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Introduction

• Enhance cloud security

• Vulnerabilities in libraries can have major consequences

• Efficient way of detecting vulnerabilities in libraries is needed
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Research Question

To which extent can one reliably identify the version of a selected running library
using the VMI techniques provided by LibVMI?

How can one identify a running library in a VM where the library name can not be trusted?
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Related Work

Related work virtual machine introspection:

• 2003, A virtual machine introspection based architecture for intrusion detection. In
NDSS, volume 3, pages 191 - 206. Tal Garfinkel, Mendel Rosenblum, et al.

• 2012, Simplifying virtual machine introspection using libVMI. Sandia report, pages
43 - 44. Bryan D Payne.

• 2016, Vmicvs: Cloud vulnerability scanner. Anil Kumar Konasale Krishna and
Robert Ricci.

Related work library identification:

• 2017, Automatic Library Version Identification, an Exploration of Techniques
Thomas Rinsma.
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Virtual machines

Figure: Vitual Machine Architecture1

• Hypervisor has access to the binary representation of the virtual memory used by
the OS running inside the virtual machine

1http://www.cse.wustl.edu/ jain/cse571-09/ftp/vmsec/index.html
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Semantic gap (1/2)

Figure: Memory from the hypervisor’s perspective2

2C. A. Schneider. Full Virtual Machine State Reconstruction for Security
Applications, 2013
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Semantic gap (2/2)

Figure: Memory from the guest’s OS perspective3

3C. A. Schneider. Full Virtual Machine State Reconstruction for Security
Applications, 2013
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Virtual machine introspection

• Method to interpret/translate the hypervisor’s perspective

• Knowledge of the guest’s OS is needed
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LibVMI (1/3)

1 A virtual machine introspection library based on XenAccess
(64-bit VM guest support, KVM support, fixes on bugs and memory leaks)

2 Provides a useful application programming interface (API) for reading and writing
to a virtual machines memory

3 Access memory using physical addresses, virtual addresses, or kernel symbols

4 Overcomes the semantic gap by providing the lacking information
(OS type, location of symbolic information, offsets used to access data)
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LibVMI (2/3)

1 Request to view kernel
symbol

2 LibVMI finds the virtual
address for kernel symbol

3 Kernel page directory
mapped to find correct
page table

4 Page table mapped to
find correct data page

5 Data page returned to
LibVMI Library

6 LibVMI returns the data
requested Figure: LibVMI memory mapping4

4http://libvmi.com/docs/gcode-intro.html
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LibVMI (3/3)

Result of LibVMI:

1 Mapped virtual memory view

2 Access to the virtual memory
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Library identification (1/3)

1 Version number extracting

• Extract library version from its name or binary

2 Behaviour based identification

• Look at behaviour of the library (system calls, wrapper functions)

3 Fingerprint identification

• Extract information from a binary to create a fingerprint
• Strict vs Fuzzy fingerprints
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Library identification (2/3)

Printable strings:

• Uses a set of printable strings extracted from the library executable
(Error messages, copyright or usage information)

• Tian et al. show that such a list of strings can be an accurate signature of an
executable object when used for malware classification

• Thomas Rinsma concludes this to be the most efficient method to identify libraries

• Printable strings can be extracted by using Unix strings command

• Measure similarity of sample sets using the Jaccard index:
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Library identification (3/3)

Figure: Example of strings obtained with the Unix command strings
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Experimental Environment

The environment consist of:

• Privileged Host Dom0, in charge of performing the introspection

• Guest VM, system that will be introspected
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Library Identification Program Design

The program consist of the following components:

• Library extractor: This module handles the introspection aspects required to
extract the library binary from the guest VM memory. It does so by making use of
LibVMI

• Library Identifier: This module generate the fingerprint of the selected library
and then compares it against the reference data base

• Reference Data Base: It contains 151 fingerprints from different versions of
different libraries
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Library Extractor Implementation

This module is in charge of:

Kernel Data Structures:
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Library Identifier Implementation

This module is in charge of:

• Generate a fingerprint from the extracted library. This is done by executing the
Unix command Strings.

• Calculate the Match Score for each fingerprint in the reference DB

◦ MatchScore = |Sample∩Reference|
|Sample∪Reference|

• Sort the results and return the top five Match Scores
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Reference Data Base Creation

The following step were followed to create the DB:

1 Download the source code from different versions of different libraries. Including
the ones that will be tested (libc and libncurses)

2 Build the different libraries by only passing the argument
- - prefix=<directory>

3 Generate a fingerprint for each share object created during the building procedure.
This is done by executing the Unix command Strings
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Library Identification Program Output

Match Fingerprint in the DB
20.59% libc-2.23.so.strings

19.73% libc-2.22.so.strings

19.71% libc-2.24.so.strings

19.34% libc-2.21.so.strings

18.78% libc-2.20.so.strings

18.25% libc-2.19.so.strings

3.56% libjpeg.so.9.2.0.strings

2.91% libncurses.so.5.9.strings

Table: Output for libc-2.23

Match Fingerprint in the DB
15.50% libncurses.so.5.9.strings

15.47% libncurses.so.5.8.strings

15.20% libncurses.so.5.7.strings

14.00% libncurses.so.6.0.strings

4.89% libjpeg.so.9.2.0.strings

4.65% libmenu.so.6.0.strings

4.48% libresolv-2.23.so.strings

4.41% libresolv-2.24.so.strings

Table: Output for libncurses-5.9

• The low match scores are due to the way the DB was built and the fact that some
pages may be swapped out

• The match score obtained with the original .so that was loaded in memory is :
97.06%

• Less than 9% is considered a mismatch
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Efficiency and Effectiveness Experiments Design

• The program was executed 100 times per load configuration and per library
(libc-2.23 or libncurses-5.9)

• Each load configuration represent either the hypervisor’s CPUs or the guest VM’s
CPUs stressed at 0% (low), 50% (mid) or 100% (high)

• Data gathered during the experiments:

◦ Pause Time
◦ Identification Time
◦ Memory Usage
◦ CPU Usage
◦ Match Score

• For each of the above values the mean and the standard deviation was calculated

• Two extra experiments were executed in which either the hypervisor’s memory or
the guest VM’s memory was stressed at 100%
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Pause Time Results - libc
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Identification Time Results - libc
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Effectiveness Results

• Match scores are not affected by the CPU load

• However they are affected by the memory load as shown in the following table:

Library Not Stressed Memory VM Memory at 100% Xen Memory at 100%

libc 20.606% ±0.007 20.585% ±0.007 20.248% ±0.005

libncurses 15.500% ±0.000 15.500% ±0.000 15.489% ±0.020

Table: Effectiveness Under Heavy Memory Load
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Library Tampering Experiments (1/2)

• Are the strings containing version information relevant to the library identification?

Figure: Example of strings containing version information of libc-2.24

• Manually tamper the sample fingerprint to include strings containing version
information of libc-2.24

Sample Fingerprint Libc-2.23 Ref. Fingerprint Libc-2.24 Ref. Fingerprint
libc-2.23 original 20.60% 19.82%

libc-2.23 tampered 20.59% 19.83%

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 25 / 29



Library Tampering Experiments (2/2)

• Remove every string containing version information from the sample and reference
fingerprint

Match Fingerprint in the DB
20.59% libc-2.23.so.strings

19.73% libc-2.22.so.strings

19.71% libc-2.24.so.strings

19.34% libc-2.21.so.strings

18.78% libc-2.20.so.strings

18.25% libc-2.19.so.strings

Table: Normal Scenario

Match Fingerprint in the DB
20.54% libc-2.23.so.stripped

19.70% libc-2.22.so.stripped

19.68% libc-2.24.so.stripped

19.31% libc-2.21.so.stripped

18.74% libc-2.20.so.stripped

18.22% libc-2.19.so.stripped

Table: Stripped Scenario
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Implementation Limitations

1 Unix only

2 One to many comparison

3 Dynamically linked libraries only

4 Identification time directly depend on the amounts of records in the reference data
base

5 LibVMI offsets requires guest kernel access

6 Swapping of memory pages affect the results

7 When a library that is not included in the reference data base goes through the
identification process, false positives can be observed
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Conclusion

1 LibVMI can be used to efficiently extract libraries from the VM’s memory

2 Printable strings can be used as fingerprints to accurate identify a library when the
library is in the database

3 Performance measurements shows that our implementation perform in a
reasonable manner, even under high system load

4 Accuracy of identification was not effected by the load of the systems
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Future work

• Explore ways to;

◦ improve the database creation to obtain better matching results
◦ improve the scalability of the program
◦ identify library behaviour using VMI techniques

• Extend the functionality of our program to support vulnerable library scanning
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