
Reliable Library Identification Using VMI Techniques

Nick de Bruijn
Leandro Velasco

University of Amsterdam
Faculty of Physics, Mathematics and Informatics

MSc System and Network Engineering
Research Project: 1

February 7, 2017

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 1 / 29

Introduction

• Enhance cloud security

• Vulnerabilities in libraries can have major consequences

• Efficient way of detecting vulnerabilities in libraries is needed

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 2 / 29

Research Question

To which extent can one reliably identify the version of a selected running library
using the VMI techniques provided by LibVMI?

How can one identify a running library in a VM where the library name can not be trusted?

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 3 / 29

Related Work

Related work virtual machine introspection:

• 2003, A virtual machine introspection based architecture for intrusion detection. In
NDSS, volume 3, pages 191 - 206. Tal Garfinkel, Mendel Rosenblum, et al.

• 2012, Simplifying virtual machine introspection using libVMI. Sandia report, pages
43 - 44. Bryan D Payne.

• 2016, Vmicvs: Cloud vulnerability scanner. Anil Kumar Konasale Krishna and
Robert Ricci.

Related work library identification:

• 2017, Automatic Library Version Identification, an Exploration of Techniques
Thomas Rinsma.

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 4 / 29

Virtual machines

Figure: Vitual Machine Architecture1

• Hypervisor has access to the binary representation of the virtual memory used by
the OS running inside the virtual machine

1http://www.cse.wustl.edu/ jain/cse571-09/ftp/vmsec/index.html
N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 5 / 29

Semantic gap (1/2)

Figure: Memory from the hypervisor’s perspective2

2C. A. Schneider. Full Virtual Machine State Reconstruction for Security
Applications, 2013

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 6 / 29

Semantic gap (2/2)

Figure: Memory from the guest’s OS perspective3

3C. A. Schneider. Full Virtual Machine State Reconstruction for Security
Applications, 2013

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 7 / 29

Virtual machine introspection

• Method to interpret/translate the hypervisor’s perspective

• Knowledge of the guest’s OS is needed

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 8 / 29

LibVMI (1/3)

1 A virtual machine introspection library based on XenAccess
(64-bit VM guest support, KVM support, fixes on bugs and memory leaks)

2 Provides a useful application programming interface (API) for reading and writing
to a virtual machines memory

3 Access memory using physical addresses, virtual addresses, or kernel symbols

4 Overcomes the semantic gap by providing the lacking information
(OS type, location of symbolic information, offsets used to access data)

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 9 / 29

LibVMI (2/3)

1 Request to view kernel
symbol

2 LibVMI finds the virtual
address for kernel symbol

3 Kernel page directory
mapped to find correct
page table

4 Page table mapped to
find correct data page

5 Data page returned to
LibVMI Library

6 LibVMI returns the data
requested Figure: LibVMI memory mapping4

4http://libvmi.com/docs/gcode-intro.html
N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 10 / 29

LibVMI (3/3)

Result of LibVMI:

1 Mapped virtual memory view

2 Access to the virtual memory

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 11 / 29

Library identification (1/3)

1 Version number extracting

• Extract library version from its name or binary

2 Behaviour based identification

• Look at behaviour of the library (system calls, wrapper functions)

3 Fingerprint identification

• Extract information from a binary to create a fingerprint
• Strict vs Fuzzy fingerprints

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 12 / 29

Library identification (2/3)

Printable strings:

• Uses a set of printable strings extracted from the library executable
(Error messages, copyright or usage information)

• Tian et al. show that such a list of strings can be an accurate signature of an
executable object when used for malware classification

• Thomas Rinsma concludes this to be the most efficient method to identify libraries

• Printable strings can be extracted by using Unix strings command

• Measure similarity of sample sets using the Jaccard index:

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 13 / 29

Library identification (3/3)

Figure: Example of strings obtained with the Unix command strings

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 14 / 29

Experimental Environment

The environment consist of:

• Privileged Host Dom0, in charge of performing the introspection

• Guest VM, system that will be introspected

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 15 / 29

Library Identification Program Design

The program consist of the following components:

• Library extractor: This module handles the introspection aspects required to
extract the library binary from the guest VM memory. It does so by making use of
LibVMI

• Library Identifier: This module generate the fingerprint of the selected library
and then compares it against the reference data base

• Reference Data Base: It contains 151 fingerprints from different versions of
different libraries

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 16 / 29

Library Extractor Implementation

This module is in charge of:

Kernel Data Structures:

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 17 / 29

Library Identifier Implementation

This module is in charge of:

• Generate a fingerprint from the extracted library. This is done by executing the
Unix command Strings.

• Calculate the Match Score for each fingerprint in the reference DB

◦ MatchScore = |Sample∩Reference|
|Sample∪Reference|

• Sort the results and return the top five Match Scores

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 18 / 29

Reference Data Base Creation

The following step were followed to create the DB:

1 Download the source code from different versions of different libraries. Including
the ones that will be tested (libc and libncurses)

2 Build the different libraries by only passing the argument
- - prefix=<directory>

3 Generate a fingerprint for each share object created during the building procedure.
This is done by executing the Unix command Strings

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 19 / 29

Library Identification Program Output

Match Fingerprint in the DB
20.59% libc-2.23.so.strings

19.73% libc-2.22.so.strings

19.71% libc-2.24.so.strings

19.34% libc-2.21.so.strings

18.78% libc-2.20.so.strings

18.25% libc-2.19.so.strings

3.56% libjpeg.so.9.2.0.strings

2.91% libncurses.so.5.9.strings

Table: Output for libc-2.23

Match Fingerprint in the DB
15.50% libncurses.so.5.9.strings

15.47% libncurses.so.5.8.strings

15.20% libncurses.so.5.7.strings

14.00% libncurses.so.6.0.strings

4.89% libjpeg.so.9.2.0.strings

4.65% libmenu.so.6.0.strings

4.48% libresolv-2.23.so.strings

4.41% libresolv-2.24.so.strings

Table: Output for libncurses-5.9

• The low match scores are due to the way the DB was built and the fact that some
pages may be swapped out

• The match score obtained with the original .so that was loaded in memory is :
97.06%

• Less than 9% is considered a mismatch

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 20 / 29

Efficiency and Effectiveness Experiments Design

• The program was executed 100 times per load configuration and per library
(libc-2.23 or libncurses-5.9)

• Each load configuration represent either the hypervisor’s CPUs or the guest VM’s
CPUs stressed at 0% (low), 50% (mid) or 100% (high)

• Data gathered during the experiments:

◦ Pause Time
◦ Identification Time
◦ Memory Usage
◦ CPU Usage
◦ Match Score

• For each of the above values the mean and the standard deviation was calculated

• Two extra experiments were executed in which either the hypervisor’s memory or
the guest VM’s memory was stressed at 100%

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 21 / 29

Pause Time Results - libc

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 22 / 29

Identification Time Results - libc

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 23 / 29

Effectiveness Results

• Match scores are not affected by the CPU load

• However they are affected by the memory load as shown in the following table:

Library Not Stressed Memory VM Memory at 100% Xen Memory at 100%

libc 20.606% ±0.007 20.585% ±0.007 20.248% ±0.005

libncurses 15.500% ±0.000 15.500% ±0.000 15.489% ±0.020

Table: Effectiveness Under Heavy Memory Load

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 24 / 29

Library Tampering Experiments (1/2)

• Are the strings containing version information relevant to the library identification?

Figure: Example of strings containing version information of libc-2.24

• Manually tamper the sample fingerprint to include strings containing version
information of libc-2.24

Sample Fingerprint Libc-2.23 Ref. Fingerprint Libc-2.24 Ref. Fingerprint
libc-2.23 original 20.60% 19.82%

libc-2.23 tampered 20.59% 19.83%

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 25 / 29

Library Tampering Experiments (2/2)

• Remove every string containing version information from the sample and reference
fingerprint

Match Fingerprint in the DB
20.59% libc-2.23.so.strings

19.73% libc-2.22.so.strings

19.71% libc-2.24.so.strings

19.34% libc-2.21.so.strings

18.78% libc-2.20.so.strings

18.25% libc-2.19.so.strings

Table: Normal Scenario

Match Fingerprint in the DB
20.54% libc-2.23.so.stripped

19.70% libc-2.22.so.stripped

19.68% libc-2.24.so.stripped

19.31% libc-2.21.so.stripped

18.74% libc-2.20.so.stripped

18.22% libc-2.19.so.stripped

Table: Stripped Scenario

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 26 / 29

Implementation Limitations

1 Unix only

2 One to many comparison

3 Dynamically linked libraries only

4 Identification time directly depend on the amounts of records in the reference data
base

5 LibVMI offsets requires guest kernel access

6 Swapping of memory pages affect the results

7 When a library that is not included in the reference data base goes through the
identification process, false positives can be observed

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 27 / 29

Conclusion

1 LibVMI can be used to efficiently extract libraries from the VM’s memory

2 Printable strings can be used as fingerprints to accurate identify a library when the
library is in the database

3 Performance measurements shows that our implementation perform in a
reasonable manner, even under high system load

4 Accuracy of identification was not effected by the load of the systems

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 28 / 29

Future work

• Explore ways to;

◦ improve the database creation to obtain better matching results
◦ improve the scalability of the program
◦ identify library behaviour using VMI techniques

• Extend the functionality of our program to support vulnerable library scanning

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 29 / 29

