
Measuring Performance Overhead of Trans-encrypting
HTTP Adaptive Streaming

A.T. Wiersma BSc

Master System and Network Engineering, University of Amsterdam, Netherlands
Medialab, TNO, Netherlands

6th August 2017

Abstract

The content distributors take content pro-
tection and Digital Rights Management of
content very serious. As such many provi-
sions already exist to make sure content is se-
curely sent to, and only to, licensed clients.
In this paper an alternative content encryp-
tion system is proposed by using the homo-
morphic features of asymmetric cryptography
systems. Using a split-key derivative of the
RSA cryptosystem, representing asymmetric
split-key cryptography, the overhead of doing
a trans-encryption operation on an edge was
evaluated. The results show that using the
split-key RSA cryptosystem degrades perform-
ance significantly over using a similar AES-
128 re-encrypting cryptosystem but show area
for improvement. Although the split-key RSA
cryptosystem doesn’t perform satisfactory it
does provide the ability to distribute over un-
trusted third-party Content Delivery Networks
(CDNs) as content is never decrypted along the
pipeline, where this is the case for the similar
AES-128 cryptosystem.

1 Introduction

Recent leaks of blockbuster titles have put pressure on
streaming services and content distributors to better
secure their stored and in transit video-content. The
current Digital Rights Management (DRM) pipeline
for HTTP Adaptive Streaming (HAS) works by en-
crypting video content once using Common Encryption
(CENC) which relies on AES-128. This means the dis-

tribution of the content key or re-encryption is required
when content is transfered to a third-party. Currently
when content is distributed over a third party with a
per client encryption means there will be a short time
where content is available as clear text on the third-
party machine. Alternatively the properties of trans-
encryption’s split-key cryptosystem could be used to
forgo these issues as content would never be decryp-
ted between the Content Provider (CP) and the Con-
tent Consumer Unit (CCU). This research aims to de-
termine the overhead of doing a trans-encryption HAS
video segments. This extra step of alternative encryp-
tion would allow distribution of DRM protected con-
tent over an untrusted third party. The development
of trans-encryption over DRM is key to the CP because
they rarely distribute their content themselves, while
considerable value can be lost when leakage occurs at
a Content Distributor (CD). As such an extension to
a HAS protocol that enables the secure distribution of
content over untrusted CDNs would greatly benefit the
CPs. Trans-encryption would utilize the homomorphic
properties of one of the following cipher-systems; RSA
[1], One time path [2, pp. 398-400], LFSR stream
cipher, ElGamal [3] or Damgard-Jurik [4]. To determ-
ine the viability of the technique a module doing the
trans-encryption step was created and its performance
overhead measured.

2 Research questions

As an important method for the content provider
to protect the content during its distribution, trans-

1



encryption can provide a more secure environment for
the delivery of digital content. This work aims to better
understand the overhead of doing a trans-encryption
step. As such the main research question for this pro-
ject is proposed as follows:

– What is the performance overhead of doing
a trans-encryption step for Dynamic Adaptive
Streaming over HTTP (MPEG-DASH).

To fairly evaluate the performance of trans-encryption
over MPEG-DASH the following subquestion corres-
ponds to the main research question:

– How can currently available server hardware1 be
applied efficiently to do a trans-encryption step
for MPEG-DASH.

In terms of scoping this research will focus primarily
on evaluating the performance overhead introduced by
the trans-encryption step on the HAS server.

This paper will aim to provide a clear measurement
of the overhead of doing a trans-encryption step, and
provide reference for the adoption of this technology.

3 Related Work

MPEG-DASH is the underlying HAS protocol that will
be used as a representative of HAS technologies for
this research. MPEG-DASH [5] was ratified as the
ISO/IEC standard for delivering adaptive video con-
tent over HTTP in November 2011 [6]. Since then the
DASH Industry Forum (DASH-IF) has further pro-
moted the adoption of MPEG-DASH and continues
developing the specification. The MPEG-DASH pro-
tocol does not specify a DRM method but supports
all DRM techniques specified in the ISO/IEC stand-
ard for CENC [7]. CENC relies on a third party DRM
license system to supply the Content Decryption Mod-
ule (CDM) on the client’s machine with keys to de-
crypt the content. The underlying encryption to these
systems rely on CENC which encrypts content using
AES-128 [8] Cipher Block Chaining (CBC) or Counter
Mode (CTR). No underlying crypto algorithms other
than CENC’s AES-128 were found to have been re-
searched.

In a HAS architecture the server has to provide
a client with a number of different bit-rate videos to
chose from. A mastervideo, which is preferably lossless,

is encoded into a number of different bit-rates which
correspond to a needed throughput by a client. These
differently encoded videos are then described in a mani-
fest which is usually text or XML. This process is de-
scribed in Figure 1.

Figure 1: This diagram was created to show the ab-
stract process of encoding video for HTTP Adaptive
Streaming. There is an optional step in which the en-
coded video is segmented into equally timed parts. The
timeindexes for the video are described in a manifest.

A client first requests the manifest from the server.
Then a “slow-start”, e.g. low bit-rate video first, is ini-
tialized to quickly fill up the buffer on the client. After
this slow-start the video’s bit-rate converges to the cli-
ent’s throughput and a client’s optimal video quality is
reached. When congestion takes place, the video bit-
rate is scaled back to decrease the possibility of play-
back discontinuity. This concept is shown in Figure
2.

time

Low bitrate

Medium bitrate

High bitrate Network Congestion

Available Bandwidth

Figure 2: This diagram was created to show the ab-
stract process of the adaptive algorithm switching bit-
rates following network congestion at the client-side for
HTTP Adaptive Streaming.

Trans-encryption is a technique patented by TNO in
WO application WO2013041394A1 [9]. It can be used
to securely deliver content from a Content Provider
to a Content Consumer Unit over one or more CDs.

1without adding dedicated processing units

2



These CDs are usually realized in the form of CDNs.
Trans-encryption uses a split-key cryptosystem which
splits up keys e and d for encryption and decryption al-
gorithms E and D into i different split encryption keys
e1, e2, . . . , ei and or k different split decryption keys
d1, d2, . . . , dk. The split-keys are generated such that
Ddk

(D...(Dd2(Dd1(Eei(E...(Ee2(Ee1(X))) = X. The
secret information S necessary for generating i and or
k different encryption and or decryption keys has to
be sent on together with the encrypted content. The
point of this technique is that content X is never fully
decrypted and remains encrypted on route to the CCU.
An abstract schematic demonstrating trans-encryption
for a single intermediary is shown in Figure 3.

Figure 3: This diagram was created to show the en-
cryption operations for a trans-encrypted stream of
data to a client needed for a split-key cryptographic
set-up.

4 Approach

As elaborated upon previously the MPEG-DASH spe-
cification and its stack will be used to represent
HAS. MPEG-DASH utilizes a conventional HTTP
server/client architecture to respectively distribute and
ingest content. As such these two components needed
to be selected and or created to simulate a represent-
able set-up.

4.1 Client

To simulate load for the experiments the tool wrk [10]
was chosen. wrk is able to do application layer re-
quests in the form of HTTP requests with little to no
overhead. By utilizing multiple concurrent connections
wrk is able to simulate the load of multiple CCUs. wrk
however was not used to decode the video segments
as the requests were discarded on completion. wrk is
able to evaluate the performance of a web-server in
terms of throughput and latency which is returned to
the calling program over the stdout. wrk also has an

additional scripting interface in LUA 1 which allows
the user to do intricate per request configuration. The
measurement of the capacity of a web server is a tried
and tested subject which generally focuses on either
throughput or requests per second [11, 12]. wrk is per-
fectly capable of generating requests fast enough to suf-
ficiently load web server. Because the focus of HAS web
servers lies with providing sufficient throughput using
large requests, throughput is the measurement that is
focused on most.

4.2 Trans-encrypting Server

The second part to the HAS architecture is a HTTP
server with exterior bindings to encrypting applica-
tions. These encrypting applications were specifically
built for this research.

4.2.1 Encryption

As mentioned before there are a few possible cipher-
systems available in the patent describing split-key
cryptography. The patent suggests the use of the
following five cipher-systems although the split-key
cryptosystem is not necessarily constricted to this set.

• RSA [1]

• One time path

• LFSR stream cipher

• ElGamal [3]

• Damgard-Jurik [4]

RSA was chosen as the representative cipher-system
for the experimental set-up’s trans-encrypting cipher-
system. RSA was chosen over the other cipher-systems
because of its generally standardized status as a crypto-
system in multiple libraries. One time path was passed
on because of its 100% increase in required data per
trans-encryption and already has a base overhead of
100%. LFSR stream ciphers are generally fast but
mostly because of dedicated hardware [13]. Many
LFSR stream ciphers however are found lacking in
security over the more secure asymmetric crypto al-
gorithms [14, 15, 16]. Because this research focuses
on currently available hardware for servers and be-
cause of the security aspect, LFSR stream ciphers
were turned down. The ElGamal algorithm hangs
on a different proof than RSA’s practical difficulty of

1LUA is a lightweight programming language https://www.lua.org/

3

https://www.lua.org/


factoring, namely the indistinguishability of two prob-
ability distributions from cyclic group G [17]. Even
though the ElGamal and RSA algorithm hang on a
different proof, their performance is similar due to the
asymmetric nature of the both of them. RSA is faster
encrypting, ElGamal is faster decrypting [18, 19]. Be-
cause ElGamal is less standardized then RSA [20],
RSA was eventually picked over ElGamal. Finally
Damgard-Jurik, which hangs of the same principle as
RSA, the difficulty of factoring, was not considered for
this research because of the general lack of implement-
ations as a crypto-system.

Split-key cryptography using the RSA algorithm ap-
plies the multiplicative property of consecutive ex-
ponentiations i.e. (an)m = an∗m so that consecut-
ive encryptions of X (Xe1)e2 (mod n) or consecutive
decryptions of X (Xd1)d2 (mod n) can be combined
into singular exponentiations of X: Xe1∗e2 (mod n) &
Xd1∗d2 (mod n). To implement RSA trans-encryption
using split-key cryptography first keypair one is gen-
erated following the normal key generation procedure
described in the RSA standards. Then keypair two
is derived copying keypair one’s public modulus n, its
prime p and q. For keypair two a different public ex-
ponent is chosen from which private exponent two is
derived. These two public/private keypairs can then
be combined by multiplication as follows: ec = e1e2
and stored in a combined keypair. Because there are
two possible operations for the trans-encryption e.g. a
second encryption or a first decryption, this leaves two
possible operations on the trans-encrypting server this
decision can be seen in Figure 4.

Figure 4: This diagram was created to show the en-
cryption and decryption routes possible when doing a
RSA trans-encrypting content pipeline.

For this research four components to the RSA trans-

encryption cryptosystem were created. These compon-
ents were created using the latest version of the C
openssl library. Using the openssl means forward com-
patibility and efficient use of the hardware with the use
of its RSA and AES bindings. The four components
were built to work on generic content.

• C rsa create combined

• Python encrypt.py + C rsa encrypt

• C rsa trans/rsa trans dec

• C rsa client decrypt

After openssl genrsa is called to create a keypair one
rsa create combined is used. rsa create combined cre-
ates a second keypair from the previously created pair
one and combines it in a combined pair. These pairs
are all stored in a PEM1 formatted file. encrypt.py
and rsa encrypt are used to encrypt entire director-
ies of video content with either the combined keypair
or pair one applying PKCS1 padding to every con-
secutive 245 bytes of a HAS segment. The 245 bytes
were chosen as PKCS1 padding allows for padding of
keysize − 11 bytes of data to be encrypted per call
of the RSA algorithm. rsa trans or rsa trans dec are
used respectively to either apply the second encryp-
tion using keypair two or apply a first decryption using
keypair one. This step does not apply any padding. Fi-
nally rsa client decrypt performs the final decryption
using either the private exponent from the combined
pair or pair two. The two different paths can be seen
as follows:

Ee1 → Ee2 → Dd1d2

Ee1e2 → Dd1 → Dd2

Before continuing the functionality was confirmed
in Linux using a MPEG-DASH segment as follows:

1. ./rsa encrypt 0001.m4s > 0001.one.m4s

2. ./rsa trans 0001.one.m4s > 0001.two.m4s

3. ./rsa client decrypt 0001.two.m4s > 0001.clear.m4s

4. diff 0001.m4s 0001.clear.m4s (no output means
no difference)

1PEM describes a way of the textually encoding cryptographic keys, certificates, and other data. PEM is the most used format
for distributing ASN.1 DER keys and certificates.

4



The functionality of the passthrough part of the
HAS server was confirmed beforehand by having an
actual MPEG-DASH client1communicate with the
server.

As a comparative technology an AES-128 re-
encrypting application was also implemented using the
C openssl libraries. This implementation first does a
decryption with key one using AES-128-CBC, which is
then followed by an encryption with key two. The sub-
sequent decryption and encryption do possess a small
time window in which the content is available on the
re-encrypting machine as cleartext.

4.2.2 HTTP-server

The HTTP server receives the requests from wrk and
on the fly does one of four operations on the MPEG-
DASH segments:

1. A passthrough, as a baseline. (no-op)

2. A Re-encryption step, which involves a decryp-
tion and an encryption applying CENC.

3. A trans-encryption step, which does a second en-
cryption using RSA.

4. A trans-encryption step, which does a first de-
cryption using RSA.

The web-framework used as the (trans)encryption/passthrough
middleman is Japronto [21], a low-overhead python
HTTP-toolkit. Japronto is a HTTP web-framework
that was coded in C which with extensive use of the Py-
thon/C bindings has been made easily programmable
using a Python interface. The C-code for Japronto is
tweaked to optimize for modern CPUs. Japronto uses
picohttpparser [22] for header & chunked-encoding
parsing and uses uvloop [23] to provide with asyn-
chronous IO. When able writes are combined to save
system calls. Japronto uses a master slave set-up to
distribute incoming connections over available slaves.

4.3 Experimental Set-up

The experimental set-up consists of the two previously
proposed components hosted on two separate machines
connected by a 1Gbit link. A schematic overview of
this set-up can be seen in Figure 5.

Figure 5: This figure was created to show the exper-
imental set-up for the benchmarking measurements.
This set-up allows testing of the multiple different
cryptosystems.

The keysize for RSA was chosen as 2048-bit, this
was done to ensure that factorization of the key would
be impossible for the foreseeable future. Figure 6 shows
the progress of hostile RSA factorizations since 1992,
which indicate the possibility of factorizing RSA with
a 1024 bit keysize by 2016. The choice for a 2048 bit
keysize means that only the private-key for the pub-
lic/private key pair is 2048 bits, but the public key can
be chosen to be as small as possible to speed-up the en-
cryption. For most RSA implementations the default
public exponent e is chosen as 65537 [24], so this is
what was done for this experiment as well. The main
reason for not picking a smaller number like 3 is that
it is unsafe when no padding is used.

Figure 6: A figure showing academic factorizations of
the RSA cryptosystem from 1992 till 2010 with a linear
regression of the datapoints1.

The relevant specifications for the two machines are as
follows:

1http://dashif.org/reference/players/javascript/v2.5.0/samples/dash-if-reference-player/index.html
1Figure retrieved from https://crypto.stackexchange.com/a/1982

5

http://dashif.org/reference/players/javascript/v2.5.0/samples/dash-if-reference-player/index.html
https://crypto.stackexchange.com/a/1982


Client - Lenovo Thinkpad T440s

• Intel Core i5-4200U @ 2C4Tx1.6GHz

• Intel Ethernet Controller I218-V @ 1Gb/s

Trans-encrypting server - Dell PowerEdge R210

• Intel Xeon CPU E3-1240L v5 @ 4C8Tx2.10GHz

• Broadcom NetXtreme BCM5720 @ 1Gb/s

The number of threads on the server machine allows
for 8 Japronto slave processes to be run concurrently
with a one to one mapping on the CPU threads.
wrk is loaded with requests corresponding to MPEG-
DASH segments over its LUA API. wrk is then run us-
ing 1, 10, 100 and 1000 concurrent connections for 120
seconds. These tests are run once for 120 seconds for
each of the four possible operations the HTTP-server
is capable of. Out of the results from wrk throughput
to the server will be recorded and plotted.

The test content that was used is Tears of Steel, an
open source movie by the Blender foundation. It was
encoded using H.264 in the following bit-rates:

• 388227 bits/s with a resolution of 512x288 pixels.

• 770624 bits/s with a resolution of 640x360 pixels.

• 1148766 bits/s with a resolution of 852x480
pixels.

• 1996574 bits/s with a resolution of 1280x720
pixels.

• 2823478 bits/s with a resolution of 1920x1080
pixels.

The urls corresponding to the video segments were ran-
domly shuffled once before testing began. Then the
randomized list of urls were requested from each of the
different encrypting set-ups.

6



5 Results

This section shows the results for the experiment described in Section 4.3. The results show the performance
under a number of different concurrent connections, helping understand the overhead induced by a trans-
encryption step.

1 10 100 1000
 concurrent connections

0MB/s

1MB/s

10MB/s

100MB/s

1000MB/s

M
ea

n 
th

ro
ug

hp
ut

 M
B

/s
(l

o
g

 s
ca

le
 h

ig
he

r 
is

 b
et

te
r)

(24.51)

(111.47)
(75.04)

(21.73)

(8.83)

(33.69) (27.76)

(14.5)

(0.35)

(1.04)
(0.65)

(0.17)

Throughput for HTTP Adaptive Segments

Passthrough MB/s
AES re-encryption MB/s
RSA trans-encryption (encryption) MB/s
RSA trans-encryption (decryption) MB/s

Required throughput for
 H.264 1080p streams

1Gbit/s - Link Speed

Figure 7: A graph showing the throughput of the experimental set-up for different types of encryption over
MPEG-DASH segments.

1 10 100 1000
 concurrent connections

0

20

40

60

80

100

120

La
te

nc
y 

in
 s

ec
o

nd
s

(h
ig

he
r 

is
 w

o
rs

e)

Latency for encrypting HTTP Adaptive Segments

Passthrough ms
AES re-encryption ms
RSA trans-encryption(encryption) ms
RSA trans-encryption(decryption) ms

Figure 8: A graph showing the latency of segment transmission completions for different types of encryption
over MPEG-DASH.



Figure 7 shows that from 10 connections and up
japronto is generating passthrough responses at link
speed which has been indicated in the graph by a black
line. The passthrough experiment shows no slowing
down over the increased connections which means the
server is never overloaded in any way. The passthrough
implementation should be capable of providing enough
throughput for approximately 390 clients at 1080p
H.264.

AES re-encryption shows the least amount of
overhead in comparison to the passthrough baseline
with a 51.3% average performance of the baseline.
The amount of throughput provided by the AES re-
encryption implementation should easily be enough
to sustain 100 concurrent clients at 1080p H.264.
RSA trans-encryption with an encryption step has the
least amount of overhead of the two trans-encryption
implementations with a 18.7% performance of the
passthrough baseline. The amount of throughput
provided by the RSA trans-encryption with an en-
cryption step implementation nearly provides enough
throughput to sustain 100 concurrent clients at 1080p
H.264 and misses this mark by ∼ 3MB/s. RSA trans-
encryption with a decryption step has the most amount
of overhead of all encrypting implementations with
only 0.5% performance of the passthrough baseline.
The decrypting implementation is only able to provide
enough throughput for 1 client at 1080p H.264 after
which scaling is not significant.

Figure 8 reestablishes the aforementioned overhead
distribution, with the most latency in the trans-
encryption implementation with a decryption step.
The figure shows the average completion time for the
requests send by the wrk client. The error bars signify
the standard deviation of each of the averages plotted
in the graph. In this figure you can also see that the
latency of the passthrough implementation is actually
increasing so requests are kept waiting longer as the
number of concurrent connections is increasing.

6 Discussion

The AES re-encryption benefits greatly from the AES-
NI set that the Intel Xeon E3-1240L CPU on the server
provides. This extra skews the results in favour of AES

re-encryption. It is not unthinkable that the instruc-
tion set could be extended to optimize streaming video
performance for RSA decryption as hardware acceler-
ated video decoding is a well known constant on mod-
ern CPUs.

6.1 Future Work

Future research could go into a RSA decrypting client
to complete the alternative DRM pipeline and further
evaluate the viability of the RSA trans-encryption. As
an alternative to the CPU bound instructions utilized
by openssl the RSA operations could be moved to a
GPU. Previous research achieved a 2.17× speed up of
concurrent RSA decryptions and a 1.572× speed up
of concurrent RSA encryptions over a sequential CPU
RSA implementation [25]. Because of the high num-
ber of compute cores in a GPU the RSA algorithm
should scale better than a CPU at concurrent encryp-
tions and decryptions. Although server machines do
not usually carry dedicated GPUs, this could be facil-
itated to achieve a trans-encryption speed-up.

7 Conclusion

This research has evaluated the overhead of trans-
encrypting RSA as an alternative encryption for the
DRM pipeline. This was possible by creating a trans-
encrypting prototype as well as a reference AES-128
re-encryption implementation. Using the RSA trans-
encryption implementation with an encryption step
seems a relatively viable option, which leaves room for
improvement if RSA hardware acceleration on the CPU
were to be implemented like it has been for AES in the
AES-NI instruction set. It remains to be seen if a cli-
ent can decrypt at enough throughput although the
1 connection RSA trans-encryption seems to be just
capable of doing a decryption at 1080p H.264 0.3MB/s
throughput. The currently adopted cryptographic al-
gorithm for the HAS pipeline AES outperformed both
trans-encrypting implementations by a margin. The
AES re-encryption implementation however means the
use of an untrusted third party would be impossible
where this would be possible for the trans-encrypting
implementations. Trans-encryption increases the se-
curity of the DRM pipeline with a non insurmountable
increase of overhead.

8



Acknowledgments

I would like to thank the TNO medialab, especially Oskar van Deventer and Thijs van Veugen, for their tutelage
and guidance during this project.

References

[1] Rivest, Ronald L and Shamir, Adi and Adleman, Leonard. A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

[2] Kahn, David. The codebreakers. Weidenfeld and Nicolson, 1974.

[3] ElGamal, Taher. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE
transactions on information theory, 31(4):469–472, 1985.

[4] Damg̊ard, Ivan and Jurik, Mads. A generalisation, a simpli. cation and some applications of Paillier’s
probabilistic public-key system. In International Workshop on Public Key Cryptography, pages 119–136.
Springer, 2001.

[5] Stockhammer, Thomas. Dynamic adaptive streaming over HTTP–: standards and design principles. In
Proceedings of the second annual ACM conference on Multimedia systems, pages 133–144. ACM, 2011.

[6] Information technology – Dynamic adaptive streaming over HTTP (DASH) – Part 1: Media presentation
description and segment formats. Standard ISO/IEC 23009-1, International Organization for
Standardization, Geneva, CH, May 2014.

[7] Information technology – MPEG systems technologies – Part 7: Common encryption in ISO base media
file format files. Standard ISO/IEC 23001-7, International Organization for Standardization, Geneva, CH,
February 2016.

[8] Daemen, Joan and Rijmen, Vincent. AES proposal: Rijndael. AES Algorithm Submission. National
Institute for Standards and Technology (NIST), September 1999.

[9] Veugen, Peter and Van Deventer, Mattijs Oskar and Niamut, Omar Aziz. Secure distribution of content,
March 28 2013. European Patent Office PCT/EP2012/067577.

[10] Will Glozer. WRK Modern HTTP benchmarking tool. https://github.com/wg/wrk, 2017.

[11] Banga, Gaurav and Druschel, Peter. Measuring the Capacity of a Web Server. In USENIX Symposium
on Internet Technologies and Systems, pages 61–71, 1997.

[12] Mosberger, David and Jin, Tai. httperfa tool for measuring web server performance. ACM SIGMETRICS
Performance Evaluation Review, 26(3):31–37, 1998.

[13] Batina, Lejla and Lano, Joseph and Mentens, Nele and Ors, Siddika Berna and Preneel, Bart and
Verbauwhede, Ingrid. Energy, performance, area versus security trade-offs for stream ciphers. SASC -
The State of the Art of Stream Ciphers Brugge, Workshop by ECRYPT Network, October 14 2004.
http://hdl.handle.net/2066/127475.

[14] Barkan, Elad and Biham, Eli and Keller, Nathan. Instant ciphertext-only cryptanalysis of GSM
encrypted communication. Advances in Cryptology-CRYPTO 2003, pages 600–616, 2003.

[15] Lu, Yi and Meier, Willi and Vaudenay, Serge. The conditional correlation attack: A practical attack on
Bluetooth encryption. In Crypto, volume 3621, pages 97–117. Springer, 2005.

9

https://github.com/wg/wrk
http://hdl.handle.net/2066/127475


[16] AlFardan, Nadhem J and Bernstein, Daniel J and Paterson, Kenneth G and Poettering, Bertram and
Schuldt, Jacob CN. On the Security of RC4 in TLS. In USENIX Security Symposium, pages 305–320,
2013.

[17] Diffie, Whitfield and Hellman, Martin. New directions in cryptography. IEEE transactions on
Information Theory, 22(6):644–654, 1976.

[18] AE Okeyinka. Computational speeds analysis of RSA and ElGamal algorithms on text data. In
Proceedings of The World Congress on Engineering and Computer Science, pages 115–118, 2015.

[19] Abdullah, Mohammed Najm and Al-Chalabi, Atheer Marouf. Performance Assessment of RSA, ElGamal
and Proposed DHOTP for File Security in Pervasive Computing Environment. International Journal of
Advanced Research in Computer and Communication Engineering, 5(1), December 2016.

[20] Mini Malhotra and Aman Singh. Study of various cryptographic algorithms. IJSER, 1(3):77–88, 2013.

[21] Pawe l Piotr Przeradowski. Japronto. https://github.com/squeaky-pl/japronto, 2017.

[22] Kazuho Oku, Tokuhiro Matsuno, Daisuke Murase and Shigeo Mitsunari. PicoHTTPParser.
https://github.com/h2o/picohttpparser, 2017.

[23] Yury Selivanov. uvloop. https://github.com/MagicStack/uvloop, 2017.

[24] Dan Boneh et al. Twenty years of attacks on the rsa cryptosystem. Notices of the AMS, 46(2):203–213,
1999.

[25] Fadhil, Heba Mohammed and Younis, Mohammed Issam. Parallelizing RSA algorithm on multicore CPU
and GPU. International Journal of Computer Applications, 87(6), 2014.

10

https://github.com/squeaky-pl/japronto
https://github.com/h2o/picohttpparser
https://github.com/MagicStack/uvloop

	Introduction
	Research questions
	Related Work
	Approach
	Client
	Trans-encrypting Server
	Encryption
	HTTP-server

	Experimental Set-up

	Results
	Discussion
	Future Work

	Conclusion

