
Measuring Performance Overhead of Trans-encrypting

HTTP Adaptive Streaming

Abe Wiersma BSc.

July 4, 2017

University of Amsterdam

TNO Media-lab



Introduction

Problem

Major leaks of blockbuster titles.

1



Introduction

Problem

Major leaks of blockbuster titles.

2



Introduction

Problem

Major leaks of blockbuster titles.

• Push to better secure DRM pipeline.

Solution

Testing trans-encryption as an alternate form of encryption for the DRM pipeline.

3



Introduction

Problem

Major leaks of blockbuster titles.

• Push to better secure DRM pipeline.

Solution

Testing trans-encryption as an alternate form of encryption for the DRM pipeline.

3



Research question

• What is the performance overhead of doing a trans-encryption step for HTTP Adaptive

Streaming.

• How can available hardware efficiently be used to trans-encrypt content.

4



Background



HTTP Adaptive streaming

• Segment(ed/able) video.

• Manifest

• Four flavours:

• Microsoft HTTP Smooth Streaming (HSS)

• Adobe HTTP Dynamic Streaming (HDS)

• Apple HTTP Live Streaming (HLS)

• MPEG Dynamic Adaptive Streaming over HTTP (DASH)

• Traditional HTTP client/server architecture.

5



HTTP Adaptive streaming

Server

Diagram showing simplified content preparation for HTTP Adaptive Streaming.

6



HTTP Adaptive streaming

Client

time

Low bitrate

Medium bitrate

High bitrate Network Congestion

Available Bandwidth

Diagram showing simplified adaptive algorithm for HTTP Adaptive Streaming.
7



Digital Rights Management

Components

1. Common Encryption Scheme (CENC)

• AES-128 Cipher Block Chaining (CBC)

• AES-128 Counter (CTR)

2. Browser

3. DRM Systems & License Servers

• Google Widevine

• Microsoft Playready

• Apple Fairplay

• Adobe Primetime

• Others (OSS also)

8



Digital Rights Management

Components

1. Common Encryption Scheme (CENC)

• AES-128 Cipher Block Chaining (CBC)

• AES-128 Counter (CTR)

2. Browser

3. DRM Systems & License Servers

• Google Widevine

• Microsoft Playready

• Apple Fairplay

• Adobe Primetime

• Others (OSS also)

8



Digital Rights Management

Components

1. Common Encryption Scheme (CENC)

• AES-128 Cipher Block Chaining (CBC)

• AES-128 Counter (CTR)

2. Browser

3. DRM Systems & License Servers

• Google Widevine

• Microsoft Playready

• Apple Fairplay

• Adobe Primetime

• Others (OSS also)

8



Digital Rights Management

Intermission

1. Common Encryption Scheme (CENC)

• AES-128 Cipher Block Chaining (CBC)

• AES-128 Counter (CTR)

2. Browser

3. DRM Systems & License Servers

• Google Widevine

• Microsoft Playready

• Apple Fairplay

• Adobe Primetime

• Other (OSS also)

9



Digital Rights Management

Components

1. Common Encryption Scheme (CENC)

• AES-128 Cipher Block Chaining (CBC)

• AES-128 Counter (CTR)

2. Browser

3. DRM Systems & License Servers

• Google Widevine

• Microsoft Playready

• Apple Fairplay

• Adobe Primetime

• Others

4. Encrypted Media Extensions (EME)

5. Content Decryption Module (CDM)

10



Digital Rights Management

Components

1. Common Encryption Scheme (CENC)

• AES-128 Cipher Block Chaining (CBC)

• AES-128 Counter (CTR)

2. Browser

3. DRM Systems & License Servers

• Google Widevine

• Microsoft Playready

• Apple Fairplay

• Adobe Primetime

• Others

4. Encrypted Media Extensions (EME)

5. Content Decryption Module (CDM)

10



Approach



Split-key cryptosystem

Theory

11



Split-key cryptosystem

Theory

Trans-encryption1

• RSA

• One time path

• LFSR stream cipher

• ElGamal

• Damgard-Jurik

1As per patent: Secure distribution of content.

12



Split-key cryptosystem

Theory

Trans-encryption2

• RSA - Widely standardized.

• One time path - Keysize increases with 100% keysize per trans-encryption.

• LFSR stream cipher - A number of insecure applications..

• ElGamal - Similar performance, hangs on discrete log, less standardized.

• Damgard-Jurik - No notable implementations.

2As per patent: Secure distribution of content.

13



Split-key cryptosystem

RSA

E (X ) = X e (mod n)

D(X ) = X d (mod n)
14



Split-key cryptosystem

Implementation

RSA

• Generate Pair 1 (Public & Private)

• Create Pair 2 (same mod) and Combined pair (Pair 1 × Pair 2)

• Encrypt (Pair 1/Combined)

• Trans-encrypt (Encryption/Decryption 1)

• Client-decrypt (Decryption combined/Decryption 2)

15



Split-key cryptosystem

Implementation

RSA-2048

• openssl genrsa

• C rsa create combined

• Python encrypt.py + C rsa encrypt

• C rsa trans/rsa trans dec

• C rsa client decrypt

16



HTTP server

Japronto?

Requirements

• Low overhead

• Simple

• Fast

• Free? (Opensourced)

Solution

Japronto

17



HTTP server

Japronto!

A graph by the author squeaky-pl showing the performance of japronto.
18



Experimental Set-up

A diagram showing the experimental set-up.

19



Results



Results

1 10 100 1000
 concurrent connections

0MB/s

1MB/s

10MB/s

100MB/s

1000MB/s

M
ea

n 
th

ro
ug

hp
ut

 M
B

/s
(l

o
g

 s
ca

le
 h

ig
he

r 
is

 b
et

te
r)

(24.51)

(111.47)
(75.04)

(21.73)

(8.83)

(33.69) (27.76)

(14.5)

(0.35)

(1.04)
(0.65)

(0.17)

Throughput for HTTP Adaptive Segments

Passthrough MB/s
AES re-encryption MB/s
RSA trans-encryption (encryption) MB/s
RSA trans-encryption (decryption) MB/s

Required throughput for
 H.264 1080p streams

1Gbit/s - Link Speed

A graph showing the throughput requesting MPEG-DASH segments applying different types of

encryption.

20



Conclusion



Conclusion

Conclusion

Server-side trans-encryption with the public exponent is possible

Drawback

Client-side decryption will prove tough on the performance

21



Future work



Future work

Future work

Possibly implement a decrypting client.

22



Questions?

22



A graph showing factorization efforts.3

3https://crypto.stackexchange.com/questions/1978/how-big-an-rsa-key-is-considered-secure-today

23


	Introduction
	Background
	Approach
	Results
	Conclusion
	Future work

