A hybrid system for automatic exchanges of routing information

Stamatios Maritsas

University of Amsterdam Informatics Institute Master of Science in System and Network Engineering

supervised by

Stavros Konstantaras s.konstantaras@uva.nl George Thessalonikefs george@nlnetlabs.nl

November 23, 2016

Master Thesis Project

Border Gateway Protocol — BGP

Definition

BGP is the **de facto** inter- AS^1 routing protocol used on the Internet nowadays.

- Specified in RFC 4271 (BGP4)
- Peer-to-peer reachability discovery protocol
- Comes in two flavors, *iBGP* and *eBGP*

Policies

Definition

Policies determine a set of rules on how routing and reachability information is exchanged between BGP routers.

- whom does an AS connect with
- which route prefixes are announced to others
- which route prefixes are accepted from others
- what are the desired preferences, etc.
- Categorization
 - Transit policies
 - Traffic engineering policies
 - Scalability policies
 - Security-related policies

Routing Policy Specification Language — RPSL

Definition

RPSL is a neutral-vendor, object-oriented language used to specify a routing policy in the IRR.

- defines 13 classes of objects
- aut-num, route, as-set, route-set
- Three-fold purpose
 - presentation of policies in IRR in an understandable format
 - description of policies in a more comfortable/solid way
 - can be converted into BGP configuration files
- Practical difficulties
 - complex policy descriptions due to its flexibility
 - level of accuracy of descriptions largely varies
 - adds an extra high-level configuration step

- 4 週 ト - 4 三 ト - 4 三 ト

Internet Routing Registry - IRR

Definition

IRR is a distributed set of repositories used by many network operators to store their AS routing policy.

- Numbers
 - > 26 both public and private routing registries in total
 - ▶ 5 Routing Internet Registries (RIRs) 5 geographical regions
 - ★ AFRINIC, ARIN, APNIC, LACNIC, RIPE NCC
 - ★ Allocation of IP address space and ASNs
- Security considerations
 - out-of-date information
 - inconsistencies
 - no proper authorization/authentication
 - RFC 2725 (re-examine its applicability)

BGP security

- Early '90s
 - ▶ first standardization of BGP in RFC 1105, NOT security-oriented
 - small number of networks, trust in place
 - no need for security :)
- Nowadays
 - BGP4 (RFC 4271) is still NOT security-oriented
 - huge number of networks, NO trust in place
 - security has become mandatory
- Security solutions
 - many proposals, both crypto-based and non-crypto based
 - crypto-based difficult to be applied (excluding RPKI)
 - ★ require modifications to BGP messages structure
 - ★ high computational cost
 - BGP route filtering (non crypto-based), most effective and widely deployed technique

- 4 目 ト - 4 日 ト - 4 日 ト

Current state

Master Thesis Project

Research Questions

Main research question

Is it possible to design a hybrid system to automatically exchange routing policies for BGP configurations?

Sub-research questions

- Which would be the benefits by designing a hybrid approach?
- What is the potential of this hybrid system in terms of scalability and efficiency?
- What security aspects should this hybrid system employ?

- A TE N - A TE

Where does our project land?

Methodology

• Literature study, theoretical knowledge

- articles
- RFCs
- etc.
- Meetings, practical knowledge
 - supervisors
 - a few network operators (mostly of small ISPs)
- Questionnaire, practical knowledge
 - 2 questions concerning BGP update policy
 - 19 network operators mailing lists
 - statistical sample = 55 responses, only an indication :(
 - more than one answer to every question

Questionnaire (1/2)

How do you inform all the involving members that a change has been made to your routing policy?

Q1 indicates a need for an automatic way to exchange policies

3

(日) (同) (三) (三)

Questionnaire (2/2)

What is the time between a policy change and the actual RPSL update inside RIR?

• Q2 indicates a need for an automatic way to exchange policies

• Q2 slightly indicates RPSL's difficulty to be adopted (17 / 55, 30.9%)

3

Decision making (1/3)

Requirements

- Decentralization of policy information
- Mapping between domains ²- policy service locations
- Vendor-neutrality of routing policy language
- Security (authorization & authentication)
- Support for Policy Views (privacy)

²For brevity, domain == administrative domain or AS $\langle \Box \rangle$

Decision making (2/3)

• Hybrid system model — Inspired by [1] [UvA+TUDelft, 2015]

- need for both centralization & decentralization
- 3 components
 - ★ Policy Mapper (PM) centralized part
 - * Policy Provider (PP) distributed part
 - * Policy Requester (PR) distributed part

イロト イポト イヨト イヨト 二日

Decision making (3/3)

- Security aspects
 - PM acts as a Trusted Third Party (TTP) & accessible by both PRs and PPs
 - One public/private key-pair per domain, used to create a self-signed certificate and share it with PM
 - PRs & PPs communicate using their self-signed certificates over TLS (mutual authentication)

Registration to Policy Mapper

Policy retrieval

Policy view

- Innovative idea
- Discrete piece of main policy information
- Different *policy views* for different requesters

Registration to Policy Provider

Policy update & notification

Stamatios Maritsas (SNE / OS3)

Master Thesis Project

November 23, 2016 20 / 25

Discussion

- Scalability
 - hybrid model offers scalability
 - innovative system proposal
- Implementation ideas
 - Security
 - * RPKI, authorization but NOT authentication (RFC 6480)
 - ★ HTTPS, need for client certificates as well
 - Policy language
 - ★ only RPSL in place
 - need for a structure-based, human-readable language that provides one-to-one correlation between router configurations and policies

Conclusion

- Decentralization of policies is possible! :)
- Simplicity of architecture
- Components simple and well-defined
- Room for extra services and extension of system capabilities
- Contribute to BGP security by supporting the correctness and effectiveness of BGP filters
 - policy views preserve the confidentiality of data
 - ISPs more motivated to keep their policy information accurate and up to date

Further work

- Proof of concept
- Large scale scenario
- RPSL alternatives
 - Routing Documentation Language (RDL) ³
 - YAML Ain't Markup Language
- Correctness of policy information
 - Comparison of the *policy view* received with the local policy

³part of Extendible Next Generation Routing Information Toolkit (ENGRIT) project and kicked off on 2014 [2]

References

Ralph Koning, Miroslav Zivkovic, Stavros Konstantaras, Paola Grosso, Cees de Laat (UvA) and Farabi Iqbal (TUDelft) (2015) Architecture for Exchanging Topology Information in Multi-domain Environments

Per Gregers Bilse and Benno Overeinder, IEPG Meeting, IETF 89, London, UK, March 2014 Presentation: "A programmatic approach to generating router configurations" http://www.iepg.org/2014-03-02-ietf89/rdl-IEPG-89.pdf

4 AR & 4 E & 4 E &

Thank you for your attention! :) Questions?

3