
Hiding in open sight:
Dynamic profiles for malware communication

Request For Comments

João Carlos de Novais Marques
joao.marques@os3.nl

University of Amsterdam
Faculty of Science (FNWI)

MSc System & Network Engineering

M.J.R.Cox
mick.cox@os3.nl
University of Amsterdam

Faculty of Science (FNWI)
MSc System & Network Engineering

Abstract—Communication between Command & Control
servers (C&C) and its slave systems occur in botnet environ-
ments and during advanced & targeted attacks (APTs). Due
to the attackers intending not to be detected, communication
methods used during such attacks commonly utilize advanced
evasion techniques. Current network intrusion detection mech-
anisms are generally either based on signature based detection,
or anomaly based methods. Where the former is accurate in
true positive classification, it’s also practically unable to detect
any previously unknown intrusions; whilst the latter is able
to detect from the standard deviation of normal behavior.
Anomaly detection is also notoriously known for generating
a high rate in false positives, making many of such techniques
hard to implement. In this research the authors propose
a highly modular and configurable software framework for
simulating advanced and stealthy C&C to beacon commu-
nication. By focusing on three critical aspect: - local host
and network reconnaissance; - message obfuscation, and the
utilization of popular services and protocols as covert channels,
communication between such a beacon and its C&C should be
unrecognizable from an infected hosts’ regular behavior.

1. Introduction

With the ever increasing growth of the internet, mali-
cious use of computer systems has been on the rise. Botnets
and more recently, Advanced Persistent Threats (APT), play
a big part on modern day cyber-crime and have a great
impact on the security landscape to the current day. Both
forms of malware have been known for their practice in in-
fecting computers by exploiting vulnerabilities in its system,
mostly exploiting such vulnerabilities in popular and widely
used software applications. Once set up, these malwares
establish a communication channel with a Command &
Control server, providing a backdoor over which an attacker
can take control over remote computers. Although both
techniques share this common trait, it has to be said that
where a botnet usually aims at infiltrating as many systems
as possible, an APT is significantly different in that these
usually form a targeted attack against a specific target.

In this paper, we are interested in C&C to bot communi-
cation channels; in currently used, and literature described,
methods for detecting such channels; and last, in the pos-
sibilities of evading such detection methods, by means of
dynamically changing the patterns used for communication,
which we will refer to as communication profiles.

We initially set out to create such a network profile
ourselves, phrasing the research question as follows:

”Is it possible to construct a dynamic network profile
between a Command & Control server and the bea-
con, which is undetectable by state-of-the-art detection
frameworks?”

By starting with researching the inner workings of the
popular network and mostly signature based IDS Snort 3,
we set out to identify any weakness in its detection engine
which we could then further evaluate in its effectiveness
against anomaly based detection measures and its ability to
act as a dynamic system/profile. These experiments would
be have been conducted in an already fully operational
testing environment. However, during the research we
came to realize some of the limitations of this approach,
being: developing a new network profile will by default
evade any already existing rule or signature; a successfully
implemented dynamic profile will by its nature change and
therefore negate the effectiveness of any signature based
NIDS; finding a vulnerability in the detection engine of
Snort would be of arbitrary value considering the modular
approach in which Snort ++ (3) is being build and its
likelihood of such a shortcoming being patched; and lastly,
the time constrictions of our research and the unlikelihood
of us finding such a weakness. It is therefore that we
decided to deviate from this original idea by focusing on a
literature review in which we aim to point out the areas in
which a dynamic profile can be made, by comparing ways
current detection techniques function and countermeasures
which can be taken to bypass these detection methods. We
will then evaluate ways in which employ countermeasures
in a dynamic fashion. Furthermore, we have set out to
develop a system which will utilize these countermeasures

1

in an intelligent and dynamic way. By developing such
a system, we intend to enable researchers in simulating
environments which can help in improving old and
developing new detection systems.

Paper outline
In Section 2 we will give a review of the relevant

literature on the topics of advanced malwares including both
botnets and APT attacks, on detection techniques for these
communication profiles and techniques these malwares have
used and possibly utilize for hiding or evading detection.
In Section 3 we will describe the method used set all of
the environments and the development of the program. In
Section 4 we will describe the results obtained by running
the program in the testing environment. In Section 5 we
will discuss our findings, our proposal and any possible
countermeasures which we suspect are able to counter the
developed program. In Section 6 we present possible future
work and in Section 7 we will give our concluding remarks.

Definitions
Advanced Persistent Threats

Advanced persistent threats (APT) are cyber attacks
executed by sophisticated and well-resourced adver-
saries targeting specific information in high-profile
companies and governments, usually in a long term
campaign involving different steps, as defined by
/citechen2014study. APTs usually involve Remote Ac-
cess Trojans, and botnet like communication structures.

Beacon
is the term used in this paper to denounce the subsystem
of malicious software, which is active on a bot, and re-
sponsible for establishing a communication profile with
the C&C.

Botnet
a bot is computer system, usually workstation, infected
by a remote access trojan,

Command & Control
is a computer system with communication streams to its
clients, most common infected clients which act as bot
in a botnet.

Communication profile
A communication profile are the combined properties
of an established communication channel between C&C
and beacon.

Overt channel
An overt channel is an open and visible communication
channel which is generally open for any bystander to
see, usable as hidden data carrier.

Covert channel
A covert channel is a communication channel that is not
intended for information transfer at all [Lampson, 1973].
Networking covert channels are created using a network
steganography technique.

Intrusion Detection Systems
Systems for monitoring and evaluating data from a sys-
tem with the goal of recognizing and possibly preventing
intrusions; denoted by the abbreviation IDS, HIDS for

Host based- and NIDS for Network based intrusion
detection systems.

Overlay network
is usually the term to denounce peer to peer networks in
decentralized networks. In this paper we

Signature detection
is one of the detection methods an IDS can employ
in its search for intrusions. Signature based detection
methods use signatures, also called rules. These rules
are a fingerprint of previously detected intrusions and
malware.

Anomaly detection
is one of the detection methods an IDS can employ in its
search for intrusions. Anomaly based detection methods
use an algorithm which is first trained with a set of
normal data, after which it will detect

2. Literature Review

In this section, we hope to facilitate the reader with an
overview of relevant and recent research on the topics of
information hiding, remote access malware, by which we
mean botnets and APT attacks, the methods they utilize to
remain undetected and some of the techniques one could
use to detect them, which are often employed in intrusion
detection systems.

We start with the act of information hiding. In the
book [Katzenbeisser and Petitcolas, 2016], the authors gave
an extended overview of the act of hiding information in
communication networks. In this, he classifies three main
types of information which can be subjected to such hiding
mechanisms, which we will describe one by one:

• Identities of communication parties
• Communication process
• Communication content

2.1. Hiding the identities

Identities of parties involved in secret communication
can be hidden by making the source and final address
hard to retrieve. Known methods for to establish this is
using tunneling techniques such as a VPN, proxies such
as HTTP proxies, or anonymity networks such as TOR. In
[Rodrı́guez-Gómez et al., 2013], the authors report botnets
commonly using multi-hopping techniques, fast flux net-
works.

2.2. Hiding the processes

This subsection has been modeled after the book
[Katzenbeisser and Petitcolas, 2016], which gives an ex-
tended scientif review of purely this topic.

When two parties decide to communicate in secret, they
can do so by establishing a covert channel, which they indent
to remain secret.

2

2.2.1. Network steganography. Network steganography
hides data inside an overt communication in a way that
minimizes the impact on the over transmissions and thus it
effectively conceals the existence of the covert transmission
(CT). It aims at hiding secret data in the normal trans-
missions of users without significantly altering the carrier
used. A carrier is defined as one or more overt traffic flows
that pass between a covert sender and a covert receiver. A
subcarrier is defined as a place or a timing of events in
a carrier, where secret information can be hidden using a
single steganographic technique. A subcarrier typically takes
the form of a storage or timing covert channel.

A classification of network steganography is given, in
which it defines two distinct groups: timing-, and storage
based techniques. First, timing based techniques are further
divided in protocol aware-, and protocol agnostic methods.
A protocol aware method could for instance introduce artifi-
cial loss, retransmissions, manipulate the order of messages,
frame collisions or changing the temperature, CPU clock
and timestamps, in order to hide information; whereas a
protocol agnostic method does not need to know the in
depth characteristics of a protocol, utilizing for instance the
rate/throughput, interpacket times and message timing.

Second, storage based methods are divided into methods
which modify user data, and those methods which modify
protocol specific fields: Protocol Data Units (PDU). The
latter one can then be subdivided in methods which either
preserve the structure of protocol fields and those who
don’t. Structure modifying methods can be found in size
modulation, altering the sequence in position or in the num-
ber of elements, and by introducing redundancy. Structure
preserving methods can be found in the usage of random
numbers, value modulation such as modifying character case
or modifying the least significant bit, or modifying reserved
and/or unused fields.

Each of these methods can be further described with by
three characteristics: (1) Steganography bandwidth, which
describes how much secret information one is able to send
per time unit; (2) Undetectibility, defines the inability of
an adversary to detect a steganogram inside a carrier; and
(3) Robustness, which describes how much alteration the
steganogram can withstand whilst not destroying the secret
data.

Furthermore, there is the concept of steganography cost.
Steganography cost is defined as the degradation or dis-
tortion of the carrier, when steganographic methods are
applied. One can imagine that this cost has an effect on the
detectability. If the cost of applying steganography exceeds a
certain treshold, the steganographic act becomes detectible,
with an ever increasing likelihood if the cost grows.

Finally, the author introduces the idea of steganographic
control protocols, which is a communication protocol that
is embedded into a steganographic carrier and regulates
the communication between distributed steganographic pro-
cesses. Features include: sending acknowledgment flags, se-
quence numbers and measures for session management over
covert data transfers. Control protocols can also enable the
usage of deep hiding techniques (DHT), such as switching

between carriers, subcarriers, and hiding methods. In short,
control protocols increase reliability and when combined
with DHT, they can increase covertness. However, it must
be said that control protocols can potentially also increase
the steganographic cost.

2.2.2. Traffic Type Obfuscation. Traffic type obfuscation
alters the patterns and contents of network traffic between
two network entities so that a third entity can not identify the
type of their communication, which is the network protocol.
Traffic type obfuscation, can be categorized in two classes.

First, Traffic de-identification aims to make the network
protocol hidden. Methods include: the encryption of packet
headers; padding encrypted packets, using various padding
strategies, such as already is implemented in GnuTLS; and
HTTP obfuscation (HTTPOS) which implements features to
obfuscate patterns in client side HTTP traffic.

Second, Traffic impersonation, which aims to alter traffic
to hide the underlying protocol and also pretends to be using
another protocol. Proposed methods include: SkypeMorph,
which is a framework for disguising traffic from the TOR
anonimity network as being Skype traffic; FreeWave, which
similarly to SkypeMorph disguises any network traffic as
Skype traffic, in order to resist any firewall blocks;

for instance when BitTorrent traffic tries to impersonate
HTTP traffic. This can be done by imitating the other
protocol’s packet frequency and/or/size distributions.

TTO is commonly used for blocking resistance, such as
bypassing a firewall; and for privacy protection.

2.3. Hiding the content

The most common method for hiding communication
content is the usage of encryption. Encryption algorithms
modify plain text into ciphertext using an encryption key.
The cipher text cannot be interpreted and can only be
reversed to its original state if one has the decryption key.
There are many algorithms and methods to use encryption,
which are not covered here. In symmetric encryption, the
encryption and decryption key are the same. In asymmetric
encryption, they are not.

2.4. Remote Access Malwares

In this section we will take a look at malwares which
implement backdoors in compromised systems over which
they establish a communication channel with a C&C, which
are advanced persistent threats and botnets. We will take a
look at their lifecycle, and how they operate.

2.4.1. Advanced Persistent Threats. A definition of APT
attacks is given by the authors of [Chen et al., 2013],
namely: Advanced persistent threats (APT) are cyber attacks
executed by sophisticated and well-resourced adversaries
targeting specific information in high-profile companies and
governments, usually in a long term campaign involving
different steps. The authors of the same paper describe the
life of an APT accordance with the following stages:

3

1) Reconnaissance and Weaponization
2) Delivery
3) Initial intrusion
4) Command & Control
5) Lateral movement
6) Data Exfiltration

During the Reconnaissance and Weaponization stage,
in which APT actors gather information about a target
mostly using OSINT (open source intelligence) and Social
Engineering measures;

During the Delivery stage, in which attackers deliver
malware exploits using directly targeted spear finishing tech-
niques or watering hole attacks, in which the attacker lures
the victim into using exploited but already trusted resources,
such as we compromised website;

During the Initial intrusion stage, in which the attacker
often exploits vulnerabilities in often wide used software
such as Adobe Acrobat, Flash, or Microsoft Office, which
can but not need be zero day vulnerabilities.

During the Lateral Movement stage, in which the APT
actor performs internal reconnaissance and compromise ad-
ditional systems to gain escalated privileges over commonly
a longer period of time, in order to avoid detection.

During the Command & Control stage is the stage
in which the APT actor, upon successfully establishing a
backdoor, takes control over one or more compromised com-
puters by communicating over various legitimate services
and publicly available tools such as social networking sites
in supplying control information, communicating via- and
even hosting the C&C in anonymity networks such as TOR,
or by using remote access tools (RAT) which are often used
by system administrators but in such attacks misused to
facilitate control over an infected host.

During the Data Exfiltration stage, in which the attacker
is out to exfiltrate sensitive information, typically encrypted
using SSL/TLS, funneled through an internal staging server
and sent out using an anonymity network.

in which the authors propose data loss prevention sys-
tems (DLP) which act as a last line of defense, monitoring
for sensitive data in different states of transit; and lastly,
Intelligence-driven Defense which more than a defense
mechanism is a strategy which would entail the creation
of an intelligence feedback loop, enabling the defender to
better recognize patterns of attacks.

Next to the stages, the authors also supplied countermea-
sures though explicitly mentioning no single solution can
offer effective protection. Countermeasures include: Security
Awareness Training, in which industry should be made
aware to the difference between APT- and regular attacks;
Traditional Defense Mechanisms, which can be utilized to
block known attack vectors, such as patch management,
anti-virus software, firewalls, HIDS, NIDS, IPS, SIEM and
content filtering software; Advanced Malware Detection, in
which by means of sandboxing execution malwares behav-
ior can be analyzed, but also specify one should account
for known sandbox execution evasion techniques; Event
Anomaly Detection, which entails one utilize anomaly based

detection, instead of looking for known bad (red: signature
based detection), specifying this by proposing big data
analytic and referring to previous succesfull studies which
looked at HTTP requests and event processing based on
MapReduce; Data Loss Prevention,

2.4.2. Botnets. Similarly to APT attacks, the lifecycle of
botnets follow roughly the same stages, as defined by
[Rodrı́guez-Gómez et al., 2013]:

1) Botnet conception, in which the botnet is designed and
developed;

2) Botnet recruitment, in which the malware is spreaded
3) Botnet interaction, in which a bot communicates with

its C&C
4) Botnet marketing, in which the botmaster goes to mar-

ket with his botnet
5) Attack execution
6) Attack success

During the conception stage, the botnet is developed, for
which three design types can be identified: centralized- ,
decentralized-, and a hybrid botnets; which represent the
communication patterns between bot and C&C.

During the interaction stage, the authors identify internal
and external interactions. First, internal interaction is further
divided into a registration part and a C&C communica-
tions part. During the registration part, the bot becomes
part of the botnet, which can happen either statically by
hard coding addresses or algorithms which intend to find
addresses; or dynamically, which can happen in a number
of different ways, such as downloading files which include
a list of peers. C&C communications happens after the
registration part, represents the bulk of interactions, and
can be grouped in accordance with three characteristics:
the type of messages, direction of the information and
the communication protocol. The types of messages can
either be commands (orders), instructing a bot to do a cer-
tain action; or control messages intended for administrative
purposes, such as updates or membership administration.
The direction of information can either be pull or push.
The communication protocol identifies the carrier of the
messages, which is commonly recognized to be IRC, HTTP
or P2P protocols. Second, external interactions entail the
interactions between an infected bot and any noncompro-
mised system, often to access publicly available services
on the internet. Commonly, three services are identified:
DNS, Services in P2P networks and Botnet monitoring
services. DNS is usually used for C&C address resolvent.
P2P network services are used as an intermediate layer to
hide C&C connections, such as the case where only the
name of a resource is given, which should be downloaded
from a P2P network, which then contain instructions or
otherwise new updates. Botnet monitoring services can be
used by a botmaster to obtain useful information about the
botnet itself, such as the availability of the domains used by
the C&C in Whois or DNS systems. Within the marketing
stage, the authors identify multiple scenarios in which a
botmaster can monetize its botnet. In the attack execution,

4

the authors identify multiple possible attack scenarios, such
as distributed denial of service, spamming, phishing, data
stealing and click fraud.

Furthermore, the authors identify some of the many
hiding mechanisms used by botnets to frustrate the discovery
of its components (bot, botmaster, C&C channels): Multi-
hopping, Ciphering, Binary Obfuscation, Polymorphism, IP
spoofing, Email spoofing, Fast-flux Networks. Multihopping
is the usage of proxies or anonymity networks to conceal
the final IP address. Ciphering is described as the usage of
encryption in C&C communication channels, and is further
reported to make the development of detection techniques
increasingly different. Binary obfuscation techniques are
used to complicate and conceal the bot source code, making
reverse engineering and analysis on its behavior a difficult
task. Polymorphism is utilized to bypass signature based
virus scanners, as it entails the creation of different versions
of the source code, which change, whilst the functionality
remains the same; for example by using packers. IP Spoofing
is the act of sending IP packets with a fake source address,
often used to bypass IP filters during denial of service
attacks. Similarly, E-mail spoofing is used to fake a source
(from:) e-mail address or other e-mail header fields; often
used in phishing and spamming attacks. Finally, Fast Flux
Networks is the usage of rapidly changing DNS resource
records in order to have multiple IP addresses answer for
a certain fully qualified domain name; this method can be
used to hide a final host in the network, such as a central
C&C.

2.5. Detection methods

In this subsection, we will loosely describe methods
of detecting C&C to beacon communications. As these
concepts are often coined within the context of intrusion
detection systems, they not need to be. As, for instance,
such detection methods also apply for detecting network
steganography and covert channels, we have decided to
describe the methods individually from the systems in which
they are often implemented.

[Limarunothai et al., 2015] identify four distinct botnet
detection techniques, namely: (1) Signature based detection,
(2) Anomaly based detection; (3) DNS based detection;
(4) Data-mining based detection. Furthermore, they identify
botnet challanges, which contribute frustrate the detection of
such botnets.

2.5.1. Signature based. intrusion detection is based on pat-
tern matching, such as regex, ngram or rule based matching.
For the detection of intrusions, covert channels or malware,
one need predefined knowledge of such cases, to translate
them into a fingerprint, rule or otherwise called signature, in
order to be able to validate those. Considering that signature
based matching is deterministic in its approach, it is very
accurate in classifying known intrusions (high true positive).
However, this also makes this method practically unable to
detect novel intrusions.

Signature based is very scalable and considerably more
easy to implement than other methods. Snort 2 is a mostly
on signature based detection system, which is often used in
practice. Other systems commonly also support snort based
signatures [Liao et al., 2013].

2.5.2. Anomaly based. intrusion detection is based on
identifying anomalies based on a set of normal behav-
ior, on which such systems are based. Anomaly based
methods can use machine learning (ML) or statistical ap-
proaches; which both require the setting of a boundary or
threshold. [Liao et al., 2013] [Karim et al., 2014]. Looking
at machine learning, we can see that: behavior is measured
in form of features; a decision threshold or boundary is
required for classification; an algorithm decides between two
classes (benign/malicious or true/false), even when the test
data consists of more than two classes; in that case it will do
this binary classification in a recursive ’one vs. the others’
kind of fashion. Examples of such algorithms are decision
trees, neural networks, support vector machines.

2.5.3. Traffic normalization. Traffic normalization is the
act of removing semantic ambiguities, such as setting un-
set, reserved an padding bits to zero. Most traffic normal-
ization targets the Network & Transport layer protocols
(IP/TCP/UDP). Some have proposed to eliminating covert
channels in HTTP by enforcing protocol compliant behavior.
Furthermore, network-aware traffic normalizers (NAAW)
are proposed to function as an intelligent and statefull
system as an active countermeasure. Snort IDS uses traffic
normalization extensively. These are called preprocessors
and are responsible for either reassembling the original
stream, which frustrate timing based steganography chan-
nels, and resetting PDU fields to normal values. Other traffic
normalization systems are norm and Wendsel

2.5.4. Comparing botnet detection papers. In the exten-
sive study [Garcı́a et al., 2014], the authors conducted a
survey in which they did an analysis on previous surveys,
proposed a new classification and comparison of detection
proposals and a new analysis of previously proposed detec-
tion methods.

Their analysis on previous botnet related surveys showed
that these surveys all maintained a different categorization of
detection methods, and emphasized different aspects of each
paper. The authors identified different dimensions on which
they evaluated previous surveys, and later also used to com-
pare botnet detection papers. Based on these dimensions,
the authors proposed a topology map and a set of desired
properties of which they think botnet detection proposal
frameworks should cover.

different network based botnet detection surveys, giv-
ing a so called topology map, in which the authors com-
pared proposed detection methods on three different aspects:
(1) Detection Algorithms, such as the use of supervised-,
semi-supervised, unsupervised machine learning algorithms
(MLA), signal processing which includes filtering, correla-
tion and pattern matching; Detection Techniques, such as

5

anomaly based techniques which includes analyzing the
behavior of individual bots, behavior multiple bots in a
cluster or network, temporal behavior which is defined as
behavioral changes over time in which the authors include
protocol usage such as peer to peer (P2P), HTTP, IRC,
DNS, port scans, network metrics and SMTP, and lastly,
fingerprinting techniques such as string or byte sequence
pattern matching for detection; Detection Sources in which
they compare the origin of packets captured during other
surveys, which include normal packets from controlled vir-
tual network or real networks, botnet packets captured from
honeypots, darknets, controlled virtual networks, modified
and recompiled known malware or packet logs.

Desired properties a novel botnet detection papers should
include, target verification issues such as validating the
used dataset, the diversity in training data, as well as the
reproducibility; results issues such as a better description
of performance and results, a result comparison; theoretical
issues such as clearly defining any assumptions made, as
well as describing how a hypothesis; and issues regarding
the detection method itself, including a description about
how the dataset was prepared, identifying the main detection
method, differentiation from other attacks, which malicious
actions it can detect and how botnets are automatically
detected.

Further, they revisit previously proposed botnet detec-
tion papers and compared on their anomaly-based behavior
detection techniques. The following papers are included:

BotMiner [Gu et al., 2008a]
BotSniffer [Gu et al., 2008b]
BotHunter [Gu et al., 2007]
N-gram [Lu et al., 2011]
Stability [Li et al., 2010]
Models [Wurzinger et al., 2009]
Unclean [Collins et al., 2007]
FluXOR [Passerini E, 2008]
Tight [Strayer et al., 2006]
Tamed [Yen and Reiter, 2008]
Incremental [Yu et al., 2010]
Markov [Kim et al., 2012]
Synchronize [Garcı́a et al., 2011]

Methods used by the proposed techniques, as described
by earlier domains, include: (bot behavior) monitoring pack-
ets per flow, mean bytes per packet, connections to SMTP
servers and DNS MX record queries, binary downloads,
stable P2P connections in regards to average bytes per flow,
generating the same traffic within different time windows,
multiple bots synchronizing their traffic; (botnet behavior)
same commands/traffic to every bot, similar traffic pat-
terns over multiple hosts, IRC answers are synchronized,
anomalous changes in domain features, communication with
the same address / the same C&C; (temporal behavior)
recognizing mean bytes per second and amount of flows per
hour, the frequencies of communication and connection over
HTTP, similarity of communications within time windows,
recognizing if a C&C sends orders to multiple hosts at the

same time; (protocol behavior) recognition of port scans,
recognition of MX record lookup.

The authors also perform a comparison over the dataset
sources; the protocols supported by the proposed techniques,
mostly HTTP, IRC and P2P; the algorithms used within the
proposed technique, including X-means hierarchical cluster-
ing, Autocorrelation, Nave Bayes classifiers and more; what
the ratio over different dataset sources is during the train-
ing of different algorithms; how the papers described their
results and the results themselves; the ability to recognize
botnets not included in the training data; the dependency
on protocol specific features, such as only looking for the
IRC protocol on port 6667; and lastly describe the inner
workings of each of the covered proposals individually.

The authors then conclude that even though great ad-
vances have been made, the state of the field has to solve
multiple problems, as a significant amount of covered papers
have issues such as the lack of dataset publication or usage
of a public dataset, unverified captures, inaccurate reporting
of performance metrics and recognize a common overfit of
preprocessing methods. They conclude in saying that their
survey aims at pointing to the most useful approaches in
complex botnet traffic detection, which they identify as time
based dynamic approaches (temporal); which focus on fea-
tures describing general behavior in a hybrid system using
meta-learner which can weigh and decide over the results
from different behavior detection algorithms, warning the
reader at last that such implementing multiple approaches
in parallel would require big data solutions.

[Soniya and Wilscy, 2016] identify most detection pro-
posed botnet detection methods rely on a regularity of C&C
to bot communication traffic, whilst stating state of the art
bots randomize traffic properties to evade regularity based
detection techniques. The authors present a detection system
which uses traffic analysis of an end-point host to identify
bot to C&C communications even when the communication
patterns are randomized to evade detection and also aims at
early detection of bots. The proposed technique utilizes a
Multi Layer Perceptron (MLP) Classifier, which is trained
to differentiate between normal user-generated HTTP traffic
and bot control traffic over a user session, and a Temporal
Persistence (TP) Classifier that utilizes temporal persistence,
a measurement of how repeatedly a destination is contacted
over time, to identify bot control traffic for time periods
larger than a user session. The proposed technique, called
RCC Detector, has been trained on-, and tested against
multiple public and privately captured data sets, on which it
achieved a high accuracy (99.8% TP, 0.48% FP), given the
dataset is representative of a real world scenario.

[Rossow and Dietrich, 2013] argue current payload sig-
nature intrusion detection systems fall short in their ability to
detect modern state of the art C&C communication profiles,
due to the fact these systems are Dependant on the presence
of invariants in network communication. Considering C&C
and beacons commonly utilize encryption with dynamic
keys, random bytes to serve as initialization vector, and
cipher-block chaining or cipher feedback mode to encrypt
their messages, invariants will not often be found in its

6

communication profile.
In a recent survey, [Acarali et al., 2016] set out to iden-

tify botnets which utilized encryption for hiding network
content. In this research, the authors have shown it to be
possible to train a framework on plain text known and
widely used botnets, in such a manner that after encryption,
it is able to, in a pseudeo brute force manner, be able to
correlate entropy with trained botnets.

2.6. Intrusion detection systems

Intrusion Detection and Prevention Systems monitor data
for malicious traces among traces of normal behavior in
logs, metrics and communication at packet level. Where a
detection system will remain to only reporting an intrusion,
a prevention system will take immediate action in order to
halt the possible intrusion /citemodi2013survey. In practice,
these systems are mostly combined into an IDPS; though in
literature they are mostly classified with the term IDS.

Multiple types of IDS exist, though the two prevalent
ones are host based (HIST) and network based (NIST) Intru-
sion Detection Systems. [Goldring, 2003]. In this research,
we will focus on NIDS.

2.6.1. Host based IDS. A host based intrusion detection
system (HIDS) can then either profile a system on metrics
derived from log file(s correlation), system calls, memory or
CPU usage; or profile a user based on biometric informa-
tion as keystroke frequency or psychometric data as Unix
knowledge or usage, to detect intrusions. The host based IDS
requires a software agent which is installed on the machine.
Signature based HIDS are anti virus software packages for
example.

2.6.2. Network based IDS. A network based intrusion
detection system (NIDS) monitors network data. It can have
multiple sensors (sniffers) in the network, on which it can
perform traffic normalization, and then validate to an engine.
NIDS come in both signature based as well as anomaly
based methods. However, due to the high amount of false
positives within anomaly based measures, signature based
systems are still more prevalent.

2.6.3. Others. Other types of IDS have been proposed, such
storage based systems or purely DNS based systems. If
one of domains has been flagged as malicious, an intrusion
prevention system could halt every DNS query in which this
domain is present. Therefor, blocking IP resolution to the
infected host [Karim et al., 2014].

2.7. Summary

We have described multiple methods of hiding informa-
tion in communication networks and described methods of
detecting attempts in hiding information. As we have shown,
the field of information hiding, remote access malwares,
detection methods and systems deploying such methods is

a very broad subject and its taxonomy is complex, multidi-
mensional. By no means is this literature review extensive.
The research conducted is used in the next sections, in which
we have attempted to develop a framework which can be
intelligent, dynamic and able to evade intrusion detection.

3. Methodology

3.1. Hardware/Software

• Server - Dell PowerEdge R230
– Intel(R) Xeon(R) CPU E3-1240L v5 @ 2.10GHz
– 16Gb DDR4 memory (2 Modules of 8Gb each)
– Broadcom Gigabit Ethernet BCM5720 (Network In-

terface Controller)
– VMware Vsphere 6.5 (Hypervisor)

∗ Virtual Router - Ubuntu Server 16.04.1
∗ Virtual Switch (internal network)
∗ Victim 1 - Ubuntu Workstation 16.04.1
∗ Victim 2 - Windows 10 Student Edition x64
∗ IDS - Ubuntu Workstation 16.04.1
∗ C&C - Ubuntu Workstation 16.04.1

• Development laptop - Ubuntu Workstation 16.04.1
• Snort - 3 (Alpha)
• Overwatch
• python 3 - 3.5.2
• python 3 extra libraries:

– appdirs - 1.4.0
– dnslib - 0.9.7
– netifaces - 0.10.5
– packaging - 16.8
– pyparsing - 2.1.10
– six - 1.10.0

• pip3 - 9.0.1
– virtualenv - 15.1.0
– virtualenvwrapper - 4.7.2

• Github
• openVPN

3.2. Setting up the development Environment

The development environment was setup using python’s
package manager called pip (pip3 for python3). This tool
facilitates the installation of python packages, such as com-
munity libraries[Wikipedia, 2017]. To setup the environment
two packages where installed:

• virtualenv - enables the creation of virtual environments
to work on separate projects

• virtualenvwrapper - wrapper for virtualenv that facili-
tates the creation and the management of virtual envi-
ronments

The installation was achieved by issuing the following com-
mand:

sudo -H pip3 install virtualenv virtualenvwrapper

7

Once the packages finished installing the virtualenvwrapper
had to be configured by exporting the directory where the
project is to be saved and sourcing the configuration. This
was done in the following way:

export WORKON_HOME=<virtual environment dir>
export PROJECT_HOME=<project dir>
echo ". /usr/local/bin/virtualenvwrapper.sh" >>

$HOME/.bashrc

The project folder was then created by issuing the command:

mkproject dynamic_malware

Finally the last step was to install all of the required libraries
to work on the program. This was done as the program was
developed, but for concision the following command would
install all of the required libraries:

pip3 install appdirs dnslib netifaces packaging
pyparsing six

With the development environment properly set the devel-
opment of the Intelligent malware could be started.

3.3. Setting up the testing Environment

To set up the test environment a Dell PowerEdge R230
server at university was used. The first step was installing
an hypervisor to be able to create a full virtual environment.
For this step the VMWare vSphere was chosen and installed.
Then using the web management console the following
virtual hardware was created and setup:

• Virtual Switch - Internal vSwitch
• Virtual Group - Internal VM Network
• Virtual Group - Internal Sniffer (Promiscuous mode)
• Virtual Machine - Router
• Virtual Machine - C&C
• Virtual Machine - IDS
• Virtual Machine - Victim 1
• Virtual Machine - Victim 2

The topology can be seen bellow on figure 1.

Figure 1. Testing environment network topology.

The Virtual group Internal sniffer was set in promiscuous
mode so it can receive a copy of the switch’s traffic and
broadcast it to all VMs that are in the group. For our setup
the only virtual machine in the internal sniffer group is the
IDS. This prevents the other machines to get flooded with
a copy of the traffic that is not supposed to be for them
which would just result in a slower network without any
advantages. As long as the IDS can receive a copy of the
traffic, it can do its normal operations.

The Victim 1 and 2 were setup with Ubuntu and Win-
dows respectively, updated and antivirus solution installed
on the windows machine, for a non-technical user standard
of security.

The Virtual router had to be set for access to the in-
ternal network virtual machines. This was accomplished by
temporarily borrowing another server’s public IP to access
the router. Furthermore, a VPN solution (openVPN) has
to be implemented in the router due to the server only
having access to one public IP. With the router set with NAT
forwarding and openVPN it was possible to contact each
machine independently due to them being just one network
hop away. This also enables the server management console
to be contacted through an internal address which in turn
enables for the setup to only need one public IP, releasing
the borrowed one. With this the environment was set and
ready to test the Intelligent malware.

The C&C was set up with an Ubuntu server and Over-
watch as the C&C software that is going to act as the master
to the malware infected devices. Overwatch was setup by
cloning the git repository from Joey Dreijer and running the

8

setup script it contains. The script downloads all necessary
packages, sets up the database, creates a user and starts. It
then can be accessed by browsing to its web service in a
browser.

3.4. Intelligent Malware

The intelligent malware is simply a python script that
gets executed after exploiting a vulnerability in the victim
as seen in appendix A. The difference between the typical
malware is that it does not activate its beaconing capabilities
right away. It first scans the host for some extra information
about the environment it is running. It then starts ”sniffing”
for all incoming and outgoing traffic. This enables the
scanner to look for specific methods of communication, such
as:

• SSH (when C&C inside of internal network)
• Specific DNS queries/response

– Signal
– Whatsapp
– Telegram
– Facebook Messager
– ...Any public service that does end to end encryption

of data...
By looking specifically into DNS packets that have been
captured, not only it can see that the host is interested in
the service it requested the name resolution for, but also
the name resolution itself. This enables, at a later stage,
the beaconing operation to start without having to make a
request by itself.

The implemented functionality is:
• Check for Root access
• Gather platform information
• Gather network interfaces information
• Sniffs on the network

To test the functionality the scanner just needs to be called
using the python3 binary that points to the necessary li-
braries. To scanner can be called in the following way:
python3 scanner.py

For testing purposes where the script is called without a
vulnerability being exploited the ”sudo” command needs to
be used to grant root privileges. For testing it in the testing
environment two virtual machines; victim1 (Ubuntu) had to
call it with ”sudo” while for victim2 a command line just
had to be opened with administrator rights.

4. Results

When running the experiment on victim 1, as the pri-
mary development platform, the scanner starts correctly
gathering the correct information of the host, followed by
the information of the network interface. Finally it enters
sniffing mode and sniffs until interrupted. The output of the
command can be found, partially, in appendix B.

The solution was then tested on Victim 2, as seen on
appendix C, it starts the script correctly with the gathering

of information about the host. It then gathers information
about the network interfaces, but returns a registry key
instead of the name of the network interface. It then creates
successfully the network sockets (TCP and UPD) to start
sniffing and crashes when it tries to read from them.

5. Discussion

For this project, a literature review was conducted. This
led us to try to find weaknesses in the engine of snort 3, the
most widely used IDS. This did not result in any findings,
which led the research to change into the development of
an intelligent solution. This idea has been well thought out,
but development did not reach its final stages.

The research for weaknesses in the snort 3 engine did
not reach its full potential due to the lack of time for such a
task. We searched through all of the documentation of both
snort 3 and its predecessor, snort 2, in hope to find a logical
weakness in the rule making and/or checking operations
that could be exploited. This proved to be a tedious and
prone to error task that could take a very long time to
accomplish. If the project would have more time to be
researched this approach could have possibly wielded good
results. These results would then have to be researched and
analyzed properly to find a mean in which they could be
used to evade IDS systems.

With the decision to change approach we started with
the development of a one of a kind Intelligent malware
that can respond to the differences in environment where
it is executed. This was done by adding the functionality of
checking for host information and by sniffing on the traffic
of the host. With the possibility of knowing what traffic
is supposed to leave the host, it is possible to prevent the
use of any anomalous type of communication. Furthermore,
the use of public service enables the malware to stay hidden
since it does not touch the protocols of the services. The only
thing the malware changes in the communication is the data
that is sent. Due to end to end encryption of the services is
is impossible to inspect the data rendering it impossible to
detect differences between malicious and regular traffic.

Python was chosen for this task due to it providing many
packages for cross platform use. Furthermore, it is easy to
provide a portable version of it with the required libraries
for the script to work out of the box. The script shows an
unfinished program. Due to the lack of time it was not
possible to implement all of the functionality. The script
was tested on both Linux and Windows platform but due
to the development of the script have been focused on the
Linux platform it is not fully compatible with Windows.
This can be seen in the Windows results in appendix C.
Furthermore, in Linux despite the program running perfectly
fine and sniffing the network it was detected too late that the
captured packets are only of incoming traffic, unless it is a
response to a query. This is not desired due to the need of
knowing if the host is starting any outgoing ssh connections
during the information gathering period. This means that a
big part of the code needs to be changed to accommodate
the change in the capture behavior.

9

Despite not having been tested for full proof of it work-
ing the base program as some countermeasures against it,
such as the use of Host Intrusion Detection systems (HIDS).
With the use of a HIDS it is possible to detect the running
script before it event starts communicating. The HIDS if
deployed in a centralized fashion could be used to isolate
the infected host from the network. This would render the
communication impossible. A possible solution against this
countermeasure would be to only act when the CPU or Net-
work would have an activity spike. Another solution would
be having a countdown timer between captured traffic. This
would act as a way to detect network isolation, and would
activate the self deletion if it would reach 0 before the next
packet would be received.

6. Future Work

The field is very broad and so much more work can be
put into it. One such possibility is to take again the task
of finding a weakness in the snort 3 engine which could
render it unable to create a signature. Due to snort being
open source, and With more time it could be beneficial the
review of the source code.

The project was heavily based on signature detection,
but it would be a great contribution if work would also be
done on other types of detection such as anomaly based.

As explained in the discussion the script, that can be
found in appendix A, is far from being finished. The fol-
lowing functionality still needs to be implemented:

• Outgoing traffic capture
• Capture timer
• Data analysis
• Decision making
• Download of appropriate communication module
• Windows compatibility
• No root access operations
• Self-deletion

The above functionality is the original meant to be included
as the base. Further functionality could be added such as:

• Self-preservation (across reboots)
• Process masking (changing the name of the process so

it is more difficult to be found)
• CPU and Network activity exploitation (Act on activity

spikes of the CPU and Network)
• Increase the List of public services it can use
• Analise specific configurations such as SSH (to dynam-

ically change what port it checks)
• execution option for a small degree of control

Lastly the scanner only does the scanning of the host but not
the communication in itself. Each type of communication is
meant to have its own script that is downloaded and executed
by the scanner. For this reason work could also be done
in making the cli of each service portable and usable by
the script or making manually the implementation of the
different protocols.

7. Conclusion

In Conclusion, a high amount of work and effort has
been put into this project on dynamic profiles for malware
communication. Different approaches were conducted, in-
cluding finding weaknesses in IDS software that could be
exploitable, with little to no results. Furthermore, a program
that dynamically adapts to its environment was devised and
partially implemented. The idea seems to be viable but needs
further work. Due to time constraints, the program was not
finished, it is not cross platform and requires some polishing
on what has been implemented. Future work could be done
into different methods of malware detection, improving the
solution with extra functionality and finding weaknesses in
IDS software.

Acknowledgments

The authors would like to thank Cedric van Bockhaven
& Joey Dreijer for their, very appreciated, advice and con-
tribution.

References

[Acarali et al., 2016] Acarali, D., Rajarajan, M., Komninos, N., and Her-
wono, I. (2016). Survey of approaches and features for the identification
of http-based botnet traffic. Journal of Network and Computer Appli-
cations, 76:1–15.

[Chen et al., 2013] Chen, P., Desmet, L., and Huygens, C. (2013). A
study on advanced persistent threats. In Availability, Reliability and
Security (ARES), 2013 Eighth International Conference on, pages 248–
254. IEEE.

[Collins et al., 2007] Collins, M. P., Shimeall, T. J., Faber, S., Janies, J.,
Weaver, R., De Shon, M., and Kadane, J. (2007). Using uncleanliness
to predict future botnet addresses. In Proceedings of the 7th ACM
SIGCOMM conference on Internet measurement, pages 93–104. ACM.

[Garcı́a et al., 2011] Garcı́a, S., Zunino, A., and Campo, M. (2011). Bot-
net behavior detection using network synchronism. Privacy, Intrusion
Detection and Response: Technologies for Protecting Networks, pages
122–144.

[Garcı́a et al., 2014] Garcı́a, S., Zunino, A., and Campo, M. (2014). Sur-
vey on network-based botnet detection methods. Security and Commu-
nication Networks, 7(5):878–903.

[Goldring, 2003] Goldring, T. (2003). User profiling for intrusion detec-
tion in windows nt. Computing Science and Statistics, 35.

[Gu et al., 2008a] Gu, G., Perdisci, R., Zhang, J., Lee, W., et al. (2008a).
Botminer: Clustering analysis of network traffic for protocol-and
structure-independent botnet detection. In USENIX Security Symposium,
volume 5, pages 139–154.

[Gu et al., 2007] Gu, G., Porras, P. A., Yegneswaran, V., Fong, M. W.,
and Lee, W. (2007). Bothunter: Detecting malware infection through
ids-driven dialog correlation. In Usenix Security, volume 7, pages 1–16.

[Gu et al., 2008b] Gu, G., Zhang, J., and Lee, W. (2008b). Botsniffer:
Detecting botnet command and control channels in network traffic.

[Karim et al., 2014] Karim, A., Salleh, R. B., Shiraz, M., Shah, S. A. A.,
Awan, I., and Anuar, N. B. (2014). Botnet detection techniques: review,
future trends, and issues. Journal of Zhejiang University SCIENCE C,
15(11):943–983.

[Katzenbeisser and Petitcolas, 2016] Katzenbeisser, S. and Petitcolas,
F. A. (2016). Information hiding. Springer.

10

[Kim et al., 2012] Kim, D. H., Lee, T., Kang, J., Jeong, H., and In, H. P.
(2012). Adaptive pattern mining model for early detection of botnet-
propagation scale. Security and Communication Networks, 5(8):917–
927.

[Lampson, 1973] Lampson, B. W. (1973). A note on the confinement
problem. Communications of the ACM, 16(10):613–615.

[Li et al., 2010] Li, Z., Wang, B., Li, D., Chen, H., Liu, F., and Hu, Z.
(2010). The aggregation and stability analysis of network traffic for
structured-p2p-based botnet detection. JNW, 5(5):517–526.

[Liao et al., 2013] Liao, H.-J., Lin, C.-H. R., Lin, Y.-C., and Tung, K.-Y.
(2013). Intrusion detection system: A comprehensive review. Journal
of Network and Computer Applications, 36(1):16–24.

[Limarunothai et al., 2015] Limarunothai, R., Munlin, M., et al. (2015).
Trends and challenges of botnet architectures and detection techniques.
Journal of Information Science & Technology, 5(1).

[Lu et al., 2011] Lu, W., Rammidi, G., and Ghorbani, A. A. (2011). Clus-
tering botnet communication traffic based on n-gram feature selection.
Computer Communications, 34(3):502–514.

[Passerini E, 2008] Passerini E, Paleari R, M. L. B. D. (2008). Fluxor
: detecting and monitoring fast-flux service networks. Detection of
Intrusions and Malware, and Vulnerability Assessment, pages 186–206.

[Rodrı́guez-Gómez et al., 2013] Rodrı́guez-Gómez, R. A., Maciá-
Fernández, G., and Garcı́a-Teodoro, P. (2013). Survey and taxonomy of
botnet research through life-cycle. ACM Computing Surveys (CSUR),
45(4):45.

[Rossow and Dietrich, 2013] Rossow, C. and Dietrich, C. J. (2013).
Provex: Detecting botnets with encrypted command and control chan-
nels. In International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, pages 21–40. Springer.

[Soniya and Wilscy, 2016] Soniya, B. and Wilscy, M. (2016). Detection
of randomized bot command and control traffic on an end-point host.
Alexandria Engineering Journal, 55(3):2771–2781.

[Strayer et al., 2006] Strayer, W. T., Walsh, R., Livadas, C., and Lapsley,
D. (2006). Detecting botnets with tight command and control. In Local
Computer Networks, Proceedings 2006 31st IEEE Conference on, pages
195–202. IEEE.

[Wikipedia, 2017] Wikipedia (2017). Pip (package manager) —
wikipedia, the free encyclopedia. [Online; accessed 11-February-2017].

[Wurzinger et al., 2009] Wurzinger, P., Bilge, L., Holz, T., Goebel, J.,
Kruegel, C., and Kirda, E. (2009). Automatically generating models
for botnet detection. In European symposium on research in computer
security, pages 232–249. Springer.

[Yen and Reiter, 2008] Yen, T.-F. and Reiter, M. K. (2008). Traffic aggre-
gation for malware detection. In International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment, pages 207–
227. Springer.

[Yu et al., 2010] Yu, X., Dong, X., Yu, G., Qin, Y., Yue, D., and Zhao, Y.
(2010). Online botnet detection based on incremental discrete fourier
transform. JNW, 5(5):568–576.

11

Appendix A.

Github Repository: https://github.com/JCMarques15/Dynamic Malware

12

https://github.com/JCMarques15/Dynamic_Malware

Appendix B.

Linux results:
jmarques@desktop-12 ˜/git/Dynamic_Malware master * sudo python3 scanner.py
[INFO] The scanner has root access
[INFO] The host machine is Linux based, with the architecture (’64bit’, ’ELF’) and kernel 4.4.0-62-

generic
[INFO] It is running Ubuntu version 16.04
[INFO] Ip address for eno1 is: 145.100.102.142
[DEBUG] [[’eno1’, ’145.100.102.142’]]
[INFO] TCP Socket created
[INFO] UDP Socket created
#####################################
TCP Packet Num: 1
Version: 4
IP Header Length: 5
TTL: 60
Protocol: 6
Source Address: 104.98.141.72
Destination Address: 145.100.102.142
Source Port: 443
Dest Port: 58700
Sequence Number: 1902228493
Acknowledgement: 2165171968
TCP header length: 10
Data:
<omitted>
#####################################
TCP Packet Num: 2
Version: 4
IP Header Length: 5
TTL: 60
Protocol: 6
Source Address: 104.98.141.72
Destination Address: 145.100.102.142
Source Port: 443
Dest Port: 58700
Sequence Number: 1902228494
Acknowledgement: 2165172485
TCP header length: 8
Data:
<omitted>
#####################################
TCP Packet Num: 3
Version: 4
IP Header Length: 5
TTL: 60
Protocol: 6
Source Address: 104.98.141.72
Destination Address: 145.100.102.142
Source Port: 443
Dest Port: 58700
Sequence Number: 1902228494
Acknowledgement: 2165172485
TCP header length: 8
Data:
<omitted>
#####################################
TCP Packet Num: 4
Version: 4
IP Header Length: 5
TTL: 60
Protocol: 6
Source Address: 104.98.141.72
Destination Address: 145.100.102.142
Source Port: 443
Dest Port: 58700
Sequence Number: 1902228640
Acknowledgement: 2165172589
TCP header length: 8

13

Data:
<omitted>
...

14

Appendix C.

Windows results:
C:\Users\jmarques\Downloads\Dynamic_Malware-master\Dynamic_Malware-master>python scanner.py
[INFO] The scanner has root access
[INFO] The host machine is Windows based, with the architecture (’32bit’, ’WindowsPE’)
[INFO] It is running Windows 10 version 10.0.14393
[INFO] Ip address for {2EF7B488-0AA1-4594-AFAD-C9C0BA083157} is: 192.168.0.6
[INFO] Ip address for {D410E957-E244-11E6-8000-806E6F6E6963} is: 127.0.0.1
[DEBUG] [[’{2EF7B488-0AA1-4594-AFAD-C9C0BA083157}’, ’192.168.0.6’], [’{D410E957-E244-11E6-8000-806

E6F6E6963}’, ’127.0.0.1’]]
[INFO] TCP Socket created
[INFO] UDP Socket created
Exception in thread Thread-1:
Traceback (most recent call last):

File "C:\Users\jmarques\AppData\Local\Programs\Python\Python36-32\lib\threading.py", line 916, in
_bootstrap_inner

self.run()
File "C:\Users\jmarques\AppData\Local\Programs\Python\Python36-32\lib\threading.py", line 864, in run
self._target(*self._args, **self._kwargs)

File "scanner.py", line 128, in tcp_sniffer
packet = tcp_soc.recvfrom(65565)

OSError: [WinError 10022] An invalid argument was supplied

Exception in thread Thread-2:
Traceback (most recent call last):

File "C:\Users\jmarques\AppData\Local\Programs\Python\Python36-32\lib\threading.py", line 916, in
_bootstrap_inner

self.run()
File "C:\Users\jmarques\AppData\Local\Programs\Python\Python36-32\lib\threading.py", line 864, in run
self._target(*self._args, **self._kwargs)

File "scanner.py", line 154, in udp_sniffer
packet = udp_soc.recvfrom(65565)

OSError: [WinError 10022] An invalid argument was supplied

15

	Introduction
	Literature Review
	Hiding the identities
	Hiding the processes
	Network steganography
	Traffic Type Obfuscation

	Hiding the content
	Remote Access Malwares
	Advanced Persistent Threats
	Botnets

	Detection methods
	Signature based
	Anomaly based
	Traffic normalization
	Comparing botnet detection papers

	Intrusion detection systems
	Host based IDS
	Network based IDS
	Others

	Summary

	Methodology
	Hardware/Software
	Setting up the development Environment
	Setting up the testing Environment
	Intelligent Malware

	Results
	Discussion
	Future Work
	Conclusion
	References
	Appendix A
	Appendix B
	Appendix C

