
System and network Engineering

Reasearch project 1

Automated Windows lab
Deployment

A method of deploying, installing and configuring a
windows lab environment

Vincent van Dongen
Fons Mijnen

Supervisors
Marc Smeets

Mark Bergman

February 12, 2017

Abstract

Realistic test environments are essential for (security)testers and re-
searchers. Therefore, it is necessary to quickly deploy a realistic testlab.
Many products and techniques exist to automatically deploy Windows
systems. However, these automated deployment tools only deploy basic
Windows systems and do not create a realistic test environments, such as:

• Active Directory Domain Controllers.

• Site links.

• Replication Schemes.

• Domains and sub domains.

• Mail- ,DNS- ,Web- ,DHCP-, File-server.

• User database with users, groups, Organization Units.

Also, these tools do not generate or create traces of system and user
behavior, such as:

• Groups and user account located in the user-database.

• Files located in user folders.

• Mailboxes with email included.

• Client applications.

• Log and event files.

This research investigates whether or not it is possible to automate
the deployment of a realistic test lab. By using the currently available
techniques and tools such as configuration management tools, image de-
ployment tools, virtual machine snapshot techniques, and cloud templates
it is only partially possible to automatically deploy a realistic testlab.
Therefore, we have created a new model for lab deployment and tested
the model in an experiment. The prototype uses a combination of dif-
ferent kinds of techniques and methods and is mainly programmed using
Powershell scripts. The results of the experiment show that the proposed
model is more efficient then current techniques for automated lab deploy-
ment. The prototype is able to automatically deploy a realistic testlab.
The prototype can also create traces of user interaction. However, some
user behavior can not be simulated.

1

Acknowledgements

We would like to express our gratitude and appreciation towards our su-
pervisors Marc Smeets and Mark Bergman. Their assistance and guidance
during the whole research period have been really valuable to us.

2

Contents

1 Introduction 4
1.1 Related work . 5
1.2 Defining a testlab . 6

2 Currently existing techniques and product 7
2.1 Current techniques to deploy and configure a testlab 7
2.2 Current techniques to simulate user and system behavior 9
2.3 Conclusion . 10

3 New Windows testlab deployment model 11
3.1 Model specification . 11

3.1.1 Phase 1: lab definition . 12
3.1.2 Phase 2: Deployment of server and OS installation 12
3.1.3 Phase 3: Server provisioning 13
3.1.4 Phase 4: Software installation and configuration of servers 14
3.1.5 Phase 5: Deployment of client and OS installation 14
3.1.6 Phase 6: Client provisioning 14
3.1.7 Phase 7: Software installation on client 14
3.1.8 Phase 8: Log file and user behavior emulation 14
3.1.9 Final model . 16

3.2 Prototyping the model . 17
3.2.1 Prototype resource specification 17
3.2.2 Underlying architecture 17
3.2.3 Prototype build . 17

3.3 Conclusion . 20

4 Results and Comparison 21
4.1 Findings and evaluation . 21
4.2 Comparison between already existing products and our prototype 22

4.2.1 Comparison table . 23
4.2.2 outcome of the comparison table 25
4.2.3 Summary . 26

5 Conclusion 27

6 Future Work 29

Appendices 31

3

1 Introduction

It professionals, students, and researchers use test labs for a variety of reasons.
Many products and techniques exist to automatically deploy Windows systems.
However, these automated deployment tools only deploy Windows systems and
dont create a realistic test environment. Therefore, manual configuration is
required to create a useful testlab which can require a lot of time. Also, config-
uration errors can occur and technical knowledge is required to build a test lab.
Moreover, these tools require a lot of user input, which extends the deployment
time. A testlab does not have these kinds of limitations when it has already
been automatically installed and configured.

Furthermore, the currently available products and techniques that exist to
automatically deploy Windows servers do not generate or create traces of sys-
tem/user behavior. For example, deployment tools do not generate log files,
event files, browser history and connection logs. These kinds of user and system
traces can be very useful for security researchers and IT professionals. They
can test new vulnerabilities, measuring the impact of security breaches or run
samples of malware in a testlab. A realistic Windows testlab can be defined by
the following elements:

• Groups and user account located in the user-database.

• Files located in user folders.

• Mailboxes with email included.

• Client applications.

• Log and event files.

This research investigates whether or not it is possible to automate the
deployment of a realistic Windows test lab. For this research project, we have
proposed the following question:

Is it possible to automate a fast and easy rollout of a realistic Windows test
environment with minimal user interaction?

To answer this research question, we have defined the following sub-questions:

1. What kind of techniques and methods exists to deploy and configure a
Windows testlab

2. What is the most suitable option to automate the deployment and config-
uration of a Windows testlab?

3. What kind of techniques and methods exists to simulate system and user
behavior on Windows machines?

4. What is the most suitable option to automate the simulation of system
and user behavior on Windows machines?

4

This research is divided into multiple phases. First, the current techniques
to deploy and configure a testlab are investigated. During the investigation, we
also focus on the limitations of these products. Secondly, the current techniques
for user simulation are investigated. Next, we propose a new model for Windows
testlab deployment. In order to prove the model we will build a prototype to
create an automated realistic testlab. We will then conducted experiments to
verify our prototype. After that, we compared the existing methods and tech-
niques with the proposed model and analyzed the results. Finally, we discussed
the results and answered the research questions.

1.1 Related work

Very little existing research is done into this field. Although many commercial
and open-source products exist to deploy an infrastructure, as well as products
that aim to manage configurations in infrastructures, almost no research has
been done to combine these products. Therefore, we use the research reports
that describes different techniques to deploy a visualized environment. [11] Also,
we studied existing products with the purpose of automated deployment of
virtual machines. Existing commercial products like Puppet, SCCM, Vmware
Deployment, and Azure have been studied and reused in this research.

Almost no research has been done related to building a test environment
with traces of use like log files, events, and connections. Only a few unofficial
blogs, tutorials, and web pages describe a few techniques to create traces of use.

5

1.2 Defining a testlab

Before the experiment can start, it is necessary to define what exactly a Windows
testlab consists of. It depends on the purpose of the testlab which and how many
servers should be installed. This testlab is designed for security testers. Below
we have defined a list of what we think the testlab should include:

• Active Directory for a user-database.

• Multiple Active Directory Domain Controllers:

– Three different domains.

– Each domain contains 1 Domain Controller.

– All the three domains are located in the same Forest.

– All the Domain Controllers have a two-way trust and replication
scheme.

• Email Server.

• Domain Name Server.

• Web Server.

• Client computer systems.

• DHCP server for releasing dynamic IP-addresses for clients.

• SMB share for sharing files and personal folders of users.

• Internet access for clients.

• Traces of user and system behavior:

– Groups and user account located in the user-database.

– Files located in user folders.

– Mailboxes with email included.

– Client applications.

– Log and event files.

Below are the functional requirements displayed:

• Relatively fast deployment (less than 12 hours).

• Minimal user interaction.

• Functionality to automatically update Windows servers and client Oper-
ating Systems.

• Definable parameters such as domain names, IP-addresses and users/groups.

• The total costs should be as low as possible.

• The total amount of disk space should be as low as possible.

6

2 Currently existing techniques and product

In this chapter, the existing techniques and product related to this research will
be discussed. First, the current techniques to deploy and configure a testlab will
be discussed and, secondly, the current techniques to simulate user and system
behavior will be discussed.

2.1 Current techniques to deploy and configure a testlab

A variety of products, methods, and techniques already exists to deploy and
configure a testlab, such as Puppet, SCCM and WDS. All the different products,
methods and techniques can be roughly divided into four groups:

1. Configuration Management
2. Image Deployment
3. Virtual Machine Snapshot
4. Cloud Templates

Configuration management

Configuration management refers to a discipline for evaluating, coordinating,
approving or disapproving, and implementing changes in computer systems that
are used to construct and maintain software systems. Configuration manage-
ment tools like Puppet ensures that the right configuration is deployed across
many computer systems. The system resources, system configurations and their
state are described in a system-specific catalog, which is applied to the target
computer system. Configuration management tools like Puppet and Ansible
are designed for deploying Configuration files to computer systems. However,
some configuration tools are able to deploy computer systems. Configuration
management tools already require an existing environment. This means that
another infrastructure has to be created in order to use the configuration man-
agement tools. [5]

Image deployment tools

Image deployment tools are used to quickly and effectively install operating
systems to servers and clients. In order to install an operating system, an
installation image is required, which contains the Operating System. Also,
a boot image is required to boot a system to perform an operating system
installation. A boot image contains the Windows Deployment Services (WDS)
client and the Windows Preinstallation Environment (Windows PE), which is
basically a mini operating system used to connect the system to the WDS server
and provide the means to select and install a WDS installation image. There
are several methods to deploy an operating system [7]:

• PXE-boot: In this method of deployment, the operating system image and
a Windows boot image are sent to a distribution point that is configured
to accept PXE boot requests.

• Multicast deployments conserve network bandwidth by concurrently send-
ing data to multiple clients instead of sending a copy of the data to each
client over a separate connection.

7

• Pre-staged media deployments let you deploy an operating system to a
computer that is not fully provisioned. The pre-staged media is a Win-
dows Imaging Format (WIF) file that can be installed on a bare-metal
computer by the manufacturer or at an enterprise staging center that is
not connected to the Configuration Manager environment [9].

The most suitable solution would be the PXE-boot because network connec-
tivity is not an issue for a testlab and the computer system are fully provisioned,
which means that pre-staged media deployments are not necessarily.

Image deployment tools are designed for deploying Operating systems. But
these tools are not able to deploy configuration files. Its, however, possible to
create an installation image which has already installed software and applica-
tions. These images are called Capture Images. Before a captured image is used,
a system with an operating system is customized by adding applications, cus-
tom configurations, and other system changes that are required for the testlab.
When the system is ready for imaging, additional steps must be taken to ensure
a successful capture, such as clearing out application and specific Registry keys.
This means that manual configuration is still required afterward.

Virtual machine snapshot

Another technique is called virtual machine snapshots. A virtual machine snap-
shot is a file-based representation of the state of a virtual machine at a given
time. All changes made after the snapshot was taken may be based on that
snapshot information (incremental changes). When a virtual machine snapshot
is created, the hypervisor pauses the virtual machine and creates a special disk
image. From that moment, the hypervisor will write changes only to the extra
disk image. Therefore, the base disk image file is not modified. The hypervisor
still uses the original disk to read files. When a snapshot is reverted back to the
moment when the snapshot was created, the hypervisor only removes the disk
image files that contains all the changes. This method could be very useful in
order to build a testlab. A testlab only has to be installed and configured man-
ually once. At that point, a snapshot will be created that will be the starting
point for any testlab. When someone used the testlab and has made changes in
within the testlab, the default state of the testlab could easily revert back by
using snapshot.

There is, however, a very big downside of using snapshots. Microsoft strongly
recommends to not make use of any virtual machine snapshots within Domain
Controllers. Creating and then reapplying a snapshot to a virtualized Domain
Controller can create a situation known as Update Sequence Number (USN)
rollback. The USN is used as a sequence number to determine which domain
controller has the most recent version of the database. When restoring a Do-
main Controller by using snapshots that were taken earlier, the USN is then also
restored. After the restoration, the DC then goes about making changes again
to its database, incrementing the USN. But, this time the USN is not correct.
This replication problem will occur when only a few Domain Controllers are
rolled back through a snapshot. [6]

8

Another disadvantage of using virtual machine snapshots is that there is no
efficient way to update software and Operating Systems. Manually updating
every virtual machine is the only proper solution to update software and Oper-
ating Systems, which require a lot of time.

Templates

Finally, the last technique relies on templates. Within cloud solutions, such as
Amazon AWS and Microsoft Azure, it is possible to deploy and configure a Vir-
tual Machine based on a template. For each Virtual Machine, a unique template
can be created. This means that the end-user only has to execute the templates
to build an up-to-date testlab. However, these cloud solutions are only able
to configure basic settings. It is for example not possible to automatically cre-
ate and setup an Active Directory Forest or define the Active Directory Sites.
Furthermore, the costs of virtual machines are relatively high compared to a
dictated server. This is mainly due to the fact that the cloud providers charge
a high amount of the total cost to keep the Virtual Machine up-and-running by
providing redundancy. This is obviously not necessarily when you are running
a testlab. Moreover, Microsoft automatically updates the Operating Systems.
This could be a disadvantage for security testers that want to use an outdated
Operating System to test security vulnerabilities. Finally, within most cloud
providers it is not possible to create client VMs like Windows 7, 8 or 10. The
client machines are compulsory to create a realistic testlab. [2]

In conclusion, none of the products, methods, and techniques are able to
efficiently deploy and configure a testlab. Also, the product that can configure
systems, are not able to configure sophisticated features such as Active directory
schemes, replication connections and sites, and services. Either a combination
of techniques are required or a completely different solution has to be developed.

2.2 Current techniques to simulate user and system be-
havior

After a testlab has been deployed and configured, some traces of user and system
setup behavior has to be added to the testlab. This distinguishes a testlab from
a realistic testlab. Below are a few examples displayed of traces of user and
system setup behavior:

• Groups and user account located in the user-database.
• Files located in user folders.
• Mailboxes with email included.
• Client applications.
• Log and event files.

Almost every IT infrastructure has an Active Directory user-database. Many
tools exist to create these user accounts. Examples of such tools are Sysmalogic,
Firstattribute, and Netwrix. A few of those tools have a feature that adds pa-
rameters to accounts. An example of a parameter is whether or not an account

9

is expired or disabled. The same tools are able to create groups and attach
users to the group. These tools require an XML or CSV input that should be
provided by the end-user.

Next, users often download, create or generate files such as doc(x), pdf, zip
and ISO files. We have found no tools applications available that generates
such files. Furthermore, there are also no tools available that generates search
browser history, cookie session or stored web page credentials.

Many organizations use a mail server. Therefore, a mail server is included
in the testlab. The mail server should contain emails and mailboxes in order to
simulate user and system behavior. An application called Microsoft Exchange
Server Load Generator is used to generate the traffic. It uses simulated exchange
user mailboxes to generate load traffic. The called Microsoft Exchange Server
Load Generator was designed to validate deployment settings and identify bot-
tlenecks, but it can also be used to simulate user traffic [6].

Most clients have additional software installed on the client machine such
as Microsoft Office, Skype, Mozilla Firefox, and Adobe reader. There are many
existing products to deploy the additional software. The software can also be
deployed through GPO‘s (Group Policy Objects).

Finally, log and event files should be added to the testlab in order to make
the testlab more realistic. A logfile is a file that records either events that occur
in an operating system or other software. Within Windows Operating system,
its allowed to create and add logfiles. This can be easily accomplished by us-
ing scripting tools. However, its not allowed to alter the timestamp of the log.
This means that the system time is always applied as a timestamp. There are
currently no tools available to alter the timestamp [4].

In conclusion, many tools and software exist to create some form of traces of
user and system behavior. However, these tools can only generate traces for a
few applications. This means that by using currently existing tools and product,
its only partially possible to create a realistic testlab.

2.3 Conclusion

We have investigated the currently available techniques and methods to de-
ploy/configure a testlab and the currently available techniques and methods to
create a realistic testlab. The different techniques and methods can roughly be
divided into four groups. However, by using one these techniques and tools its
only partially possible to automatically deploy a realistic testlab. Therefore,
some requirements cannot be fulfilled by using currently available techniques
and require manual interaction that was defined in chapter 1. This is also ap-
plied to tools and techniques that create a realistic testlab.

10

3 New Windows testlab deployment model

Considering the proposed models and techniques in chapter 2.1 and 2.2 a new
model for lab deployment is needed in order to create an efficient lab deploy-
ment tool. This new model will be built with the intention of creating a tool
that automates a fast and easy rollout of a realistic Windows test environment
with minimal user interaction. This model will use a combination of existing
techniques, functions in virtualization, and automation of Windows systems.
The model will be defined as an abstract method of creating a tool to do lab
deployment.

In order to test the new model, we will create a prototype of the model.
This prototype will be used to benchmark the performance of the model. Fur-
thermore, we are able to compare our model with other existing deployment
tools and determine whether or not this model is viable and how it performs
compared to other solutions.

3.1 Model specification

We have divided our model into 8 phases. We have defined these 8 phases based
on the distinct techniques and functions each phase has. Each phase will have an
independent input and output. Therefore, the model is capable of dynamically
adding and removing phases. The phases are defined as followed:

1. Lab definition

2. Deployment of server and OS installation.

3. Server provisioning.

4. Software installation and configuration on servers.

5. Deployment of clients and OS installation.

6. Client provisioning.

7. Software installation on clients.

8. Log file and user behavior emulation.

The model will be specified to adhere to a set of rules. First of all, the
model should be able to deploy a testlab as defined in chapter 1.2. Moreover,
the model should also be extensible to add different operating systems if needed.
Therefore, the phases that divide the testlab should be as independent as pos-
sible. For example, if router support is needed within the testlab, it should be
able to define and create extra phases in the model that add an extra router.

The lab will be deployed in a virtualized environment. This is done by a
hypervisor. An hypervisor is a software architecture that allows administrators
to create virtualized machines. This setup has a few advantages. First of all,
the hypervisor is able to run scripts that deploy and configure Virtual Machines.
Secondly, the images can be transferred within the file system. Therefore, no

11

network is required. Thirdly, the codes and commands are being send over the
virtual network. This means that any packet loss is limited to a minimum.

3.1.1 Phase 1: lab definition

Before lab deployment can start the lab should first be defined. The specific
language of storing the lab information shouldn’t be important. It could be for
example stored in XML, SQL, or CSV. The lab definition will require a name
so it can be found and the lab configuration can be read by the different phases.
This will reduce the amount of information required to transfer between phases
and thus increase independence.

A subnet is required in order to allow connectivity between systems in the
lab. In order to ensure that no IP range conflicts arise, we propose the use of a
10.0.x.0/24 network. This allows a single machine to deploy 255 labs of up to
253 machines, allowing a theoretic possibility of 64515 machines across all labs.
Finally, domains and sub-domains for the Active Directory scheme configura-
tion should be also defined in the lab definition.

In this phase, the system specifications can be defined for the virtual ma-
chine, such as Hard-drive size, RAM Memory, CPU cores, Operating system,
and other machine specifications. At the very least we propose that operating
systems and programs to be installed should be defined for each machine.

3.1.2 Phase 2: Deployment of server and OS installation

In order to deploy Windows images differencing disks will be used. This means
that for each image to would be used to deploy a server, a golden image will be
created. Furthermore, for every Virtual Machine, a new disk will be created and
attached to one of the golden images. The images have a parent-child relation
where all the changes and modification related to the golden disk will be written
to the differential disk [8]. The architecture used by differencing disks is shown
in figure 1. Differencing disks can increase manageability, due to the fact that
the Virtual Machines share a similar configuration, and can dramatically reduce
the amount of disk space required on the Hypervisor. It is imperative that the
parent image remains read-only since every image will be based on this parent
image.

Windows operating system installations include many unique elements per
installation. Since the differencing disk will include these unique elements each
child disk will also contain these. However, this would create conflict where
unique elements would be the same across all children of a golden image. There-
fore these identifiers need to be generalized for every child disk. The tool Sysprep
can be used in order to generalize unique elements in an Operating System.
Sysprep seeks to solve these issues by generating new computer names, unique
SIDs, and custom driver cache databases during the Sysprep process. Sysprep
is used in the final step to make a golden disk. Before the system will shut
down, the tool Sysprep is run on the system and will automatically shut down

12

Figure 1: Overview of the differencing disks architecture

the computer system. When a differential disk is attached to the golden disk
and the system has been turned on, the Sysprep tool automatically performs
the final step to generalize unique elements.

By using differencing disks in addition to Sysprep golden images each lab
machine uses minimal disk space by using (the same) base images. From here
it can be populated by adding programs and other settings This method of de-
ployment has a couple of advantages.

First and foremost it allows a high level of automation. The golden im-
ages can be automatically prepared and Sysprep for later deployment. A unat-
tend.xml file can be attached during the Sysprep setup. The unattend.xml file
is used to automate Windows installation, but can also be used to perform the
final steps of Sysprep. Within the unattend.xml file, it is possible to define pa-
rameters for the system such as time zones, default password, and activation
keys.

Another valuable advantage of this method is that it is able to maintain
an automated library of Windows images with old updates. By automating
Sysprep and Windows updates, it is possible to automatically update an image
and Sysprep the golden image again. This updated image can then be stored in
a library.

3.1.3 Phase 3: Server provisioning

After the golden images are deployed, the servers will be provisioned. In order
to connect the server to the network the server will get a static IP address in
a 10.0.x.0/24 range where 10.0.x.1 will be the IP address of the virtual switch
on the hypervisor. Through this network interface, the hypervisor can access
the lab environment and issue commands. Without any setup or configuration,
a server will always get an IP address from the ’Automatic Private IP Ad-
dressing’ (APIPA) range [2]. This IP range is automatically given to windows
systems when the system can not find a DHCP server to retrieve an IP address
from. The network interface on the hypervisor has both a 10.0.x.1 address and
a 169.254.x.1 address on the same interface. Therefore, the hypervisor is able
to contact the servers with a APIPA address and a 10.0.x.0/24 address. When

13

the connection is established, the hypervisor sends a command to the server to
change its IP address, computer name, and local admin password. The x in the
IP addresses are defined in the lab configuration in Phase 1.

3.1.4 Phase 4: Software installation and configuration of servers

With the servers provisioned and updated, software can now be installed on the
server. Since software can depend on other software the order of installation
can be defined. The model will simply install a program from the defined list in
phase 1 in sequential order. Installers like EXE and MSI files can be transferred
to the machine then run with specific arguments, ISO and IMG files can be
mounted to the VM and then run. The model allows for all types of installation
formats to be used.

3.1.5 Phase 5: Deployment of client and OS installation

Client deployment is very similar to server deployment. It can be started at the
same time as the server deployment but will have to wait with continuing to
phase 6 until the Domain Controllers are configured. The clients, just like the
servers are deployed from differencing disks. The considerations and advantages
mentioned in phase 2 also apply to the client deployment.

3.1.6 Phase 6: Client provisioning

Clients are given IP addresses through DHCP. One of the Virtual Machines runs
a DHCP service. The clients systems will get a dynamic IP address from the
DHCP server. The DHCP server can be polled to retrieve the total amount of
addresses leased. Once the number of leased addresses equals the number of
clients on the system, the installation is done. Next, the hostname, DNS server,
and local password are configured. After that, the clients reboot and are joined
to a domain.

3.1.7 Phase 7: Software installation on client

Software installation on the clients is done by copying the installer files to the
client and then running it with Administrator privilege. By using this tech-
nique, it is also possible to install older software. In phase 1 different versions
of software can be defined for different clients. A database which holds the dif-
ferent versions of the software can be contacted and provide the client with the
preferred version of the software. This database should also contain arguments
needed to perform a quiet installation of the software.

3.1.8 Phase 8: Log file and user behavior emulation

The final phase generates log files and creates a realistic test environment. On
both server and clients, events will be created that create log files. Windows
log files are hard to alter since they are under constant use by the logger service
and thus immutable while Windows is running by any process except by the
logger service itself. Some software is available that injects malicious code into
the event logger service which allows the user to alter or remove windows log

14

events [10]. This software works only on Windows 2000, and no known software
is currently available that allows the mutation of Windows log events.

Figure 2: Overview of log emulation

In order to simulate logs of many years of use, we propose altering the time
and creating events between time alterations. By using the domain controller
servers as time synchronization servers the time of clients and servers can be
altered and then create events after that time change. We propose the use of
a separate running script on each client that polls the server every N seconds.
Between these seconds, the clients can generate events that are logged. For
example, client programs can be started or server services can be stopped and
started. Furthermore, due to the fact that every machine is virtualized external
events like power offs can be virtualized.

Using this model, the hypervisor will send events to the domain controllers
where they will jump a random number of minutes in a certain range and then
create events. In parallel, the client will be polling the servers for the ”current”
time and create events. This allows the model to speed up log creation and
create log files for years over a couple of nights depending on the acceleration
of the time. An overview of this model is detailed in figure 2

15

3.1.9 Final model

Using the model in the eight phases proposed above, we can roll out a test lab
with minimal user interaction in an efficient way. Since this model is specifically
designed for testlab deployment, it is more efficient than current deployment
services and in theory should be faster and less work intensive to build. A final
overview of the workflow of the phases is shown in figure 3

Figure 3: Overview of the 7 phases of testlab deployment

16

3.2 Prototyping the model

In the previous paragraph, a model was defined that deploys a zero-touch test-
lab. In order to verify the model we have created a prototype which is described
in the next paragraph. The complete source code of the prototype is located in
appendix A.

3.2.1 Prototype resource specification

The prototype will be build and tested on a server with the following specifica-
tion:

• Intel(R) Xeon(R) CPU E3-1240L v5 @ 2.10GHz 4 cores

• 16GB RAM

• 100GB disk

• Windows server 2012R2 OS

3.2.2 Underlying architecture

The prototype is built on a Windows machine using Hyper-V as an hypervisor.
Since the prototype is built on a Windows machine, we use the native windows
scripting language Powershell. By using build-in Powershell functions, we can
perform all the required functions of phase 2, 3, 4, and 5. Powershell is also
capable of sending commands to a remote Windows machine. PowerShell Re-
moting allows a computer system to run individual PowerShell commands or
access full PowerShell sessions on remote Windows systems. It is similar to SSH
for accessing remote terminals on other operating systems. Another interesting
consideration is the extensibility that Powershell offers. We want to develop
a prototype that supports Windows Operating Systems, but it should also be
extensible enough to support other operating systems like Linux or Mac. Power-
shell has been open sourced in 2016 and Microsoft is actively developing Linux
and MAC support for Powershell. [12] These considerations make Powershell
the obvious choice for the prototype.

Powershell also supports a feature that directly installs Windows features.
all the features that have to be installed can be added to an XML file. These
XML files are transferred to the server and then read and executed. Instead
of installing features by using XML files, it is also possible to install features
by using DVD drive. Virtual Machine techniques enable a Virtual Machine to
create a virtual drive on which the DVD drive can be mounted on.

3.2.3 Prototype build

The prototype uses a variety of PowerShell scripts to do the lab deployment.
Several components need to be present in order to deploy the testlab. The lab
definition is stored in an XML file containing the name of the lab, IP range and
(sub)domain names. Each lab machine has a list of programs, a parent disk, and
a domain name. A library of images also has to be available to use the system.
When the prototype is installed on a new machine, the library will have to be

17

built manually at first. As discussed in chapter 3.1.2, the image library can be
automated to a certain extent.

It is possible to automate the entire process of Windows updates. There-
fore, it is possible to keep the images up to date with the newest patches. This
method relies on a 3 step process shown in figure 4. First, the golden image
is added to a Virtual Machine and started. This Virtual Machine will have a
static IP and access to the outside world. When the Virtual Machine is booted
up, Windows updates will be started remotely. Once done, the machine will
be completely up to date and powered down. Now the VHD file is copied to
a staging area where it will be added to a new VM. In this staging area it
will be booted up, be given a unattend.xml file and then Sysprep is run. After
the Sysprep is done, the image will be given a date when it was imaged and
added to the library of images. Using this technique updating the images can
be done automatically without needing other software or manually downloading
the updates. This task can be scheduled and manually run when needed to keep
images up to date.

Figure 4: Automated windows updates overview with a windows 7 image

When starting the prototype, the file create lab.ps1 is called. This script
only requires two inputs to do the entire lab deployment. A lab name, which it
uses to find the corresponding lab entry in the labs config.xml file and a pass-
word, which has to be provided by the user. This script will be the central
script that calls other scripts in sequence. It calls the init servers.ps1 scripts to
perform phase 1 and 2 of the deployment model. Once it finishes deployment it
starts Domain Controller installation.

When the servers finish the installation of domain controllers, is starts the
script install dc.ps1. According to the lab specification in chapter 2.1, the test-
lab contains multiple Domain Controllers located in 3 different domains that
exist in the same forest. Domain controllers can be installed through Power-
Shell. All the mandatory parameters for promoting a Domain Controller can

18

be included in the script. However, when all the Domain Controllers are be-
ing configured, replication errors may occur. In order to solve these issues, the
replication time has to be altered. Moreover, some waiting timers have to be
included in the script to successfully configure a Domain Controller. Finally,
its also possible to create and define Microsoft Active Directory Sites. This can
also be accomplished through Powershell. [3]. After the Domain Controllers are
installed, users are added based on the users.csv file. Meanwhile, the clients are
initialized with the init client.ps1 script during the installation and configura-
tion of the Domain Controllers.

In order to support some form of mail in the Testlab, Microsoft Exchange
is used. Unlike all the other features mentioned above, Exchange server cant
be installed with the Server Manager deployment cmdlets. Invoking the in-
staller with arguments is also not possible because of sandboxing issues with
remote Powershell calls. Therefore, we use the schtasks.exe, a task scheduling
application, to break out of the sandbox and install Exchange. Next the script
install features.ps1 is called. This installs standard Windows features like DNS,
DHCP, and IIS through the install-windowsfeature cmdlet.

Figure 5: The prototype workflow

Now that the servers are completely installed, the clients can be provi-
sioned. The Hypervisor polls the DHCP server on current leases and unblocks
after all clients have leases. It then provisions the clients by adding domains,
computer names and local admin passwords. After provisioning, the script in-
stall programs.ps1 is run. This fetches the programs and program versions listed
in the labs config.xml file. In the programs.xml file, the programs, versions, ex-
tensions, and other arguments that are required to silently install software are
called. The installers are transferred from the Hypervisor to the client machine
and then run with the corresponding arguments.

As explained earlier in this report, it is possible to create log files with Pow-
erShell. However, it is not possible to change or alter the timestamp of log
entries. When a log event is created, it uses the current system time as the
timestamp. Therefore, by altering the current system time, it is possible to use

19

a different timestamp. As explained in chapter 3.1.8 we can leverage the Domain
Controllers to do the time manipulation. We offload scripts to the clients, these
scripts both poll the Domain Controllers every 5 seconds and generate events
for log files. From the Hypervisor, we call the Domain Controllers to jump a
certain amount of minutes in lockstep and generate events on the servers.

Beside logfile generation, we use a script with a small dictionary to generate
user files, folders, and content using random names and file extensions. Finally,
emails with random content are sent by using Exchange command line functions.

3.3 Conclusion

In order to verify the proposed model, we have created a prototype that au-
tomates a fast and easy rollout of a realistic Windows test environment with
minimal user interaction. This solution uses a different kind of techniques and
methods compared to the existing ones. The prototype proves the viability of
our proposed deployment model that was defined in chapter 3.1. The complete
overview of resources and scripts that were used in the prototype can be seen
in figure 5 The results of the experiment in the next chapter.

20

4 Results and Comparison

In this paragraph, we will evaluate the findings and results of the experiment.
Next, we will compare the results with already existing tools, methods, and
products. Finally, we discuss the results.

4.1 Findings and evaluation

It is possible to automatically deploy a realistic testlab with the techniques and
methods that were described in the previous paragraph. However, not every
technique or method worked as it should be. Below are the findings and results
of the experiment displayed:

1. It is possible to automatically deploy a realistic testlab.

2. Powershell was designed for maintenance and not for configuration man-
agement. Therefore, not all installation or configuration parameters can
be defined in Powershell.

3. Microsoft Exchange has no function for remote installation. In order to
install Exchange the remote Powershell environment has to be broken out
of.

4. Within Windows operating systems, user are not able to alter timestamps
in logfiles and other system- or user traces.

5. The average installation time is approximately 5.5 hours for 8 virtual
machines.

6. To deploy a basic testlab consists of 8 servers and 3 clients machines, the
total disk usage is approximately less than 200 GB.

7. We have found no other way to force the replication between Domain
Controllers lower than 15 minutes.

After conducting the experiment many times it was apparent that Microsoft
Exchange server crashes often or does not completely install the Exchange ap-
plication. Many error handling techniques had to be included in the deployment
script in order to install the Exchange server.

The Domain Controllers can be installed without a problem. However, a
sophisticated script is required to create a domain and join a forest. One of
the most important part of the script that configures the domain Controllers, it
that a waiting timer of 15 minutes has to be included in the script. Otherwise,
replication errors will occur when an extra Domain Controller will join the For-
est.

Traces of user and system behavior can be accomplished by installing addi-
tional software, creating users/groups/Organization Units/mailboxes, creating
Shares, file servers, and create user file and mails. Log files can be generated by
time synchronizing with domain controllers. However, it is apparent that not all
user actions can be emulated within the model. Some standard user behavior
like a desktop logins can not be done with scripting. Time synchronisations are
also stored in the log files creating entries that should not be there. Therefore,
we conclude that the creation of log files is still lacking and can not be done

21

until a method is found that allows users to alter log events.

Finally, the required user input is minimal to deploy the testlab. Before a
testlab can be created, a CSV file has to be completed with user account and
groups names. All the account, organization names and groups that are defined
in the CSV file will be created in the user database. After that, an XML file
has to be completed with parameters for the servers. Finally, the PowerShell
script can be executed

4.2 Comparison between already existing products and
our prototype

In this paragraph, we compare the results with the already existing products.
First, we compare the results with configuration management tools. Secondly,
we compare the results with Image deployment software.Thirdly we compare
the results with the virtual snapshots method and finally with Cloud Templates.

When comparing configuration management tools with our prototype, it’s
clear that our solution can configure more parameters than the configuration
management tools. For example, configuration management tools can only do
basic domain controller installation and configuration but not some of the more
complex configuration tasks like replication time. However, our prototype is
capable of completely configuring Domain Controller and joining the Active Di-
rectory Forest.

The automation, flexibility and extensibility of the proposed model makes
it a better choice then existing deployment methods listed in chapter 2. In
comparison to traditional Windows deployment tools like WDS it requires no
existing AD, DHCP and DNS server to do the deployment. Furthermore tradi-
tional deployment tools will create a new complete disk for every VM instead
of a differentiating disk. This means 20GB extra disk space per disk, which will
quickly be noticeable when deploying labs as demonstrated in figure 6. Further-
more, these tools will push entire images over the virtual switch to the virtual
machines creating a bottleneck of transfer speed where differentiating disks use
the file system itself for deployment as well as unnecessary overhead.

Another method that can be compared with our method is the use of snap-
shots. There are two advantages between the snapshot method and our method.
First of all, Microsoft strongly recommends to not make use of any virtual ma-
chine snapshots within Domain Controllers. Replication problem will occur
when only a few Domain Controllers are rolled back through a snapshot. Sec-
ondly, there is no efficient way to update software and Operating Systems.
Manually updating every virtual machine is the only proper solution to update
software and Operating Systems, which require a lot of time.

Another consideration is the flexibility of the deployment. When using snap-
shots the deployment is essentially locked into a single configuration where all
the machines will always have the same state. This in contrast to our model
that allows for a much more dynamic deployment of a testlab. The configuration

22

Figure 6: Disk usage comparison between WDS and Differentiating disks for
Windows7 images

can be changed with each deployment and therefore allows for a more flexible
deployment. However snapshots do allow for log file generation. Systems could
simply be used for a while, or systems could be taken from some production
VM and then snapshot. This would mean log files are already generated in the
snapshot.

There are some differences between the proposed model and Cloud tem-
plates. Cloud templates in general contain Windows images that are easy to
deploy and automate. However, these templates are generally updated regularly
and therefore do not allow for easy deployment of older images. For security
researchers it is sometimes necessary to test on older systems. The proposed
model consists of an automated library that contains images which would allow
researchers to deploy older images. Furthermore, the pricing list to rent multi-
ple Virtual Machines are very high compared to buying a single server to run a
hypervisor on.

4.2.1 Comparison table

In order to outline the difference between our model and the currently existing
lab deployment methods we have build a comparison table. There are 8 different
features which all the solutions are reflected on. Each feature is explained below:

1. Is able to deploy and install computer systems: It should be possible to
deploy client systems such as Windows 7, Windows 8 and Windows 10.
But also server systems such as Windows Server 2012.

2. Is able to configure computer systems: With this feature, it should be pos-
sible to configure hostnames, DNS servers, IP-address, and local admin-
istrator passwords. Moreover, it should be also possible to configure soft-
ware.

3. Is able to build automatically an Active Directory Forest: Active Directory
Forests should be able to be created. Furthermore, it should be possible

23

to deploy domain Controllers within different domains inside a forest. Fi-
nally, it should be possible to alter and create sites and replication schemes
for these domains.

4. Is able to Automatically update windows servers and clients: The Operat-
ing Systems of clients and servers should be automatically updated. This
also applies to the software that was installed on the systems.

5. Is able to create clients, groups and network shares that are connected to
Active Directory. It should be able to create clients and groups. These

groups should be allocated to network shares and other groups.

6. Only require user interaction at the start of the deployment: One of the
requirements that were defined in chapter 1 was that the user input should
be as minimum as possible. This feature states that only at the start of
the deployment the end user must provide user input to the application
or script.

7. Possibility to extend the framework to support other Operating Systems.
It should be possible to add other operating systems to the testlab or other
types of software for the computer systems.

8. Definable parameters such as IP-addresses and users: Lab specific config-
urations like domain Names, hostnames, IP-addresses, groups, and users
should be definable before starting the lab deployment.

24

CM WDS Snapshots cloud templates Our model
1. Deploy and install computer systems 3 3 3 3 3

2. Configure computer systems 3 3 3 3

3. Build automatically an Active Directory Forest 3 3

4. Automatically update Windows servers and clients 3

5. Create clients, groups and network-shares that are con-
nected to Active Directory

3 3 3

6. Only require user input at the start of the deployment 3 3 3 3

7. Possibility to extend the framework to support other
Operating Systems

3 3 3 3

8. Definable parameters such as IP-addresses and users 3 3 3

Table 1: A comparison of all the existing products as well as our model

4.2.2 outcome of the comparison table

Below, we discuss the outcome of every feature of table 1.

1. Is able to deploy and install computer systems: Every product is able to
deploy a computer system.

2. Is able to configure computer systems: The configuration tools, snapshot
method, the cloud template method, and our method are able to configure
computer systems. Within WDS, it is possible to attach a configuration
files. However, these configuration files only configures the host name,
time zone, and password of computer systems.

3. Is able to build automatically an Active Directory Forest: Only the snap-
shot method and our method are able to automatically build an Active
Directory Forest. However, as described in chapter 2, Microsoft strongly
suggest to not use snapshots for domain controllers. The WDS tool and
the cloud template are able to install a Domain Controller service but not
configure it and create a domain.

4. Is able to Automatically update Windows servers and clients: Only our so-
lution is able to automatically update Windows server and clients by using
the image library technique as described in chapter 3. The cloud template
method automatically update Windows servers but it is not possible to
use an older version of Windows.

5. Is able to create clients, groups and network shares that are connected to
Active Directory. WDS is not able to to create users and groups. Fur-

thermore, the cloud template method is not able to automatically create
a connection to network shares.

6. Only require user interaction at the start of the deployment: Within con-
figuration management tools, it is possible to define everything in special
defined systems catalogs. Within Snapshots, all the configuration has al-
ready been done. Therefore, only the roll/back function has to be applied.
For the cloud template, it possible to define everything in the templates
and upload it to the cloud provider. Finally, within our solution, it is
possible to define everything in XML files.

7. Possibility to extend the framework to support other Operating Systems.
The WDS application is only capable to extend the framework to support

25

Windows Systems. This means that no other vendor can be added to the
framework.

8. Definable parameters such as IP-addresses and users: WDS cannot con-
figure computer systems. Therefore, it also not possible to create de-
finable parameters. Snapshots use the parameters that were defined when
the testlab was created. Therefore, it also not possible to create definable
parameters.

The combination of currently available techniques resulted in a less effective
deployment tool compared to our model. A combination of tools would result
in more overhead and less efficient lab deployment for a number of reasons.
Primarily these tools are specified to do more things then just lab deployment
and therefore contain a large set of tools that are unused. Furthermore, because
of the way these tools are build to handle many different kinds of deployment
they are inefficient when compared to our proposed model. For example, instead
of using the file system directly, a combination of tools would push the entire
Windows images through the virtual network to the virtual machines increasing
overhead. Some other reasons include:

1. More parameters can be defined.

2. Less user input is required during deployments and installation.

3. Possibility to extend the framework to support other Operating Systems.

4. Includes the possibility to automatically update images.

4.2.3 Summary

Compared to other techniques, tools, products and methods, our solution is
able to automatically deploy a realistic testlab effectively. Where the current
techniques, tools, products and methods are only able to partially automatically
deploy a realistic testlab. Furthermore, the proposed method in this research is
a more efficient way of deploying a realistic testlab compared to a combination
of deployment tools.

In comparison with other existing tools and products, our solution can deploy
virtual machine more efficiently and can do more sophisticated configuration.
Also, the limited amount of user interaction is something that differs our solution
with existing tools and products.

26

5 Conclusion

We have investigated the currently available techniques and methods to deploy
and configure a testlab. The different techniques and methods can roughly be
divided into four groups:

1. Configuration management
2. Image deployment
3. Virtual machine snapshot
4. Cloud templates

By using one these techniques and tools it is only partially possible to au-
tomatically deploy a realistic testlab. Some requirements cannot be fulfilled
by using current techniques and require manual interaction that was defined in
chapter 1. Therefore, we have created our own model to automatically deploy
a realistic testlab. Our model uses the following phases and methods to deploy
a realistic testlab:

1. Specify lab
2. Deployment of server and OS installation
3. Server provisioning
4. Software installation and configuration on servers
5. Deployment of clients and OS installation
6. Client provisioning
7. Software installation on client
8. Log file and user behavior emulation

In order to verify our model, we have created a prototype. Compared to
other the currently existing techniques, tools, products, and methods our pro-
totype is able to automatically deploy a realistic testlab. Where the other tools
and methods are only able to partially automatically deploy a realistic testlab.

In order to compare our method with the currently existing tools and prod-
ucts, we created an comparison table. The outcome of the comparison table
was that our method supports all requirements and the currently existing tools
and products do not. Despite the fact that the snapshot technique and the
cloud templates method support almost as many requirements, they have a few
distinct disadvantages. The snapshot technique doesn’t automatically update
the Operating Systems in the testlab. For security researchers, it’s sometimes
preferred to have an older Operating System in order to test vulnerabilities on
different versions of Operating Systems. A big disadvantage within the cloud
template solution is the pricing list to rent multiple Virtual Machines.

27

Also, the combination of currently available techniques resulted in a less
effective deployment tool compared to our model due to the following reasons:

1. More parameters can be defined.

2. Less user input is required during deployments and installation.

3. Possibility to extend the framework to support other Operating Systems.

4. Includes the possibility to automatically update images.

5. Less overhead

Our prototype uses Powershell to deploy, install, and configure servers as
well as clients. However, a few tasks in Powershell can not be done. Therefore,
other tools are required to complete the task. Moreover, the requirement user
input is minimal to deploy the testlab.

This research has shown that it is possible to automate a fast and easy
rollout of a realistic Windows test environment with minimal user interaction
by using the methods and techniques specified in our model. We have proven
the viability of the model by building a prototype of the model. The prototype
has shown that our model works and is more efficient and effective in Windows
testlab deployment than current solutions.

28

6 Future Work

Further research can be done on different levels. First, the proposed solution
can be improved by including more Windows Operating systems and other non-
Microsoft operating system. Also, a more user-friendly interface could be built
with error-detection mechanisms included. Moreover, more services and appli-
cations can be included in the proposed method.

The proposed testlab is mainly designed for security research are not any
router, networking security appliances, network monitoring tools, VLANs or
different networks present in the testlab. More research can be conducted on
this topic.

Finally, log and event files should be added to the testlab in order to mers.
However, the testlab has only a very basic network configuration. Theyake the
testlab more realistic. In this research, we have only investigated whether or
not it is possible to alter the timestamp. We have also altered the current time
of client machine to verify that the timestamp is different. More research can
be conducted to determine what the side effects are when the time continu-
ously changes within the testlab. Furthermore, a group calling themselves The
Shadow Brokers publicly released a cache of NSA hacking tools. Screenshots
of the sale suggest that the Shadow Brokers group has in its possession a tool
thats capable of editing and tampering with Windows event logs [1]. This tool
might become available in the near future and could be added as a feature to
the solution.

29

References

[1] Chris bing, cyberscoop, januari 12 2017. https://www.cyberscoop.com/

shadow-brokers-leak-nsa-linked-microsoft-hacking-tools/.

[2] Dhcp and automatic private ip addressing. https://technet.microsoft.
com/en-us/library/cc958957.aspx.

[3] Microsoft developer, active directory powershell, august 18, 2009, m. ali.
https://blogs.msdn.microsoft.com/adpowershell/2009/08/18/.

[4] Microsoft developer network, event logging and viewing, from chapter 3,
microsoft windows 20012 administrator’s pocket consultant by william r.
stanek. https://msdn.microsoft.com/en-us/library/bb726966.aspx.

[5] Software engineering institute, configuration management, carnegie mel-
lon. http://www.sei.cmu.edu/productlines/frame_report/config.

man.htm.

[6] Technet, microsoft exchange load generator, december 12, 2007. https://
technet.microsoft.com/en-us/library/bb508893(v=exchg.80).aspx.

[7] Technet, microsoft system center, introduction to operating system de-
ployment in configuration manager, may 14, 2015. https://technet.

microsoft.com/en-us/library/gg682108.aspx.

[8] Technet, microsoft, using differencing disks. https://technet.

microsoft.com/en-us/library/cc720381(v=ws.10).aspx.

[9] Windows server 2012 unleashed by andrew abbate; michael noel; rand mo-
rimoto; omar droubi; guy yardeni; chris amaris published by sams, 2012.

[10] Winzapper, a windows 2000 alterion tool.

[11] S. Sardesai, S. Khan, D. Kumar, G. Parupudi, and V. Deo. Operating
system deployment methods and systems, September 23 2004. US Patent
App. 10/667,123.

[12] Powershell team. Powershell on linux and open source!, 2016.
https://blogs.msdn.microsoft.com/powershell/2016/08/18/

powershell-on-linux-and-open-source-2/.

30

https://www.cyberscoop.com/shadow-brokers-leak-nsa-linked-microsoft-hacking-tools/
https://www.cyberscoop.com/shadow-brokers-leak-nsa-linked-microsoft-hacking-tools/
https://technet.microsoft.com/en-us/library/cc958957.aspx
https://technet.microsoft.com/en-us/library/cc958957.aspx
https://blogs.msdn.microsoft.com/adpowershell/2009/08/18/
https://msdn.microsoft.com/en-us/library/bb726966.aspx
http://www.sei.cmu.edu/productlines/frame_report/config.man.htm
http://www.sei.cmu.edu/productlines/frame_report/config.man.htm
https://technet.microsoft.com/en-us/library/bb508893(v=exchg.80).aspx
https://technet.microsoft.com/en-us/library/bb508893(v=exchg.80).aspx
https://technet.microsoft.com/en-us/library/gg682108.aspx
https://technet.microsoft.com/en-us/library/gg682108.aspx
https://technet.microsoft.com/en-us/library/cc720381(v=ws.10).aspx
https://technet.microsoft.com/en-us/library/cc720381(v=ws.10).aspx
https://blogs.msdn.microsoft.com/powershell/2016/08/18/powershell-on-linux-and-open-source-2/
https://blogs.msdn.microsoft.com/powershell/2016/08/18/powershell-on-linux-and-open-source-2/

Appendices
Apendix A The prototype in its current form can be found on github: https:

//github.com/alfuananzo/Stained-Glass

31

https://github.com/alfuananzo/Stained-Glass
https://github.com/alfuananzo/Stained-Glass

	Introduction
	Related work
	Defining a testlab

	Currently existing techniques and product
	Current techniques to deploy and configure a testlab
	Current techniques to simulate user and system behavior
	Conclusion

	New Windows testlab deployment model
	Model specification
	Phase 1: lab definition
	Phase 2: Deployment of server and OS installation
	Phase 3: Server provisioning
	Phase 4: Software installation and configuration of servers
	Phase 5: Deployment of client and OS installation
	Phase 6: Client provisioning
	Phase 7: Software installation on client
	Phase 8: Log file and user behavior emulation
	Final model

	Prototyping the model
	Prototype resource specification
	Underlying architecture
	Prototype build

	Conclusion

	Results and Comparison
	Findings and evaluation
	Comparison between already existing products and our prototype
	Comparison table
	outcome of the comparison table
	Summary

	Conclusion
	Future Work
	Appendices

