Formal verification of the implementation of the
MQTT protocol in loT devices

Kristiyan Mladenov

University of Amsterdam
Faculty of Physics, Mathematics and Informatics
MSc System and Network Engineering
Research Project 2

July 3, 2017

18

Introduction

® Mirai botnet producing one of the largest DDoS attacks ever.

® \We can also talk about botnet "wars".

e Compromise due to human error.

)

18

loT testing

® Rapid7 loT Security Testing Methodology
e OWASP loT Top 10

® |oT Inspector (SEC Technologies)

3/18

loT testing

® Rapid7 loT Security Testing Methodology
e OWASP loT Top 10

® |oT Inspector (SEC Technologies)

What would happen if we dig deeper?

® One of the main goals of the loT devices is to exchange data using some
message exchange mechanism.

® How can we assure a proper protocol implementation?

® Could we make sure that it is correct in a more formal way?

18

Protocol of choice
MQTT

Message Queue Telemetry Transport

® Designed for message transfer with small code footprint and limited

bandwidth in mind.

® First version was available in 1999. Version 3.1.1 is standardised by

OASIS (2014) and ISO (2016).

"‘g publish: "21°C" %

HiveMQ
temperature MQTT-Broker
sensor
subscribe to publish to
topic: “temperature” topic: “temperature”

s“nsd\“z

o
A
vu\,(\s\‘? >

Subs Cribg

Pubjigy
27 o0

kel

laptop

0

mobile device

18

Protocol of choice
MQTT

Message Queue Telemetry Transport

Designed for message transfer with small code footprint and limited

bandwidth in mind.

First version was available in 1999. Version 3.1.1 is standardised by

OASIS (2014) and ISO (2016).

Publish/Subscribe communication mechanism similar to IRC.

Adds the concept of Last Will and QoS.

9psdmz

Y vuvw\s\\:" 3
“ publish: "21°C" %

HiveMQ $Ubscripg
Pubjsy,
temperature MQTT-Broker 2700k
sensor
subscribe to publish to
topic: “temperature” topic: “temperature”

kel

laptop

0

mobile device

18

MQTT use cases

MQTT is implemented in:

® The backend of The Things Network (LoRa)
® AWS loT, Google Cloud loT

5/18

MQTT use cases

MQTT is implemented in:

® The backend of The Things Network (LoRa)
® AWS loT, Google Cloud loT

Applications that use MQTT

® Fitness trackers, Medical equipment, ATM machines
e Implemented by Deutsche Bahn (DB)

e Facebook Messenger (Unconfirmed)

Research Question

Can the MQTT protocol implementation in loT devices be verified formally?

Subquestions

® \What methods can be used to formally assess the implementation of a
communication protocol?

® Using the chosen formal testing methods, does the MQTT
implementation in certain selected loT devices adhere to the standard?

6

18

Related Work

From some of the major standardisation organisations:

® |SO/IEC 9646 - Conformance testing methodology and framework.

18

Related Work

From some of the major standardisation organisations:
® |SO/IEC 9646 - Conformance testing methodology and framework. Not
open
® Testing and Test Control Notation version 3 (TTCN-3) included in part 3
of the above. Formal Description Technique as of ITU-T Z.160 - Z.179

18

Related Work

From some of the major standardisation organisations:
® |SO/IEC 9646 - Conformance testing methodology and framework. Not
open
® Testing and Test Control Notation version 3 (TTCN-3) included in part 3
of the above. Formal Description Technique as of ITU-T Z.160 - Z.179

Relevant scientific research:

18

Related Work

From some of the major standardisation organisations:
® |SO/IEC 9646 - Conformance testing methodology and framework. Not
open
® Testing and Test Control Notation version 3 (TTCN-3) included in part 3
of the above. Formal Description Technique as of ITU-T Z.160 - Z.179

Relevant scientific research:
® Mapping TTCN to Labelled Transition Systems.

Related Work

From some of the major standardisation organisations:
® |SO/IEC 9646 - Conformance testing methodology and framework. Not
open
® Testing and Test Control Notation version 3 (TTCN-3) included in part 3
of the above. Formal Description Technique as of ITU-T Z.160 - Z.179

Relevant scientific research:
® Mapping TTCN to Labelled Transition Systems.

® Finite State Machines and TTCN successfully used to verify lloT protocol
implementations.

Related Work

From some of the major standardisation organisations:
® |SO/IEC 9646 - Conformance testing methodology and framework. Not
open
® Testing and Test Control Notation version 3 (TTCN-3) included in part 3
of the above. Formal Description Technique as of ITU-T Z.160 - Z.179

Relevant scientific research:
® Mapping TTCN to Labelled Transition Systems.
® Finite State Machines and TTCN successfully used to verify lloT protocol
implementations.

There is a tool for every approach

18

Related Work

From some of the major standardisation organisations:
® |SO/IEC 9646 - Conformance testing methodology and framework. Not
open
® Testing and Test Control Notation version 3 (TTCN-3) included in part 3
of the above. Formal Description Technique as of ITU-T Z.160 - Z.179

Relevant scientific research:
® Mapping TTCN to Labelled Transition Systems.
® Finite State Machines and TTCN successfully used to verify lloT protocol
implementations.
There is a tool for every approach

® The testing to follow is focused on Eclipse Titan.

MQTT Packet Structure

7

6 5

4

3

0

Control Packet Type

DUP

QoS

Retain

Remaining Length

Figure: MQTT Packet structure

Fixed
Header

Variable
Header

} Payload

18

Example test

[MQTT-2.3.1-1]

SUBSCRIBE, UNSUBSCRIBE, and
PUBLISH (in cases where QoS>0)
Control Packets MUST contain a
non-zero 16-bit Packet Identifier.

Client Server

CONNECT
CONNACK
PUBLISH
PUBACK

Figure: Publish with Packet ID 0

]

@IPL4asp_Types.... |

=== Test case tc_2|3_1_1 started.
" @IPL4asp_Types... |

=

@IPLdasp_Types...,m

[

. @IPL4asp_Types...

?

| fail |

Figure: Test execution flowgraph

Room for improvement

Writing is nature's way of letting you know how sloppy your
thinking is.!

Dick Guidon

10/18

Room for improvement

Writing is nature's way of letting you know how sloppy your
thinking is.!

® Translating a specification from natural to formal language is prone to
errors.

® How can we safely come up with new values for the tests?

e |f the specification is defined in a formal language, testing might be easier.

Dick Guidon

18

Intermezzo

The Die Hard challenge?

® You have two buckets

— 3 litres
— 5 litres

® You have an infinite amount of water.
® You can waste as much water as you want.

® How do you fill the large bucket with exactly 4 litres?

2h'ctps:
//github.com/tlaplus/Examples/tree/master/specifications/DieHard
11/18

https://github.com/tlaplus/Examples/tree/master/specifications/DieHard
https://github.com/tlaplus/Examples/tree/master/specifications/DieHard

Intermezzo approach (enter TLA+)

12/18

Intermezzo approach (enter TLA+)

EXTENDS Integers

IToBig = 1F bi <
VARIABLES small. big SmallToBig 1F big + small <5

THEN A big" = big + small
TypeOK 2 Asmalle0..3 A sf_n?,”’ =0
Nbig €0..5 ELSE Abig" =35

A small’ = small — (5 — big)
Init = Abig =0

A small =0 BigToSmall 2 1F big + small < 3
THEN A bigt =0
FillSmall = A small' = 3 A small’ = big + small
Abig' = big ELSE A big = small — (3 — big)
. o«
FillBig 2 Abig =5 pomell =3
A small’ = small Next 2 v FillSmall
N v FillBig
EmptySmall = # small’ =0 v EmptySmall
Ay = big v EmptyBig

v SmallToBig

EmptyBig = A big =0 V BigToSmall

A small’ = small

u]
o)
I
i
it

Define different invariant in the
TLA+ model checker.

Observe the behaviour of the
model; relax constraints if
necessary.

Map the observed behaviour in
terms of TTCN-3 tests.

The problem of translating
natural to formal language is still
not solved.

TLA+ model of a simple MQTT keepalive

EXTENDS Naturals, TLC
VARIABLES sreMsg, clMsg, pc
vars = (sruMsg, clMsg, pe)

Init =

A pe = "Initial”

Initial £ A pe

Sendping =

a
Sendresp =

Next 2 Initial v Sendping V Sendresp
V (pc = "Done” A UNCHANGED vars)

Spec = Init A Q[Newt]yars

Termination = &(pe = “Done”)

Figure: TLA+ simplified keepalive

18

Results

What follows is a list of the normative requirements and how do the tested
implementations conform to them.

Normative Requirements

|82 la]la|lJ|loe|ls|[|~]|7T
dlmlalale|d g aalAaa]S

DRI B T I e s T I RO T I B BT CC T BB

Mosquitto | v | X | vV |V |V |V |V IV |V |V |V |V | V
Emgtt X | X v v v iX|v|vI|v X[X]|v]|v
RabbitMQ | X | X |V |V |V | X |V |V |V | X |V |V |V

14 /18

Results

What follows is a list of the normative requirements and how do the tested
implementations conform to them.

Normative Requirements

Mosquitto
Emqtt
RabbitMQ

N N[S[3.1.2-24

<|<|«[3.834
<< |<B.12.41

N S[5B.1.0-1b
~[S[%3.1.0-2
| x| «]3.1.2-2
NS]5]3.1.3-8
<[8[43.3.1-4
x| %|«]3.6.1-1
N[X[3.8.1-1

N S15[3.1.0-1a

X| X[N] 2.2.2
X| X[X]2.3.1-1

14 /18

Conclusion

® There are plenty of ways to model the implementation of a
communication protocol, using Finite State Machines, Labelled Transition
Systems, even Set Theory and First Order Logic.

15/18

Conclusion

® There are plenty of ways to model the implementation of a

communication protocol, using Finite State Machines, Labelled Transition
Systems, even Set Theory and First Order Logic.

e Using the TTCN-3 language, three different MQTT implementations
were tested and inconsistencies with the specification were found.

18

Conclusion

® There are plenty of ways to model the implementation of a
communication protocol, using Finite State Machines, Labelled Transition
Systems, even Set Theory and First Order Logic.

e Using the TTCN-3 language, three different MQTT implementations
were tested and inconsistencies with the specification were found.

® Those inconsistencies can be used to fingerprint and identify
implementations.

18

Conclusion

® There are plenty of ways to model the implementation of a
communication protocol, using Finite State Machines, Labelled Transition
Systems, even Set Theory and First Order Logic.

e Using the TTCN-3 language, three different MQTT implementations
were tested and inconsistencies with the specification were found.

® Those inconsistencies can be used to fingerprint and identify
implementations.

As a side note, adhering to the standard does not mean that a device is secure,
especially in the cases of bad protocol design.

18

Future work

® Building a complete TLA+ model could be able to identify additional
behavioural differences between different implementations.

® The output derived from the TLA+ model might be used for fuzzing.

® |t could also help in identifying deficiencies in the protocol design itself,
rendering all implementations vulnerable.

16 /18

Questions?

Share your thoughts?

17/18

References

® Image depicting the interaction between the MQTT Client and Server
taken from:
http://www.hivemq.com/blog/
mgtt-essentials-part2-publish-subscribe

® Representative solution to the Die Hard problem taken from:
https://github.com/tlaplus/Examples/tree/master/
specifications/DieHard

18/18

http://www.hivemq.com/blog/mqtt-essentials-part2-publish-subscribe
http://www.hivemq.com/blog/mqtt-essentials-part2-publish-subscribe
https://github.com/tlaplus/Examples/tree/master/specifications/DieHard
https://github.com/tlaplus/Examples/tree/master/specifications/DieHard

