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Research question

• What is the performance overhead of doing a trans-encryption step for HTTP Adaptive

Streaming.

• How can available hardware efficiently be used to trans-encrypt content.
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Background



HTTP Adaptive streaming

• Segment(ed/able) video.

• Manifest

• Four flavours:

• Microsoft HTTP Smooth Streaming (HSS)

• Adobe HTTP Dynamic Streaming (HDS)

• Apple HTTP Live Streaming (HLS)

• MPEG Dynamic Adaptive Streaming over HTTP (DASH)

• Traditional HTTP client/server architecture.
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HTTP Adaptive streaming

Server

Diagram showing simplified content preparation for HTTP Adaptive Streaming.
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HTTP Adaptive streaming

Client

time

Low bitrate

Medium bitrate

High bitrate Network Congestion

Available Bandwidth

Diagram showing simplified adaptive algorithm for HTTP Adaptive Streaming.
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Digital Rights Management

Components

1. Common Encryption Scheme (CENC)

• AES-128 Cipher Block Chaining (CBC)

• AES-128 Counter (CTR)

2. Browser

3. DRM Systems & License Servers

• Google Widevine

• Microsoft Playready

• Apple Fairplay

• Adobe Primetime

• Others (OSS also)
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Split-key cryptosystem

Theory
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Split-key cryptosystem

Theory

Trans-encryption1

• RSA

• One time path

• LFSR stream cipher

• ElGamal

• Damgard-Jurik

1As per patent: Secure distribution of content.
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Split-key cryptosystem

Theory

Trans-encryption2

• RSA - Widely standardized.

• One time path - Keysize increases with 100% keysize per trans-encryption.

• LFSR stream cipher - A number of insecure applications..

• ElGamal - Similar performance, hangs on discrete log, less standardized.

• Damgard-Jurik - No notable implementations.

2As per patent: Secure distribution of content.
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Split-key cryptosystem

RSA

E (X ) = X e (mod n)

D(X ) = X d (mod n)
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Split-key cryptosystem

Implementation

RSA

• Generate Pair 1 (Public & Private)

• Create Pair 2 (same mod) and Combined pair (Pair 1 × Pair 2)

• Encrypt (Pair 1/Combined)

• Trans-encrypt (Encryption/Decryption 1)

• Client-decrypt (Decryption combined/Decryption 2)
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Split-key cryptosystem

Implementation

RSA-2048

• openssl genrsa

• C rsa create combined

• Python encrypt.py + C rsa encrypt

• C rsa trans/rsa trans dec

• C rsa client decrypt
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HTTP server

Japronto?

Requirements

• Low overhead

• Simple

• Fast

• Free? (Opensourced)

Solution

Japronto
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HTTP server

Japronto!

A graph by the author squeaky-pl showing the performance of japronto.
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Experimental Set-up

A diagram showing the experimental set-up.
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A graph showing the throughput requesting MPEG-DASH segments applying different types of

encryption.
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Conclusion

Conclusion

Server-side trans-encryption with the public exponent is possible

Drawback

Client-side decryption will prove tough on the performance
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Future work

Future work

Possibly implement a decrypting client.
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Questions?
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A graph showing factorization efforts.3

3https://crypto.stackexchange.com/questions/1978/how-big-an-rsa-key-is-considered-secure-today
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