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Motivation

● In big data infrastructures, research data objects often have a persistent 
identifier (PID) .

● A typical PID is the Digital Object Identifier (DOI). 
(e.g.,DOI:10.1594/PANGAEA.842191)

● A data centric application (such as a scientific workflow) often requires 
different data objects from multiple locations, e.g., when reproducing the 
results of a scientific paper.

● Optimize the access of multiple data objects is crucial for the system 
performance.

● Information Centric Networking (ICN)  provides a suitable solution for big 
data infrastructure.

● One of ICN approaches is Named Data Networking (NDN).

2



Named Data Networking (NDN): a typical ICN

● ICN replaces the client-server model with a new publish-subscribe model

● How would you get a stapler?

● From delivering the packet to a given destination address to fetching data 

identified by a given name.

● Ask for the "stapler", not its location(1).

3(1)http://www.networkworld.com/article/3060243/internet/demystifying-the-information-centric-network.html 



Research Questions

● How can we facilitate fetching of DOI identified objects via NDN network
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● How can we optimize NDN network performance using application side 

knowledge, such as objects’ sizes? 



Related Work

● A Persistent Identifier infrastructure stack for NDN, by Schmitt, Majchrzak and 

Bingert.

● Evaluating Caching Mechanisms In Future Internet Architectures, by Yuxin 

Jing. They concluded that LFU (Least Frequently Used) is the most effective 

cache replacement strategy.

● Interest Set Mechanism to Improve the Transport of Named Data Networking, 

by Xiaoke Jiang and Jun Bi. Proposed Interest Set packet for names that share 

the same prefix.
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How NDN works? (1/2)

Naming:

● Hierarchically structured names, e.g., /uva/os3/rp2/presentation/123
● Opaque to the network (only separators are recognized).

Types of packets:

● Two types of packets are exchanged; Interest packets and Data packets

NDN router data structure:

● Pending Interest Table (PIT),  Forwarding Information Base (FIB), and  Content 
Store (CS)
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How NDN works? (2/2)
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(1) Send interest packet with the name 
/uva/os3/rp2/presentations/123

(2) Object is found is CS (Content Store)
Return the object in a data packet

(6) Object is found is CS
Return the object in a data packet

(1) Send interest packet with the name 
/uva/os3/rp2/presentations/123

(5) Send interest packet with the name 
/uva/os3/rp2/presentations/123

(2) Object is not found is CS

(3) Add interest to PIT

(4) Lookup prefix in FIB

(7) Cache object in CS
Return the object in a data packet



Caching in NDN (1/2)
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Caching in NDN (2/2)

Replacement Strategy (RS):

● First In First Out (FIFO)
● Least Recently Used (LRU)
● Least Frequently Used (LFU)
● Random Replacement (RR)
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Fetching DOI objects to NDN network
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Figure 1: Flowchart of the proposed Approach



Q1: Software prototype and results

● Proof of concept with the help of PANGAEA download service (scientific data).
● It allows choosing columns and tests locations. 
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Figure 2: The written python script functionality



Q2: Application aware NDN optimization

The second research question:
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● How can we optimize NDN network performance using application side 

knowledge, such as objects’ sizes? 

The proposed approach:

- Assuming that the sizes of objects are known to the application (via metadata 
catalogues). 

- The application aggregates a list of wanted objects (window size).
- The application orders the objects in ascending or descending order.



Q2: Ordering the requests using application info.
The experiment setup:
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Variables in application side:
● Window size 5-50 objects 

per list
● Ordering method: 

Random, Ascending and 
Descending

● Set of object requested: 
30 objects with sizes 
between 50KB-10GB

Variables in router side:
● Cache size 10-100 GB
● Cache Replacement 

strategies: FIFO, LRU, 
LFU and RR



Experiments 

 Simulation software:

● Consumer and producer python scripts which are a part of ndn-cxx library.
● We edited both files for ordering in consumer side and caching in producer 

side.

The experiments in numbers:

● In each experiment one static value of each variable is used. 
● In each experiment 1000 interest packets are sent.
● Each experiment was repeated 10 times. 
● The experiments output was the cache hit ratio (object is found in cache).
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Results (1/3)

15Figure 3: Window vs. cache hit ratio with random object ordering



Results (2/3)
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    Figure 4:  Bar chart of the different ordering methods 

with the available cache replacement strategies

Window size = 25  and cache size = 15GB



Results (3/3)

17Figure 5: Cache hit ratio vs. window size



Discussion

● What can we do when application does not provide information of object 

size?

● Proposed solution:  application ordering mechanisms in the router side. 

● It is part of our future work. 
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Conclusion

First Question:

● It’s possible to integrate DOI objects with NDN network.

Second Question:

● Implementing ordering based on object size on the application level enhances 
the network performance.

●  LRU cache replacement strategy gives the highest cache hit ratios with the 
proposed ascending ordering by size method.

●  For FIFO, LRU and RR cache replacement strategies gave close cache hit ratio 
values for both ascending and descending ordering methods.
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Future Work

● Enhancing the proposed approach for fetching objects identified with a DOI to 

NDN network to cover the different naming systems available.

● Implementing the aforementioned approach in a real NDN network setup.

● Implementing the ordering methods in the NDN content router and testing it.
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Questions? 
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