
Application aware access and distribution of digital
objects using Named Data Networking (NDN)

July 4, 2017

1

Rahaf Mousa

Supervisor: dr.Zhiming Zhao

University of Amsterdam

System and Network
Engineering

Motivation

● In big data infrastructures, research data objects often have a persistent
identifier (PID) .

● A typical PID is the Digital Object Identifier (DOI).
(e.g.,DOI:10.1594/PANGAEA.842191)

● A data centric application (such as a scientific workflow) often requires
different data objects from multiple locations, e.g., when reproducing the
results of a scientific paper.

● Optimize the access of multiple data objects is crucial for the system
performance.

● Information Centric Networking (ICN) provides a suitable solution for big
data infrastructure.

● One of ICN approaches is Named Data Networking (NDN).

2

Named Data Networking (NDN): a typical ICN

● ICN replaces the client-server model with a new publish-subscribe model

● How would you get a stapler?

● From delivering the packet to a given destination address to fetching data

identified by a given name.

● Ask for the "stapler", not its location(1).

3(1)http://www.networkworld.com/article/3060243/internet/demystifying-the-information-centric-network.html

Research Questions

● How can we facilitate fetching of DOI identified objects via NDN network

4

● How can we optimize NDN network performance using application side

knowledge, such as objects’ sizes?

Related Work

● A Persistent Identifier infrastructure stack for NDN, by Schmitt, Majchrzak and

Bingert.

● Evaluating Caching Mechanisms In Future Internet Architectures, by Yuxin

Jing. They concluded that LFU (Least Frequently Used) is the most effective

cache replacement strategy.

● Interest Set Mechanism to Improve the Transport of Named Data Networking,

by Xiaoke Jiang and Jun Bi. Proposed Interest Set packet for names that share

the same prefix.

5

How NDN works? (1/2)

Naming:

● Hierarchically structured names, e.g., /uva/os3/rp2/presentation/123
● Opaque to the network (only separators are recognized).

Types of packets:

● Two types of packets are exchanged; Interest packets and Data packets

NDN router data structure:

● Pending Interest Table (PIT), Forwarding Information Base (FIB), and Content
Store (CS)

6

How NDN works? (2/2)

7

(1) Send interest packet with the name
/uva/os3/rp2/presentations/123

(2) Object is found is CS (Content Store)
Return the object in a data packet

(6) Object is found is CS
Return the object in a data packet

(1) Send interest packet with the name
/uva/os3/rp2/presentations/123

(5) Send interest packet with the name
/uva/os3/rp2/presentations/123

(2) Object is not found is CS

(3) Add interest to PIT

(4) Lookup prefix in FIB

(7) Cache object in CS
Return the object in a data packet

Caching in NDN (1/2)

8

Leave Copy Everywhere

Decision Strategy (DS)

Object found in
CS

Leave Copy Down Object found in
CS

Caching in NDN (2/2)

Replacement Strategy (RS):

● First In First Out (FIFO)
● Least Recently Used (LRU)
● Least Frequently Used (LFU)
● Random Replacement (RR)

9

I AM FULL

Fetching DOI objects to NDN network

10

Input

DOI
YesDerive NDN

name and feed
to NDN network

NDN

Object
found?End

Request DOI
system

Yes

No

Object
found?Error

Give NDN name
and feed to
NDN network

YesNo

No

Feed to NDN
network

Error
No

Yes

Object
found? End

Yes

Reverse NDN
name to DOI

From
DOI?

Yes

No

Error
No

Figure 1: Flowchart of the proposed Approach

Q1: Software prototype and results

● Proof of concept with the help of PANGAEA download service (scientific data).
● It allows choosing columns and tests locations.

11

Figure 2: The written python script functionality

Q2: Application aware NDN optimization

The second research question:

12

● How can we optimize NDN network performance using application side

knowledge, such as objects’ sizes?

The proposed approach:

- Assuming that the sizes of objects are known to the application (via metadata
catalogues).

- The application aggregates a list of wanted objects (window size).
- The application orders the objects in ascending or descending order.

Q2: Ordering the requests using application info.
The experiment setup:

13

Variables in application side:
● Window size 5-50 objects

per list
● Ordering method:

Random, Ascending and
Descending

● Set of object requested:
30 objects with sizes
between 50KB-10GB

Variables in router side:
● Cache size 10-100 GB
● Cache Replacement

strategies: FIFO, LRU,
LFU and RR

Experiments

 Simulation software:

● Consumer and producer python scripts which are a part of ndn-cxx library.
● We edited both files for ordering in consumer side and caching in producer

side.

The experiments in numbers:

● In each experiment one static value of each variable is used.
● In each experiment 1000 interest packets are sent.
● Each experiment was repeated 10 times.
● The experiments output was the cache hit ratio (object is found in cache).

14

Results (1/3)

15Figure 3: Window vs. cache hit ratio with random object ordering

Results (2/3)

16
 Figure 4: Bar chart of the different ordering methods

with the available cache replacement strategies

Window size = 25 and cache size = 15GB

Results (3/3)

17Figure 5: Cache hit ratio vs. window size

Discussion

● What can we do when application does not provide information of object

size?

● Proposed solution: application ordering mechanisms in the router side.

● It is part of our future work.

18

Conclusion

First Question:

● It’s possible to integrate DOI objects with NDN network.

Second Question:

● Implementing ordering based on object size on the application level enhances
the network performance.

● LRU cache replacement strategy gives the highest cache hit ratios with the
proposed ascending ordering by size method.

● For FIFO, LRU and RR cache replacement strategies gave close cache hit ratio
values for both ascending and descending ordering methods.

19

Future Work

● Enhancing the proposed approach for fetching objects identified with a DOI to

NDN network to cover the different naming systems available.

● Implementing the aforementioned approach in a real NDN network setup.

● Implementing the ordering methods in the NDN content router and testing it.

20

Questions?

21

