
Browser forensics: adblocker extensions.

Willem Rens (UvA MSc SNE student)

Supervisor: Johannes de Vries (Fox-IT)

February 12, 2017

Abstract

The purpose of this research is to identify artifacts that are left be-
hind by adblocking extensions. First their mechanics are explored, which
includes a source code study of the two most used adblocking extesions,
AdBlock and Adblock Plus. Then, samples are gathered by browsing to
the top 50 websites of the Netherlands, without and with an adblocker
extension installed. The same is done for running the browser in private
mode. Although all tested combinations leave artifacts, or even send data
over the network, only Firefox together with Adblock Plus stored artifacts
that can be used to determine browsing history.

1

Contents

1 Introduction 3

2 Background information and previous work 3

3 Research questions 4

4 Approach 4

5 Ad-blocker mechanics 5
5.1 Filter lists . 6
5.2 Filter syntax . 6

6 Code review 8
6.1 Adblock Plus 2.8.2 source . 8
6.2 AdBlock 3.8.4 source . 9

7 Results 12
7.1 Google Chrome AdBlock 3.8.4 Artifacts 12
7.2 Mozilla Firefox Adblock Plus 2.8.2 Artifacts 13
7.3 Internet Explorer Adblock Plus 2.0.1 Artifacts 14
7.4 Microsoft Edge AdBlock 1.9.0.0 Artifacts 14

8 Conclusion 16

9 Future research 17

10 Appendix 19
10.1 Top 50 most popular sites in The Netherlands as per Alexa.com

on 10-01-2017. 19

2

1 Introduction

Ad-blocking extensions for web browsers have seen a large increase in use over
the past years. The latest usage estimates vary widely, from 20% by analysis of
network traffic of a major European ISP [1][2] in 2015, to 62% by undergrad-
uate business students measured in 2011 [3]. A report by Adobe and Pagefair
indicates a 41% increase of usage year by year [4]. This wide and increas-
ing adoption makes it so that in case these extensions implicitly or explicitly
store useful artifacts, browser forensics may benefit from this. Of course there
are other ways to determine browsing activity but its methods are not always
available, such as when browsing happened in private mode. If an ad-blocking
extension runs during this mode and leaves usable artifacts, such as filter hits,
they may provide forensic researcher with just enough information to complete
their investigation. In short, the goal of this project is to determine what ar-
tifacts are stored by ad-blocking extensions and to determine to what extent
they can be used to proof browsing history. The next section will briefly go
over related work and describes two situations why more traditional methods
to browser forensics do not always succeed.

2 Background information and previous work

A reason why conventional browser forensics may not succeed is when the user
has deliberately cleared its browsing history, caches, cookies and other data
stored by the browser. This does not always mean the data is not recoverable
because when a file is deleted from a file system, most operating systems do not
overwrite the blocks on the disk that the file is written on [9]. Specifically, Jeon
et al. [10] has showed that deleted SQLite files can be recovered successfully,
and browsers do store artifacts in this format. However, the success of recovery
depends on whether the deleted data has been overwritten, which may happen
anytime, so a forensic investigator can never completely rely on this method.
Furthermore, the increase in use of solid state drives often halts such recovery
techniques because unused blocks are overwritten [26].

Another reason is that all popular web browsers now include the feature of
private browsing. In Mozilla Firefox this feature is known as ’Private Browsing’,
while Google Chrome calls it ’Incognito mode’ and in Internet Explorer and
Edge it is known as ’InPrivate’. When launching these browsers in private
mode they all claim to maintain complete user privacy by not storing traces of
web browsing sessions such as visited websites, search history, download history,
web form history, cookies, or any temporary Internet files. Flowers et al. [5]
studied the validity of this claim. According to them, IE11 used in ’Inprivate’
mode still leaves artifacts on the disk that can lead to visited URL’s and search
terms used. For Firefox and Chrome the only on disk traces were found in the
Windows file pagefile.sys which functions as virtual memory that temporarily
stores RAM data for potential later use, which is far from optimal for forensics.
Ad-blocker plug-ins, depending on the browsers settings, run during private

3

browsing sessions which gives ground for including this mode in the experiments.

3 Research questions

1. What artifacts are stored by the tested ad-blocking extensions during nor-
mal and private browsing?

To support these research questions, the mechanics used by the tested
ad-blockers are explored. It includes a short study of their source code.

2. To what extent can the artifacts be used to determine browsing history?

4 Approach

The latest versions of the browsers Internet Explorer, Microsoft Edge, Google
Chrome and Mozilla Firefox were tested with their most popular ad-blocking
extension. According to w3counter [8] in December 2016 these browsers have
a market share of 8.7% (IE + Edge), 56.6% (Chrome) and 10.4% (Firefox).
Safari also has a considerable market share with 14.1%, but this browser was
not tested. The browsers will be tested both in normal browsing and private
browsing mode. First control samples are gathered without the use of ad-blocker
extensions. Next, samples are gathered with the ad-blocker extensions enabled.
AdBlock is the most downloaded extension for Google Chrome and Microsoft
Edge, but is not available on the other tested browsers [12] [11]. Adblock Plus is
the most popular ad-blocker for Mozilla Firefox [13]. Adblock Plus also claims
that they are the most popular ad-blocking extension for Internet Explorer. The
tested browser and ad-blocking plugins combinations can be found in Table 1.

Browser Extension
Google Chrome/55.0.2883.87 AdBlock 3.8.4
Mozilla Firefox 46.0 Adblock Plus 2.8.2
Internet Explorer 11 Adblock Plus 1.6
Microsoft Edge/14.14393 AdBlock 1.9.0.0

Table 1: Tested browsers and extensions.

For Chrome and Firefox each browser session is started with the creation of
a fresh browser user data directory, after the browser session, this folder and its
contents are stored for later analysis. The expectations were that it would be
unlikely artifacts are stored outside this folder. Internet Explorer and Microsoft
Edge do not have the concept of a data directory for each user profile. So for
this reason, and to make sure no artifacts are stored somewhere on other places
of the file system, the forensics tool OSForensics was used to determine system
wide file changes. This tool is capable of creating snapshots of the file system
so that a comparison of two stages provide insight into which files were created,

4

modified and deleted. The same tool was used by Flowers et al. [5] in their
forensic investigation to browser artifacts in private and portable modes.

The browser sessions entailed the visitation of the top 50 sites of The Nether-
lands as per Alexa [6], see appendix section 6.1 for the complete list. This
was automated using Python and Selenium, which allows for browser control.
Automation of this process enables relative easy reproduction of this research
project. All code is published on a repository here1, including the user-data di-
rectories for Firefox and Chrome for each sample. Furthermore, code to analyze
the samples and parse patterns.ini can be found here.

Research indicates 80% of software is used in its default setting, Wills et
al. [7] confirms this for the use of Adblock Plus. This brings up the question
whether it is sensible to include different settings of the extensions during the
experiments. Even if specific settings have an effect on the storage of artifacts,
the likelihood of finding these settings in a realistic environment may be unrea-
sonably small to incorporate it in forensic procedures. That is why only default
configurations were considered. And lastly, the experiments were carried out on
a Windows 10 Home version 1607 (build 14393.693) 64-bit OS.

5 Ad-blocker mechanics

In 2004 an ad-blocker called AdBlock was released for Firefox, which was later
renamed to AdBlock Plus. When Google Chrome came along in 2008, Adblock
Plus initially did not port it to this new browser. This is where a new extensions
called AdBlock filled the gap, which has no relation with the initial AdBlock
for Firefox released in 2004. Over time, AdBlock and Adblock Plus added
support for additional browsers[16]. AdBlock and Adblock Plus are thus two
distinct ad-blocking extensions, that have different code bases and maintainers.
Furthermore, because each browser has their own API for extensions, code bases
differ slightly for each browser.

Regardless of subtle implementation specifics, its core functionality is the
same for both extensions. At the heart is a mechanism to block or hide ad-
verts based on filters, which follow a syntax that that can be found here [17].
It is also described in the next section. The syntax is the same for both tested
ad-blockers. For more control regular expressions may also be used, but for
performance reasons it is recommended against [18]. If one of these rules match
an URL that is not whitelisted, the request of this url is blocked. This works
trough a mechanism called content policies, this is code that gets called when-
ever the browser needs to load something. There are several of such built-in
content policies, for example, when the browsers settings are changed so that
some websites images should not be loaded, a content-policy is configured. Any
browser extension can register such content-policies. So in essence, ad-blockers
register a content-policy and then evaluate the to be requested domains against
its loaded filter list and decide whether to block or not.

1https://github.com/berdt/AdBlocker-forensics

5

This tactic, however, does not always work because some web pages embed
ads in such a way that without requesting them the page will never load, for
example, by embedding them into the main HTML document. So a second tac-
tic used is to hide HTML elements trough CSS modification, e.g. by specifying
’display: none !important;’ for elements that should not be visible. Exten-
sions have the capability to add user stylesheets which can be set to have a
higher priority than the websites stylesheets. These ads are however still trans-
ferred over the network but are just not visible. Elements to be hidden can be
specified according to the earlier referenced filter rules, or, by any supported
CSS selector for the particular browser.

5.1 Filter lists

Adblock Plus and AdBlock users can obtain lists of filter rules by subscribing
to them, these are automatically updated. There are also lists available for
other purposes than blocking advertisements, such as for privacy by blocking
web trackers. The most popular filter list used for blocking advertisements is
EasyList, it was originally developed for the 2004 version of AdBlock [19]. It
currently has almost 60.000 filter rules. By default, in the used test set-up,
AdBlock subscribed to three lists: EasyList[21], the exception rules list [22]
that whitelists advertisements that are blocked by EasyList but comply with
certain criteria as is described here [20]. And the AdBlocks custom filters list
[23]. Adblock Plus used EasyList and exception rules list, which are exactly the
same as the ones used by AdBlock.

5.2 Filter syntax

The simplest filter rule for blocking is a complete domainname, e.g. ’exam-
ple.com’ will block:

• http://example.com

• https://example.com

• http://ads.example.com

• http://example.com/ad.js

One can also specify wildcard characters, e.g. ’example.com/ads/* ’, will block:

• http://example.com/ads/newad500

• https://example.com/ads/annoyingad/5

More options can be specified, such as to restrict from within which html tags
the domain may or may not be loaded or restrict the filter to specific domain
names. These options are specified after the ’$’ sign and are separated using a
comma, e.g. ads.google.com$script,domain= myownsite.com will block:

6

• http://ads.google.com if it is between script tags or loaded as an image
but not loaded from myownsite.com.

But it will not block:

• http://ads.google.com if it is between an img tag or requested from from
myownsite.com.

Elements can be hidden by explicitly specifying them, such as by an id,
class, table format or any combination of them. CSS selectors can also be used.
Note that these filter do not need to have a domain component. For example,
’###advert’ will hide all elements that have the id ’advert’, regardless on which
domain. ’##.advert’ will hide elements that have the class ’advert’.

7

6 Code review

To get a better understanding of the mechanics used by AdBlock and Adblock
Plus its source code was studied. For this analysis the versions for Firefox and
Chrome were used. Note that each browser has its own API for extensions so
there are subtle differences depending on the browser. Some code snippets that
are interesting from a forensics point of view of are dissected below. By no
means an exhaustive of all interesting code is shown here, they are merely a
subset with the most notable findings.

6.1 Adblock Plus 2.8.2 source

For this short code review the Firefox version of Adblock Plus 2.8.2 was used.
The .xpi file format used by Firefox to install extensions is merely a ZIP-archive
with an installation script so unzipping is enough to get access to the source.

addUserCSS(subject, selectors.map(

selector => selector + "{display: none !important;}"

).join("\n"));

if (!isPrivate(subject))

port.emit("addHits", filters);

In the above snippet, when there is a filter hit for an element that needs to be
hidden, the function AddUserCSS is called, which updates the user stylesheet
css with the selector of the to be hidden element together with the property
’display: none !important’. Also interesting is the conditional branch depending
on the value of isPrivate. This boolean is true if the request belongs to a private
browsing session.

port.on("addHits", filters =>

{

for (let text of filters)

FilterStorage.increaseHitCount(Filter.fromText(text));

});

This is a listener for port.emit with statement ’addHits’, increasing the hit
count for a given filter by calling FilterStorage.increaseHitCount. This class
manages filters from local storage, manages them in memory and writes them
back. In several other filter hit cases this function is called, the next snippet
shows this function.

increaseHitCount: function(filter)

{

if (!Prefs.savestats || !(filter instanceof ActiveFilter))

return;

filter.hitCount++;

8

filter.lastHit = Date.now();

}

This function has a conditional branch depending on the boolean !Prefs.savestats
and another variable. If this branch is taken, the filter hitCount is increased
and its lastHit variable is set by Date.now(), which returns the number of mil-
liseconds elapsed since 1 January 1970 00:00:00 UTC [24]. The next snippet
shows where Prefs.savestats is defined.

toggleSaveStats: function(window)

{

if (Prefs.savestats)

{

if (!Utils.confirm(window, Utils.getString("clearStats_warning")))

return;

FilterStorage.resetHitCounts();

Prefs.savestats = false;

}

else

Prefs.savestats = true;

}

This snippet is responsible for managing the setting that decides whether
filterhits are to be stored. When turned off (default: turned on) the function
resetHitCounts() is called. This functions sets the hitCount and lastHit for each
filter hit to 0.

6.2 AdBlock 3.8.4 source

For this short code review the Chrome version of Adblock 3.8.4 was used. The
.crx file format used by Chrome to install extensions is also just a ZIP-archive
with a special header. So again, unzipping was enough to get access to the
source.

for (var i = 0; i < selectors.length; i += SELECTOR_GROUP_SIZE)

{

var selector = selectors.slice(i, i + SELECTOR_GROUP_SIZE).join(",

");

style.sheet.addRule(selector, "display: none !important;");

}

It can be seen in the above snippet, that for elements that are to be hidden,
the css styling property display: none !important is added. This is the same
mechanism Adblock Plus uses.

logging = function(enabled)

{

9

if (enabled)

{

log = function()

{

if (VERBOSE_DEBUG || arguments[0] != ’[DEBUG]’) // comment out for

// verbosity

console.log.apply(console, arguments);

};

logGroup = function()

{

console.group.apply(console, arguments);

};

logGroupEnd = function()

{

console.groupEnd();

};

}

else

{

log = logGroup = logGroupEnd = function()

{

};

}

};

logging(false); // disabled by default

This is a logging function but it only logs to the console and is disabled by
default.

var data = {

u : user_ID,

v : version,

f : flavor,

o : os,

bv : browserVersion,

ov : osVersion,

ad: getSettings().show_advanced_options ? ’1’: ’0’,

l : determineUserLanguage(),

pc : total_pings,

cb : getSettings().safari_content_blocking ? ’1’ : ’0’,

};

var ajaxOptions = {

type : ’POST’,

url : stats_url,

data : data,

success : handlePingResponse, // TODO: Remove when we no longer

do a/b

// tests

10

error : function(e)

{

console.log("Ping returned error: ", e.status);

},

};

Above the definition of two variables is shown, that is data and ajaxOp-
tions, they are part of a periodic ’ping’, every 55 minutes, which send a POST
request to https://ping.getadblock.com/stats/. The ’data’ variable shows all
the parameters that are send as payload.

function updateStats()

{

var statsPage = document.getElementById("stats-page");

var blockedPage = getBlockedPerPage(currentPage).toLocaleString();

i18n.setElementText(statsPage, "stats_label_page", [blockedPage]);

var statsTotal = document.getElementById("stats-total");

var blockedTotal = Prefs.blocked_total.toLocaleString();

i18n.setElementText(statsTotal, "stats_label_total", [blockedTotal]);

}

This function updates the stats counter that is visible when clicking on the
AdBlocks extension logo. Those stats are twofold, one is the total amount of
filter hits on the current page, the second one is the total amount of filter-hits
since installation.

11

7 Results

This section presents the results of the investigation to artifacts left behind
by ad-blockers. Browser extensions are limited to storing data by using the
browsers provided API. As such, any code logic that explicitly stores information
can not store files outside of pre-defined locations by the browser. Firefox and
Chrome store all data for each profile in its own data directory. These were
extracted and can be found in the github repository.

Because Internet Explorer and Microsoft edge store data on different places
of the file system, and to account for any implicit left behind artifacts, OS-
forensics was used to monitor the whole file system during sample creation.
Snapshots were created before and after, they were compared, resulting in a
list of file changes. Comparing these lists of file changes from a control sample
against an ad-blocking sample gave clear insight in system wide file activity that
was specific for ad-blocking enabled browsing.

7.1 Google Chrome AdBlock 3.8.4 Artifacts

In the local extensions settings folder, local persistent storage for the keys as
seen in Table 3 is managed. They are stored in LevelDB format, which is devel-
oped by Google. Its files are stored using a name scheme starting with 6 integers
with .ldb or .log extension. The .log file seems to be related to levelDB, using it
as sort of temporary storage, in this case it stored old values of blobked total.
This storage is not encrypted [25]. A way to read its contents is by browsing to
the extensions background page, then having the extension ’Storage Explorer’
installed, enter the development tools and open chrome.storage.local. Other at-
tempts, such as by reading this file with several python libraries and a dedicated
levelDB viewer did not work.

File(s) Content(s)
Default/Local Extension Settings/gighmmpiobklfepjocnamgkkbiglidom/[0-9]{6}.log Old

blocked total
values

Default/Local Extension Settings/gighmmpiobklfepjocnamgkkbiglidom/[0-9]{6}.ldb Settings

Table 2: AdBlocks data storage location, file names are in regular expression
format.

12

Key Content
blockage stats Epoch installation time
file:pattern.ini Filter list + subscription
next ping time Sends user data to https://ping.getadblock.com/stats/ on given epoch time
pref:blocked total Total amount of filter hits since installation
pref:currentVersion Version number
pref:notificationdata Information about the subscriptions such as when to check for updates.
pref:settings Settings
pref:total pings Total amount of pings
userid unique user ID

Table 3: Chrome together with AdBlock key value store contents

And lastly, the private browsing sample has similar results except for the
.log file that is now filled with the content of the levelDB key: file:pattern.ini
that contains the filters and information about filter list subscriptions. Outside
of the Local Extension Settings folder no other notable artifacts were found.

7.2 Mozilla Firefox Adblock Plus 2.8.2 Artifacts

A file called patterns.ini stores the filters used, filter list subscriptions and filter
hits. New filter hits get appended to the beginning of the file just after a version
declaration. They contain a hitCount and lastHit variable for each filter that
was ever activated. hitCount is the total amount of times this filter has been
activated by the user. lastHit is the epoch timestamp of the last hit.

File Content(s)
/adblockplus/patterns.ini Filters used, filter list subscriptions and filter

hits
/adblockplus/patterns-backup1.ini Empty
/extensions/d10d0bf8-f5b5-c8b4-a8b2-2b9879e08c5d/* Adblock Plus application files
prefs.js User preferences, adblockplus settings that are

different than default are added here

Table 4: Adblock Plus files, location relative to the users data directory.

To test the usability of the stored filter hits, a python script was made that
parses patterns.ini to check which visits out of the 50 visited websites in the
sample left traces. 16 visits including their time of visit could be proofed. To
get a better measurement, it was tested on a larger sample of to browsing to
500 different websites. Out of these 143 site visits could be determined.

Adblock Plus for Firefox explicitly checks whether the browser is running in
private mode, if that is the case, filter hits are not stored.

13

7.3 Internet Explorer Adblock Plus 2.0.1 Artifacts

Unlike Adblock Plus together with Firefox, Internet Explorer together with
Adblock Plus 2.0.1 does not store filter hits in the patterns.ini file. See table 5 for
what it does store. Furthermore, a registery key HKCU/Software/AdblockPlus
was created which contains a REG SZ called AppDataFolder that points to the
folder where the filters and settings are stored.

File(s) Content(s)
AppData/LocalLow/Adblock Plus for IE/patterns.ini Filters used and filter list subscriptions informa-

tion.
AppData/LocalLow/Adblock Plus for IE/prefs.json ”notificationdata”
AppData/LocalLow/Adblock Plus for IE/settings.ini Settings that are different than default are

added here .
C:/Program Files/Adblock Plus for IE/* Application files

Table 5: Adblock Plus artifacts

7.4 Microsoft Edge AdBlock 1.9.0.0 Artifacts

The last tested combination stores data in several places, which is shown in
Table 6. Just as with AdBlock together with Chrome, this combination also
stores data in a key value store, its contents can be seen in 7.

File(s) Content(s)
WindowsApps/BetaFish.AdBlock/* Application files
ProgramData/Microsoft/Windows/AppRepository/BetaFish.AdBlock/ Manifesto file
ProgramData/Microsoft/Windows/AppRepository/Packages/BetaFish.AdBlock/* package deployment

files
AppData/Local/Packages/BetaFish.AdBlock c1wakc4j0nefm/Settings/settings.dat Key value store

Table 6: AdBlock artifacts

14

Key Content
blockage stats Epoch time first filter hit and the total amount of filter

hits since installation, split between ’total’ and ’mal-
ware total”.

filter lists Pointing to filter lists location.
last subscriptions check Epoch time last time filters were updated.
next ping time Sends user data to https://ping.getadblock.com/stats/

on given epoch time.
settings Settings.
total pings Total amount of pings.
userid Unique user ID.

Table 7: Key value store

15

8 Conclusion

The Windows file system was systematically checked for artifacts left behind
when using AdBlock or Adblock Plus, which are the most popular ad-blocking
extensions depending on the tested browser type. This was done by creat-
ing control, ad-blocking and private browsing samples. These samples were
then compared to determine what artifacts are stored during browsing with the
tested adblockers. Three tested combinations at least stored a total filter hit-
count, which is the total amount of filter hits since its installation. Its usability
for browser forensic purposes seems limited. Furthermore it was found that
AdBlock periodically sends data to their servers, which among others, contain
information about OS type, browser type and settings used.

Most notable was the finding that Firefox in combination with Adblock Plus
stores filter hits, they can be used to determine the time of the last visit of a
website. In the tested sample2 of 50 websites, 18 of them could be proven due
to domain components in the filter hit. Furthermore, in a larger sample3 of
500 websites, an estimated 30% of visits could be proven. Filter hits that have
no domain component may still be useful to proof the visitation of a website
but it will always be with a certain degree of uncertainty. E.g., if there is the
suspicion a specific website has been visited, and there are exact matching filter
hits, there is an 1/X change, depending on the amount of websites X that trigger
the exact same filters, that this website has indeed been visited. Finding out
X, however, is non trivial if not impossible. Lastly, the tested Adblock Plus
version for Firefox explicitly checks whether the browser is running in private
mode, if this is the case, the filter hits are not stored. So the developers made
sure private browsing mode is respected.

Combination Artifacts useful for determining browsing history
Mozilla Firefox and Adblock Plus 2.8.2 Yes
Google Chrome and AdBlock 3.8.4 No
Internet Explorer and Adblock Plus 2.0.1 No
Microsoft Edge and AdBlock 1.9.0.0 No

Table 8: Summarized results

2https://github.com/berdt/AdBlocker-forensics/tree/master/FireFox/AdBlock
3https://github.com/berdt/AdBlocker-forensics/tree/master/FireFox/AdBlock500

16

9 Future research

The PoC4 created to reliably parse the patterns.ini file is only partly finished,
correctly parsing the filter hits so that domains can be classified in definitely
visited and maybe visited is not trivial. It is doable but due to strict time
constraints no time was left to complete it. Future researchers or forensic in-
vestigators are strongly encouraged to take up this challenge, it might make a
difference someday if this combination is found during a forensic investigation.

Lastly, by no means does this research claim to have tested the whole ad-
blocking extension landscape. There are many more, such as uBlock Origin
with millions of users, this seems much, but it is has an estimated 21 times
smaller market share than AdBlock. Still, testing other ad-blocking extensions
may help forensic researchers in the future when they do encounter them. A
similar approach as taken in this research should be taken, however, the use
of OSforensics is strongly discouraged for this task. Using the sysinternals tool
Process Explorer made by Microsoft is more suitable.

4https://github.com/berdt/AdBlocker-forensics/blob/master/FireFox/parsePatterns.ini.py

17

References

[1] Pujol, Enric, Oliver Hohlfeld, and Anja Feldmann. ”Annoyed Users: Ads
and Ad-Block Usage in the Wild.” Proceedings of the 2015 ACM Conference
on Internet Measurement Conference. ACM, 2015.

[2] Metwalley, Hassan, et al. ”The online tracking horde: a view from passive
measurements.” International Workshop on Traffic Monitoring and Analysis.
Springer International Publishing, 2015.

[3] Sandvig, J. Christopher, Deepinder Bajwa, and Steven C. Ross. ”US-
AGE AND PERCEPTIONS OF INTERNET AD BLOCKERS: AN EX-
PLORATORY STUDY.”

[4] The cost of ad blocking PageFair and Adobe 2015 Ad Blocking Report,
https://downloads.pagefair.com/wpcontent/uploads/2016/05/2015 report-
the cost of ad blocking.pdf

[5] Flowers, Cassandra, Ali Mansour, and Haider M. Al-Khateeb. ”Web browser
artefacts in private and portable modes: a forensic investigation.” Interna-
tional Journal of Electronic Security and Digital Forensics 8.2 (2016): 99-117.

[6] The top 500 sites on the web, https://www.alexa.com/topsites

[7] Wills, Craig E., and Doruk C. Uzunoglu. ”What Ad Blockers Are (and Are
Not) Doing.” Hot Topics in Web Systems and Technologies (HotWeb), 2016
Fourth IEEE Workshop on. IEEE, 2016.

[8] Browser & Platform Market Share December 2016,
https://www.w3counter.com/globalstats.php

[9] SIMSON, L. ”Remembrance of data passed: A study of disk sanitization
practices.” (2003).

[10] Jeon, Sangjun, et al. ”A recovery method of deleted record for SQLite
database.” Personal and Ubiquitous Computing 16.6 (2012): 707-715.

[11] AdBlock, https://getadblock.com/

[12] Chrome adblocker extensions, https://chrome.google.com/webstore/search/adblock

[13] Firefox adblocker extensions, https://addons.mozilla.org/nl/firefox/search/?q=adblock&sort=users

[14] Edge adblocker extensions, https://www.microsoft.com/en-
us/search/result.aspx?q=adblock&form=apps&search=

[15] Adblocker modules and owners, https://adblockplus.org/en/modules

[16] AdBlock and AdBlock Plus differences,
https://help.getadblock.com/support/solutions/articles/6000087894-what-s-
the-difference-between-adblock-and-adblock-plus-abp-

18

[17] Filters, https://adblockplus.org/nl/filters

[18] Adblocker regular expression performance,
https://adblockplus.org/en/filters#regexps

[19] Easylist, https://easylist.to/

[20] Acceptable ads, https://adblockplus.org/en/acceptable-ads

[21] Exceptionrules, https://easylist-downloads.adblockplus.org/exceptionrules.txt

[22] Easylist, https://easylist-downloads.adblockplus.org/easylist.txt

[23] Adblock custom list, https://cdn.adblockcdn.com/filters/adblock custom.txt

[24] date.now() JS, https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global Objects/Date/now

[25] Chrome storage API, https://developer.chrome.com/extensions/storage

[26] Nisbet, Alastair, Scott Lawrence, and Matthew Ruff. ”A forensic analysis
and comparison of solid state drive data retention with trim enabled file
systems.” (2013).

10 Appendix

10.1 Top 50 most popular sites in The Netherlands as per
Alexa.com on 10-01-2017.

1. Google.nl

2. Youtube.com

3. Google.com

4. Facebook.com

5. Wikipedia.org

6. Vk.com

7. Yandex.ru

8. Yahoo.com

9. Live.com

10. Marktplaats.nl

11. Linkedin.com

12. Instagram.com

19

13. Reddit.com

14. Google.co.id

15. Twitter.com

16. Rutracker.org

17. Ing.nl

18. Livejasmin.com

19. Nu.nl

20. Pornhub.com

21. Aliexpress.com

22. Mail.ru

23. Booking.com

24. Ok.ru

25. Dumpert.nl

26. Telegraaf.nl

27. Google.ru

28. Imdb.com

29. Xhamster.com

30. Txxx.com

31. Bongacams.com

32. Wordpress.com

33. Imgur.com

34. Netflix.com

35. Vkmag.com

36. Tumblr.com

37. T.co

38. Bol.com

39. Rabobank.nl

40. Bing.com

20

41. Tweakers.net

42. Nos.nl

43. Abnamro.nl

44. Amazon.com

45. Thepiratebay.org

46. Msn.com

47. Vice.com

48. Stackoverflow.com

49. Whatsapp.com

50. Microsoft.com

21

