Attacks on Android 7 File Based Encryption

Ronan Loftus¹ & Marwin Baumann¹

¹Systems and Network Engineering MSc. University of Amsterdam

Research Project 1, 2017

Introduction

Overview Attacks Conclusion Encryption Landscape Motivation

Table of Contents

- Encryption Landscape
- Motivation
- Overview
 - How It's Made

3 Attacks

- Remanence
- Exhaustive Search
- Authentication Subversion

4 Conclusion

- Results
- Recommendations

Encryption Landscape Motivation

Encryption Since Android 3.0

'Full Disk' Encryption:

• Encrypts the data partition

Major problem:

• Needs user interaction after reboot

Introduction Overview

Encryption Landscape Motivation

New in Android 7.0

File Based Encryption:

- Still only encrypts the data partition
- Each file encrypted with separate key
- Per user encryption

Introduction

Encryption Landscap Motivation

Why do people want to encrypt their devices?

Ronan Loftus & Marwin Baumann

Encryption Landscape Motivation

Why do people want to encrypt their devices?

To protect data at rest.

- When device is lost/stolen keep your personal data confidential
- Businesses can feel more comfortable keeping sensitive data on employee devices

Encryption Landscape Motivation

What's the question?

Our primary research question:

Is Android 7 File Based Encryption vulnerable to the same attacks as Full Disk Encryption in previous Android versions?

Encryption Landscape Motivation

What's the question?

Our primary research question:

Is Android 7 File Based Encryption vulnerable to the same attacks as Full Disk Encryption in previous Android versions?

Kind of. . .

Ronan Loftus & Marwin Baumann

How It's Made

Table of Contents

Introduction

- Encryption Landscape
- Motivation
- Overview
 - How It's Made

3 Attacks

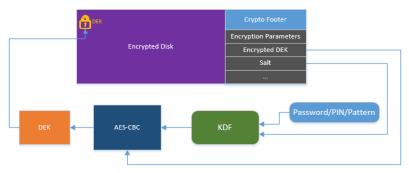
- Remanence
- Exhaustive Search
- Authentication Subversion

4 Conclusion

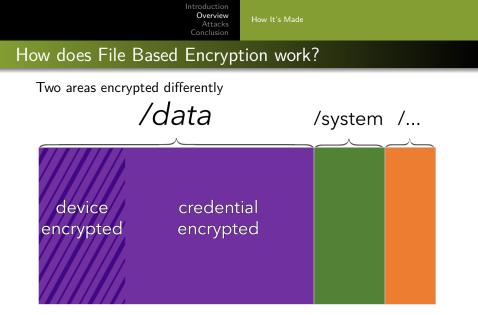
- Results
- Recommendations

How It's Made

How does Full Disk Encryption work?


- Uses dm-crypt
- (u)Randomly created master key (DEK) encrypts data partition using AES-128 (CBC)
- DEK encrypted with KEK using, at least, AES-128 (CBC)

Master key is static until partition wiped.


How It's Made

Full Disk Encryption overview

Decrypting the Disk

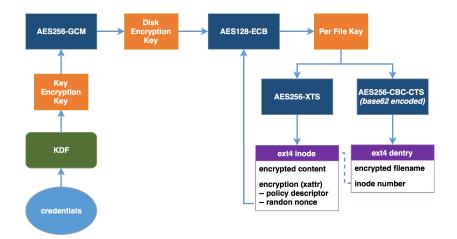
ヘロト ヘヨト ヘヨト ヘヨト

This solves the big problem with Full Disk Encryption mentioned earlier.

How It's Made

How does File Based Encryption work? Many keys

Uses native ext4 filesystem level encryption


- 512 bit master key is encrypted using AES-256 in GCM mode
- File names encrypted using AES-256 in CBC-CTS mode
- File contents encrypted using AES-256 in XTS mode

Master key still static!

How It's Made

イロト イポト イヨト イヨト

File Based Encryption overview

Remanence Exhaustive Search Authentication Subversion

Table of Contents

Introduction

- Encryption Landscape
- Motivation

2 Overview

How It's Made

3 Attacks

- Remanence
- Exhaustive Search
- Authentication Subversion

4 Conclusion

- Results
- Recommendations

Remanence Exhaustive Search Authentication Subversion

Madness

Let's attack the cryptosystem directly

Ronan Loftus & Marwin Baumann

Remanence Exhaustive Search Authentication Subversion

Madness

Let's attack the cryptosystem directly

Nope!

Ronan Loftus & Marwin Baumann

Remanence Exhaustive Search Authentication Subversion

Cold Boot

- Data remanence attacks rely on cryptographic keys being kept in memory
- Trusted Execution Environment (TEE) secure area of the main processor
- Since TEE, keys not stored in RAM

Remanence Exhaustive Search Authentication Subversion

Brute Force (online)

Enumerate all the combinations. Always possible in theory!

Attack:

- Using Android Debug Bridge
- Using On-the-Go protocol
- Using robot

Remanence Exhaustive Search Authentication Subversion

Brute Force (offline)

Qualcomm

no TEE:

• Image partitions and start cracking

Remanence Exhaustive Search Authentication Subversion

Brute Force (offline)

Qualcomm

no TEE:

• Image partitions and start cracking

with TEE: not possible, unless the device has a Qualcomm chip (${\approx}60\%$ of Android devices)

- The key derivation function is not actually bound to the hardware in Qualcomm chips
- Been patched in AOSP but still exists in hardware so a downgrade attack is still viable for Full Disk Encryption

Remanence Exhaustive Search Authentication Subversion

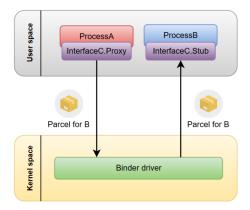
Brute Force (semi-online)

- Try to offload some of the work from the device
- Make the device do the hardware specific work then compute the rest on a more powerful machine

Remanence Exhaustive Search Authentication Subversion

Evil Maid

Classic attack on encrypted devices. Just install a keylogger!


- Capture users authentication credentials using a non encrypted part of the device
- Install a new keyboard
- Subvert code displaying PIN prompts

Remanence Exhaustive Search Authentication Subversion

Evil Maid

Subvert "Binder"

• Input Method Editor

イロト イポト イヨト イヨト

COM.ANDROID.INPUTMETHOD.LATIN

Ronan Loftus & Marwin Baumann

Remanence Exhaustive Search Authentication Subversion

Fingerprints

- Becoming far more common for users to authenticate to their cryptosystem via fingerprint
- With trivial modification to the source, sensor will authenticate anything it can read

Results Recommendations

Table of Contents

Introduction

- Encryption Landscape
- Motivation

Overview

How It's Made

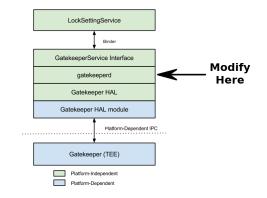
3 Attacks

- Remanence
- Exhaustive Search
- Authentication Subversion

4 Conclusion

- Results
- Recommendations

Results Recommendations


Cold Boot

- Since Android 7.0 devices MUST come with a hardware backed keystore (TEE)
- This renders remanence attacks obsolete!

Results Recommendations

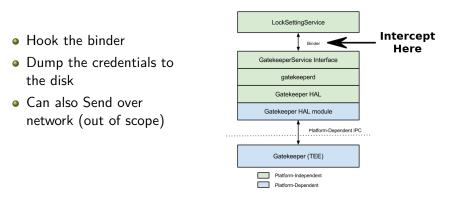
Brute Force (online)

- Rate limits have been updated since 7.0
- Try to subvert the "Gatekeeper"

Results Recommendations

Brute Force (offline)

- Qualcomm vulnerability has been software patched
- Downgrade attack would still be possible but ...


Results Recommendations

Brute Force (semi-online)

- We theorise that is still possible
- Untested

Results Recommendations

Evil Maid

Results Recommendations

IPCThreadState.cpp

Listing 1: IPCThreadState::talkWithDriver

i loctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr)

Listing 2: evil_ioctl

Results Recommendations

Fingerprints

Phone contains modified fingerprintd binary.

Listing 3: FingerprintDaemonProxy.cpp

```
1 callback->onAuthenticated(device,
2 // msg->data.authenticated.finger.fid,
3 0x1a4, // non-zero id
4 msg->data.authenticated.finger.gid);
```

Results Recommendations

Summary of Attacks

Attack needs these conditions to succeed:

Attack	7.0+	Requirement
Online BF	X 1	_ 2
Offline BF	X	-
Semi-online BF	\checkmark	unlocked bootloader
Cold Boot	X	unlocked bootloader
Evil Maid	\checkmark	custom recovery
Fingerprints	\checkmark	custom recovery

 $^1 {\rm unless}$ can subvert gatekeeper $^2 {\rm ADB}$ enabled allows automation

Ronan Loftus & Marwin Baumann

Results Recommendations

Recommendations With great power ...

To AOSP:

- Encrypt more of the device to reduce attack surface
- Encrypt (sensitive) binder communications

Results Recommendations

Recommendations

With great power

To the user:

• Turn off root access

Results Recommendations

Recommendations With great power ...

0

- Turn off root access
- Use the stock recovery

Results Recommendations

Recommendations With great power ...

with great power ...

- Turn off root access
- Use the stock recovery
- [re]Lock your bootloader

Results Recommendations

Recommendations With great power ...

with great power ...

- Turn off root access
- Use the stock recovery
- [re]Lock your bootloader
- Use long complex password

Results Recommendations

Recommendations With great power ...

with great power ...

- Turn off root access
- Use the stock recovery
- [re]Lock your bootloader
- Use long complex password
- Have no fun with your device!

Results Recommendations

イロト イヨト イヨト イヨト

That's All Folks

Questions?

Comments?

Critisicms?

Ronan Loftus & Marwin Baumann