not yet implemented.
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Questions?
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