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Abstract

Freenet is a censorship resilient peer-to-peer (P2P)
file sharing network. Due to the sensitive nature of
the content users might attempt to share it is impor-
tant that an adversary cannot find out who partici-
pates in the network or what was shared. A detec-
tion method for the IP addresses of Freenet darknet
nodes is introduced based on the characteristic IP
packet lengths of the application. This research con-
firms the feasibility of detecting Freenet nodes and
mapping a Freenet darknet. In addition, some con-
siderations are given as future work to make it more
difficult to do traffic analysis on Freenet.

1 Introduction

Freenet is an anonymous P2P distributed informa-
tion storage and retrieval system [Clarke et al., 2001].
Content is uploaded to a node which then gets mir-
rored over the network. The censorship resilient fea-
ture of Freenet is found in the fact that the original
uploading node can disconnect from the network, but
users will still be able to access content the node had
uploaded as it is mirrored on various other nodes.
This decentralised storage makes it difficult for con-
tent to be removed and prevents a single point of
failure from crippling the network.

A user will send a request for a file to a node which
will then forward the query through the network un-
til the file has been found or the maximum depth
has been reached. If a file is found, it is sent to the
requesting node, and each intermediate node in the
path also saves the file. Thus, the nodes do not know
if the request originated from the previous node, or
some other node in the network. When no file is
found a message will be returned that the query has

failed. Various applications have been created for
Freenet: websites (so-called Freesites), forums, in-
stant messaging, e-mail and microblogs.

A node can connect to peers through both the open-
net and the darknet systems. The former involves
a centralised approach where node identities are an-
nounced through so-called seed nodes. In the latter
decentralised approach a node will only connect to a
peer if both sides trust the connection, also known
as a friend-to-friend (F2F) network. The darknet
should have a higher level of privacy as not all nodes
are publicly listed, and has been the preferred method
since Freenet version 0.7 [Biddle et al., 2002].

The nature of opennet leaves the network vulnerable
to mapping techniques [Roos et al., 2014]. This pa-
per will look into the possibility of mapping the nodes
participating in a darknet. As with any technology or
research, applications can vary from benign to malig-
nant. In the case a mapping could be made on dark-
net it would indicate a weakness of Freenet which can
be exploited. This could be used by parties to dis-
cover the Internet Protocol (IP) addresses of nodes
and their operators, which would violate the privacy
of the users. A more benign application would be to
improve the security of the Freenet environment by
fixing any possible problems allowing the mapping to
be made. The latter is important to secure the pri-
vacy of the users participating in the network.

A background is given in Section 3, split into two
parts: an explanation on the workings of Freenet in
Section 3.1, and Section 3.2 gives an overview of the
related work. In Section 4 the experimental setup is
explained, as well as the experiments which were done
in order to answer the research question, of which
the results will be shown in Section 5. A discussion
is given in Section 6 and a conclusion in Section 7.
Section 8 contains some ideas for future work.
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2 Research question

The following research question has been formu-
lated.

• Are Freenet opennet mapping techniques appli-
cable to a Freenet darknet?

• Is it possible to discover the IP addresses of
nodes participating in a Freenet darknet?

3 Background

An overview of the workings of Freenet is given in
Section 3.1 as well as some of the terminology used
in this paper. Related work on Freenet mapping is
discussed in Section 3.2.

3.1 Freenet

Freenet was first proposed in a white paper by Clarke
[1999], and further extended by Clarke et al. [2001].
An improved version was presented in Biddle et al.
[2002], fixing a number of security related issues, in-
creasing routing performance, and pushing darknet
as the more secure alternative to opennet. The afore-
mentioned papers have been used as a basis for the
description of Freenet in this section, as well as the
Freenet wiki [Freenet Project, 2017e] and the Freenet
website [Freenet Project, 2017d].

Freenet is an overlay network with the Internet as the
underlay network, see Figure 2 for a graphical repre-
sentation. Freenet was designed to be transport pro-
tocol agnostic: the original Freenet REference Dae-
mon (FRED) used the Transmission Control Proto-
col (TCP), but since version 0.7 it has been using
the User Datagram Protocol (UDP). The operator of
a Freenet node is often its only user. It would create
significant security risks if one uses a remote node op-
erated by a third party. With privacy and security in
mind the Freenet project discourages this behaviour
and encourages running a local node in order to con-
nect to the network. Each node has a unique identity
with which it identifies itself to its neighbours. It is
exchanged with other nodes in order to peer and set
up a secure channel. Part of the identity are the

UDP port used for connecting and the public key of
the node. Nodes send messages to each other con-
taining queries, data, or in the case of probes special
functionality as part of the Freenet Protocol (FNP).
A message has a Unique Identifier (UID) which al-
lows nodes in the network to apply loop-prevention
by checking if they have seen a message with a specific
UID before. Each node has a location l, with l being
a number in the range [0, 1). The location is a cir-
cular relation, meaning the distance between l = 0.1
and l = 0.9 is 0.2. When a node joins the network,
its location1 is set to a random value. Note that the
location of a node is unrelated to the location of its
neighbours as can be seen in Figure 3 which depicts
the same network as Figure 2 but with the nodes po-
sitioned on a circle based on their location. When
considering the network as a Distributed Hash Table
(DHT), a Freenet node specialises in storing files that
have a key close to its location. The location is used
in the routing of queries through the network, as will
be explained later in this section.

When a user initialises his node a public-private key
pair is created, these are then used to sign and verify
published files. A number of different keys can be
created for a file. The Content Hash Key (CHK)
which is the hash of the file, is used for integrity
checking. The Keyword Signing Key (KSK) is a
hash created from a human readable string which al-
lows for keyword searches. For Freesites that are up-
dated frequently a Signed Subspace Key (SSK) can
be used which contains the signature of the author
allowing users to validate that an updated version
was indeed made by the same author. The usage
of SSKs has been superseded by the Updateable Sub-
space Keys (USKs), which are wrappers for the for-
mer hiding the search for the most up-to-date version
of a Freesite. The public keys can be obtained out-of-
band or from Freenet sites that provide indexed lists
of said keys.

The network topology in Freenet is created in differ-
ent ways for opennet and darknet, as can be seen in
Figure 1. In opennet all nodes have a special connec-

1From here on when “location” is used in this paper this
property of the node is meant.
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Figure 1: The three possible topologies within Freenet. Solid lines indicate darknet connections, dotted lines
are connections to the seed node and dashed lines are connections assigned by a seed node.

tion to a seed node, which helps them connect to a
neighbour with a relevant location by forwarding join
requests based on the location of the node. Figure 1a
shows what a Freenet opennet looks like. Neighbours
in opennet can also be removed if their performance is
insufficient, this should structure the network in such
a way to improve routing. The alternative to opennet
is darknet, in which each node has a set of trusted
neighbours with which it has made an agreement to
peer, an example of this can be seen in Figure 1b.
The neighbours have to be added manually by the
user. Darknet nodes swap their location with other
nodes in order to uniformly spread the key space cov-
ered by the network. A hybrid form is also possible,
where a darknet is connected to the opennet through
a peer which participates in both. Figure 1c displays
this hybrid topology. In this case darknet nodes A
and G can access information on the opennet node C
(and vice versa) through node B which participates
in both opennet and the darknet. This way the open-
net can act as a connecting component for multiple
darknets.

The routing in Freenet is based on the small-world
model in which most individuals “are linked by short
chains of acquaintances” [Kleinberg, 2000b]. Since a
darknet is a subgraph of a social relationship graph
it should concur with this model (users need to
know one another out-of-band before they can con-
nect their nodes). Efficient routing can still be done
by individual nodes acting strictly on local informa-
tion [Kleinberg, 2000a]. The retrieval and insertion
of files is based on a depth-first search. When a node
is able to fulfil a request it will do so, otherwise it will
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Figure 2: Freenet depicted as an overlay network, the
label of the nodes indicate their location.

forward the message to the neighbour whose location
is closest to the requested key. If a node is unable to
forward the request, a response will be sent, allowing
the previous node to requests its next neighbour. Be-
fore a user can insert a file into the network, it will
first send a request to its node to see if the hash of
that file is already present in the network. If a neg-
ative response is returned, the file is inserted along
the same path, being cached by the nodes along the
way. Files are split up into blocks of 32 KiB each, al-
lowing for multiple nodes to store different parts of a
file. When the storage capacity of a node is reached,
random files will be deleted to make room for new
ones.
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Figure 3: A Freenet topology with the nodes placed
in a circle based on their location.

3.2 Related work

Few studies have been solely concentrated on the
mapping of Freenet, with it often being a side exper-
iment instead of the main subject. An overview of
related work is given in this section, in chronological
order.

An opennet measurement was done by Cramer et al.
[2004], using a monitoring node they found 19,235
distinct IP addresses during a period of 18 days. In
addition, the length of the TCP sessions2 were mea-
sured which had a mean of 34.66 seconds. Of all
sessions 99.7% lasted less than 30 minutes and only
0.11% stayed available for more than one hour.

Evans et al. [2007] describes an attack based on the
periodical swapping of the location of peers in a dark-
net. Since the location of a node is separate from the
connections to its peers, and swapping occurs natu-
rally as part of the FNP, such an attack is difficult

2The version of the FRED used in the experiments of
Cramer et al. still used TCP. The exact version number was
not mentioned in the paper.

to detect by other nodes. Natural join-leave churn
also provides a similar effect as the attack does. This
attack has shown major imperfections in Freenet3,
but since the locations and connections are sepa-
rate it may be difficult to be used for mapping pur-
poses.

Blocking of various P2P applications using Linux
iptables was discussed by Othman and Kermanian
[2008]. Freenet was blocked by dropping all traf-
fic for specific TCP ports which were used by the
FRED. This method cannot be applied to later ver-
sions of Freenet since random UDP ports are chosen
for the P2P traffic. A similar tactic is used in the
commercial Intrusion Detection System (IDS) of So-
larwinds [2017] where the TCP ports used by the
FRED FProxy and the external Freenet Client Pro-
tocol (FCP) controller are used to flag traffic as mali-
cious. Usage of these TCP ports does not imply that
a Freenet node is actually running since these ports
are not used for the P2P traffic. In addition, one
could change the default ports used by P2P programs
to evade this type of rule based blocking.

Vasserman et al. [2009] introduce the term of an
membership-concealing overlay network (MCON),
which concurs with the censorship resilient design
principles of Freenet. They discuss resistance to
member identification attacks where a MCON out-
sider tries to retrieve the identities of the members
participating in the MCON. Two methods are ex-
plained: harvesting, where an adversary tries to find
the identity of any number of nodes, and targeting
where the attacker tries to match a known identity
to a specific node. Multiple monitoring nodes were
used to do passive and active harvesting in opennet
by logging all requests on said nodes and the iden-
tities4 of neighbouring nodes. During a period of 80
hours, at any given time between 2,000 and 3,000
running opennet nodes were online and 11,100 unique
identities were found5. They also concluded that it is

3At the time of writing several solutions have been pro-
posed, see http://freenet.mantishub.io/view.php?id=3919

for details.
4Vasserman et al. uses the term pseudonym for what in

Freenet is called the identity of a node.
5The research by Vasserman et al. [2009] was done on
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impossible to know how many existing Freenet nodes
there were in the network since nodes could have been
offline during the experiment. Vasserman et al. chose
to log identities instead of IP addresses as this should
give a better indication of the amount of users in a
network, since a node can rejoin the network with
a different IP address while keeping the same iden-
tity.

A routing table insertion attack on opennet was done
by Baumeister et al. [2012]. Based on the assumption
that the topology is known in advance, it was shown
that it is possible for a malicious node to connect to
a random node in the network. Their method for
obtaining the topology was based on the neighbour-
of-neighbour sharing feature of nodes and using the
experimental PROBE message6. A set of attacking
nodes connects to regular nodes in the network and
starts inserting and requesting files on paths that
contain the target node. Opennet nodes will drop
neighbours if they do not successfully answer a spe-
cific number of queries, this feature was used to ma-
nipulate the neighbour set of the target node. The
attacker would make sure that his requests along the
path containing the target node would all have a high
success chance by requesting known files. The suc-
cessful queries allow for less successful peers to be
dropped in favour of a malicious node. In addition,
they have demonstrated a traceback attack based on
the FNPRejectLoop message. It allows for the dis-
covery of the path a message with a specific UID has
taken. This work was further extended by Tian et al.
[2015].

Roos et al. [2014] applied a number of passive and ac-
tive mapping techniques to Freenet in both the open-
net and a hybrid network7. By doing passive mea-
surements using a number of monitoring nodes they
attempted to find out if the distribution of nodes in
opennet follows the small-world model by Kleinberg
[2000b]. Their darknet experiment was limited to the

Freenet 0.7 build #1204 r25665 (2-17-2009).
6It is unclear which command it exactly corresponds with

in the current build of the FRED.
7Roos et al. [2014] used a number of different versions of

Freenet during their research: Freenet 0.7 build #1407, #1410,
#1442 and #1457.

hybrid model where the monitoring node was con-
nected to both a darknet and the opennet. Network
size and user origin was mapped by logging the IP ad-
dresses of opennet neighbours of a monitoring mode
and obtaining the geolocation of said nodes based on
their IP address. The IP addresses of the seed nodes
can be logged as well, this combined with the ad-
dresses of regular nodes allows for a blacklist to be
made to block the Freenet opennet. The popularity
of a key k was calculated by dividing the number of
requests for k by the total number of requests. An
active measurement was done using probes that are
part of the FNP. Two probes: FNPRoutedPing and
FNPRHProbeRequest were used to get information
on the availability of nodes. The former probe has
been disabled by default in September 2012 due to
privacy concerns. In the opennet monitoring experi-
ments they found close to 60,000 unique nodes during
a period of 14 days. In addition to their experiments,
Roos et al. criticised the Freenet white papers for
basing their conclusions on simulated network topolo-
gies. They claim these are unrealistic as they do not
take into account uniform join-leave churn, consider
all nodes to have the same storage capacity and con-
sider all content to be equally popular. The research
done by Roos et al. employed either opennet and
hybrid networks, but no work was done on a pure
darknet.

A traceback attack was developed by Tian et al.
[2015] for opennet. The location of a suspect node is
determined using the routing table insertion attack
described in Baumeister et al. [2012]. By connecting
to a suspect node with an attack node the former
can be queried to check if it has seen a message with
a specific UID. With 24% to 43% accuracy a node
can be traced back which had send a specific content
request message. This attack could also be applied
to darknet, but the higher level of trust needed for
connecting to the suspect node might make it more
difficult.

4 Method

The experimental setup is outlined in Section 4.1.
Section 4.2 describes the method used to detect
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Freenet traffic based on its characteristics. The de-
tails of the implementation can be found in Sec-
tion 4.3, and the data collection is explained in Sec-
tion 4.4.

4.1 Experimental setup

The FRED version 0.7 build #1477 (2017-03-09)8

was used for the experiments. A Xen hypervisor
was set up with Ubuntu 16.04 LTS as host Operating
System (OS). The nodes were installed on separate
Virtual Machines (VMs) running Ubuntu 16.04 LTS
with sufficient resources to run a Freenet node. The
specifications of the physical machine on which the
experiments were done is given in Table 1 and the
specifications of the VMs is given in Table 2. The
nodes were assigned IPv4 addresses in the same sub-
net. The VMs were connected to each other via a
bridge, which was also used to capture the traffic
on. The assumption is that the attacker is able to
tap the network traffic of the machines he suspects
might be running Freenet nodes, like possible in a
company network or at an Internet Service Provider
(ISP). During the experiments the VMs had no con-
nection to the Internet.

The Freenet nodes were set up with both the phys-
ical threat and the network threat level to “HIGH”.
The friends9 were added with trust set to “LOW”,
and as secret contacts, meaning no one in the net-
work except the two nodes know about their peer-
ing. In higher trust levels the nodes will share in-
formation about their neighbours to increase rout-
ing performance. These settings should ensure that
the nodes run at the highest possible level of security
while having minimum trust in their peers. The com-
bination of settings should result in as little informa-
tion leakage as possible, making detection as difficult
as possible. The storage capacity was set to 512 MiB.
No bandwidth limitation was set, while the download
speed was set to 384 KiB/s, and the upload speed to
16.0 KiB/s. All other settings were kept at their de-
fault value as set by the installation wizard in the

8Commit d38a867b12ab2e245b33f4a3ca986ccdc13297d9 of
https://github.com/freenet/fred.git.

9Peers are called “friends” in Freenet.
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Figure 4: Topology of the darknet training setup.

Table 1: Server specification.

Hypervisor Xen version 4.6.5

Host OS Ubuntu 16.04 LTS

Kernel GNU/Linux 4.4.0-79-generic x86 64

CPU IntelR© XeonR© CPU E3-1240L v5

RAM 16GiB @ 2133MHz

FProxy. The FProxy is the Graphical User Interface
(GUI) which allows the operator to change settings
of his node. The topology of the darknet used in the
experiments can be seen in Figure 4. Each node has
a degree of at least three, which concurs with the in-
structions on the FProxy installation wizard to have
at least three friends online at any given time.

4.2 Detection

The detection of Freenet nodes is done in two steps.
First, the traffic is matched to the characteristics
of FRED traffic as explained in Section 4.2.1. Sec-
ond, the traffic is compared to a baseline by testing
it on an Support Vector Machine (SVM) that has
been trained on Freenet traffic as described in Sec-
tion 4.2.2.

Table 2: VM specification.

OS Ubuntu 16.04 LTS

Kernel GNU/Linux 4.4.0-79-generic x86 64

vCPUs 2

Memory 1024 MB

Swap 1024 MB

Storage 10 GB

6
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Table 3: The composition of a typical IPv4 packet as
sent by the FRED. The UDP payload consists of the
Hash-based Message Authentication Code (HMAC),
one or more fragments, and padding.

Bytes Description
20 IPv4 header
8 UDP header
10 HMAC
10-1222 Fragments

Bytes Description
1-9 Fragment header
1 > Fragment data

0-127 Padding

4.2.1 Step #1: Traffic characteristics

The following section explains the characteristics of
Freenet traffic. The findings have been based on a
review of the FRED source code [Freenet Project,
2017c], and instructions in the FRED FProxy.

A number of values are hard coded into the FRED
to calculate the maximum and minimum IP packet
length. When the term IP packet length is used
in this paper, the length of the whole IP packet
is meant, including the IP header. The Maximum
Transmission Unit (MTU) is set to 1280 bytes, and
the IPv4+UDP header length is set to 28 bytes while
the IPv6+UDP header is set to 48 bytes. The FRED
conservatively chooses the latter for the calculation
of the maximum UDP payload, when it was unable
to detect which IP version is used. As it was unable
to do so in the experimental setup, this leaves a max-
imum UDP payload of 1232 bytes for both IPv4 and
IPv6. See Appendix A for an explanation featuring
examples from the FRED source code. An HMAC
with a length of 10 bytes is added to the UDP pay-
load (see Appendix B for details), leaving 1222 bytes
for the actual messages. The UDP payload is padded
to the nearest multiple of 64 bytes with an extra ran-
dom 0 to 64 bytes [Freenet Project, 2006], and is en-
crypted with Advanced Encryption Standard (AES)
in Periodic Cipher Feed Back (PCFB) mode.

The nodes send messages to their peers as part of

the FNP. The maximum message size is 4096 bytes
to prevent big messages from starving out other mes-
sages resulting in timeouts, which is even more of a
problem when retransmits happen (see Appendix C
for details). A message can have submessages which
get parsed simultaneously and each have their own
separate maximum message size.

The UDP payload contains one or more fragments.
A fragment can correspond with a complete single
message or a part of it in the case of large messages.
Each fragment has a minimum size of 1 byte and a
maximum header size of 9 bytes. The minimum frag-
ment size is 10 bytes, see Appendix D for details.
Thus, the minimum unpadded UDP payload is 20
bytes: the HMAC plus a single minimum fragment.
The composition of a typical packet as sent by the
FRED in the experimental setup can be seen in Ta-
ble 3.

The FRED will use the same UDP port to receive
messages from all its peers. The port is chosen at
random during the installation, but stays the same
during the life time of a node. It should be common
for a node to have at least three different source ad-
dresses that send packets to the same UDP port as
the FProxy installation wizard recommends a user to
get at least this amount of active peers.

The findings can be formulated in a set of rules used
to determine if a machine is transmitting traffic that
is characteristic for the FRED. For this experiment
only IPv4 will be considered and traffic with the de-
fault padding enabled.

1. Port number between 1024 and 65535.
2. Maximum IP packet length of 1280 bytes.
3. Minimum IP packet length of 92 bytes.
4. Maximum UDP payload of 1232 bytes.
5. Minimum UDP payload of 64 bytes.
6. An IP address receiving packets on the same

UDP port from at least three different IP ad-
dresses.

7. A socket has to have sent and received at least
one packet.

Some initial packet captures were done to verify the
rules. Figure 5a displays the average normalised
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(a) Nodes being queried.
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(b) Idle.

Figure 5: Average of the normalised IP packet length frequencies of the Freenet nodes in the test network
for three hours. Note that the y-axis has a logarithmic scale.

packet length frequencies of the Freenet nodes in the
test network while processing queries, and Figure 5b
shows the network being idle (no inserts or requests
by a user). Note that the maximum packet length
found in the packet captures is 1260 bytes, not 1280
bytes, due to the 20 bytes overhead caused by the
FRED not recognising the correct IP version that
was used.

When a packet is found from a socket (meaning
the four tuple consisting of: IP source address, IP
destination address, UDP source port, UDP desti-
nation port) that does not comply with the above
rules, the socket is flagged as not suspicious. All re-
maining sockets are marked as suspicious and will
be under further investigation in step #2 in Sec-
tion 4.2.2.

4.2.2 Step #2: Comparison to baseline

The steps performed in Section 4.2.1 delivered a list
of suspicious sockets as well as a list of packets sent
to those sockets. The traffic must then be validated
against known Freenet traffic. This should be done to

rule out that these sockets are not other applications
which just happen to have stayed within the bounds
of Freenet traffic. Since Freenet is a P2P file sharing
network, its traffic might be similar to other P2P
networks such as BitTorrent [Cohen, 2008].

A baseline of packet length frequencies was estab-
lished per socket by doing a packet capture on the
bridge connecting the VMs. Each socket thus is a
data point, with each node having a number of data
points equal to its degree. The packet length fre-
quencies were normalised by dividing them by the
total amount of packets that were sent via that spe-
cific socket. Every 10 minutes an insert was done
on each node with between 1 and 10 blocks of 32
KiB of random data. The inserted file was then re-
quested from a random other node. Next, a ran-
dom non-existing file was requested from each node.
These actions should correspond with the basic oper-
ations that are performed in Freenet. The topology
remained static for the duration of the experiment,
e.g. no nodes left or joined the network.

A traffic capture of 5.5 hours was done on the test net-
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work to establish a baseline. The normalised packet
length frequency distribution of it was used to train
an one-class SVM. An SVM is a supervised machine
learning algorithm that is used for classification and
regression problems. By applying kernel functions
it allows for cheap computations of data in high-
dimensional space. Please see Smola and Schölkopf
[2004] for a concise explanation of the workings of an
SVM.

The result of step #1 and step #2 should be a list
of sockets which should have a high probability of
being used by a Freenet node. This list can then
be used to create a mapping of the network by cre-
ating a graph where each node corresponds with an
IP source address or IP destination address in the
list, and edges are drawn between the IP source and
destination addresses of sockets. Note that it could
be that the darknet found is a subgraph of a larger
darknet which would have nodes with IP addresses
outside of the captured traffic.

4.3 Implementation

Tcpdump (version 4.9.0) [Jacobson et al., 2003] was
used to capture the traffic on the bridge. The
packet captures were parsed with Tshark (version
2.2.6) [Combs, 2012] to extract only the UDP packets,
the sockets, and the packet lengths. A Python script
was written to apply the rules from Section 4.2.1
to the parsed captures. For the SVM the imple-
mentation of the scikit-learn Python package was
used [Buitinck et al., 2013]. The Radial Basis Func-
tion (RBF) kernel was used with γ = 1

1280−92 and
ν = 0.5, these were the default values as set by the
scikit-learn package for this classifier. Changing them
did not lead to an overall increase in accuracy.

4.4 Data collection

In order to test the classifier system with traffic gen-
erated from different sources and networks a number
of sets were gathered. The test darknet was used to
generate a set with the traffic generation mentioned
in Section 4.2.2 and a set with the nodes idling. An
overview of the data sets can be seen in Table 4.

Set #1 was used to train the SVM. Set #2 and #3
were created at different times to have separate test
cases for the training model. These captures contain
all the UDP traffic as captured from the bridge con-
necting the VMs. In addition, a number of packet
captures were done on applications that used P2P
and UDP to see if any false positives would arise.
Capture set #4, #5 and #6 were done on a desk-
top computer running Ubuntu 16.04 LTS and only
contain traffic from the specified UDP ports the pro-
grams used.

5 Results

Table 5 shows the percentage of true positives and
the number of false positives found after step #1. In
the second step 4-fold cross-validation was done, Ta-
ble 6 shows the mean sample score and the standard
deviation. When no suspicious sockets were found in
step #1, there would be no data to test the SVM on.
In this case the corresponding cell for step #2 has
been filled with black.

6 Discussion

No false positives were found in the data sets of the
other P2P applications. In the case of BitTorrent a
considerable number of IP packets were smaller than
the minimum packet size of 92 bytes. Most IP packets
lengths had the MTU size of the interface, which was
higher than the maximum packet length allowed by
Freenet. In the case of OpenArena and traceroute
there were many IP packets with a length smaller
than 92 bytes. The filtering step was so effective that
it was difficult to find any applications that could pass
it. The list of P2P applications tested is by far not
exhaustive and it could be that there are programs
which could pass the filtering step10.

The accuracy on the idle data set was not compara-
ble to the data set with traffic. The lower frequency
at 1260 bytes caused by the lack of user queries pre-
vented the SVM from classifying the traffic correctly.
As part of the FNP, files would be reinserted into the

10However, the author was not able to find any.
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Table 4: Overview of the data sets.

Set Freenet sockets Time File size Description
1 28 5.5 hours 433 MB Test network with traffic generation, with the first 30

minutes idling.
2 28 3 hours 247 MB Test network with traffic generation.
3 28 3 hours 55 MB Test network idling.
4 0 5 minutes 461 MB Traffic from the BitTorrent client Transmission

(version 2.84) while using the following tor-
rent file: http://releases.ubuntu.com/17.04/

ubuntu-17.04-desktop-amd64.iso.torrent.
5 0 5 minutes 1 MB OpenArena client (version 0.8.8-15/Ubuntu), while

refreshing the Internet server list two times and then
participating in an online game. The P2P protocol
used in the game is based on the Quake 3 protocol.

6 0 1 minute 39 KB Traceroute (version 2.0.21) while running on port
2000. Four traceroutes were done for each of the fol-
lowing domains: os3.nl, google.com, and uva.nl.

Table 5: The number of true positives and false pos-
itives in step #1.

Set True positives False positives
1 28 0
2 28 0
3 28 0
4 0 0
5 0 0
6 0 0

Table 6: The mean score and standard deviation of
the 4-fold cross-validation done in step #2.

Set x̄ s
1 75% 12%
2 43% 17%
3 14% 10%
4
5
6
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Figure 6: Average of the normalised packet length
frequencies of the Freenet nodes in the test network
for three hours while idle. Only the first 130 packet
lengths are shown. Note that the y-axis has a loga-
rithmic scale.
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network to prevent them from being lost, even while
the network was idle. This number of inserts is still
considerably less than in the data set with explicit
traffic generation.

Figure 6 shows Figure 5b with the x-axis adjusted to
display the drop in frequency of the packet lengths
between 124 and 156 bytes. The phenomenon occurs
in both the idle network as well as in the network
with requests and inserts. The reason for the small
amount of packets with these specific lengths is un-
clear.

In the case of testing on the training set an accu-
racy was achieved of 75%. Since the SVM was fitted
on the same data, it would be expected that an ac-
curacy approaching 100% would have been achieved
here. It is unclear why this happened, but it might
have to do with the small data set. The low accu-
racies and high standard deviations for set #2 and
#3 could be caused by the one-class SVM not being
suited for this type of classification problem. Other
machine learning algorithms were also tested: Näıve
Bayes and Random Forest, but these did not score
as high as the SVM. The usage of a small network
had lead to very few data points which might have
also impaired the working of the SVM. A larger data
set could be created by adding more nodes and more
connections to the network since each socket (con-
nection) corresponds with a data point. Future work
could look into testing the system with a larger data
set, and possible other machine learning algorithms,
to see if a higher accuracy can be achieved.

The experiments were done on a very small network
and in unrealistic conditions. The nodes in the ex-
perimental darknet were all homogeneous. It would
be unlikely in real life that users all have access to
identical machines and Internet connections to run
their nodes on. In addition, the simulation did not
take into account the leaving and joining of nodes in
the network. Users of Freenet usually do not have
their node running constantly [Cramer et al., 2004].
Most likely they would also not be making a request
or insert consistently every ten minutes, but only in
bursts when their node is online and they are actively
using it.

A node might disconnect from the network and later
rejoin with a different IP address. This would re-
sult in the node being “found” multiple times, as
there is no way to differentiate between the instances.
One could use the source port and peer informa-
tion to indicate an overlap, but this would not give
hard evidence that the two IP addresses belong to
the same node. Combining Freenet with The onion
router (Tor) would result in such a situation, as the
different Tor exit nodes would have distinctive IP ad-
dresses.

The traffic analysis and experiments were all done
on the FRED. Although this is the most commonly
used daemon to communicate in Freenet, it should
be noted that there might be other implementations
out there which might have different traffic patterns.
More specifically, members of a darknet communally
could agree to patch their nodes in a number of ways.
First, they could set a higher MTU. Second, use a
lower minimal padding than 64, this would thus also
lower the minimum packet size. Third, use a port
number lower than 1024, even though this would re-
quire Freenet to run in privileged mode, which is
not recommended for security reasons. These actions
would allow them to evade the rules in step #1 of
the detection and possible also allow their traffic to
be misclassified by the SVM11.

The detection of Freenet darknet nodes as presented
in this paper can be scaled up, given an attacker
has enough resources. The first step would filter out
almost all non-suspicious traffic, leaving very little
work to be done by the SVM (which is computation-
ally more expensive). It can be applied to small net-
works as presented in this paper, at an ISP or even at
a national level. The latter combined with the black-
listing of opennet (seed) nodes is especially worrisome
since it would mean that Freenet can be blocked and
that it can be censored in any of its topology types.
In the People’s Republic of China (PRC) Freenet ver-
sion 0.5 has been blocked [Freenet Project, 2017e],
like other anonymisation networks such as Tor and
The Invisible Internet Project (I2P). In order to pre-

11The port number is not a feature used by the SVM, so
changing this would have no effect on the classification.
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vent censorship from taking place at darknet level the
Freenet project should take steps into the direction
of making the traffic and nodes harder to detect. An
attacker with a significant amount of resources could
even do a mapping of the hybrid Freenet. An open-
net mapping would first be done to get an initial set
of IP addresses of nodes. These could then be traced
back to their ISP and an ISP level darknet mapping
might reveal any additional darknet connections that
these nodes have. Although the method presented in
this paper does not have a 100% accuracy, merely the
suspicion that someone might be running a Freenet
node could warrant for further research by law en-
forcement agencies. Some suggestions for improving
the design of Freenet to become an MCON are men-
tioned in Vasserman et al. [2009]. Section 8 gives
some future work that could be done to look into
the mitigation of the attacks discussed in this pa-
per.

The lack of masking Freenet nodes and traffic has
been known by the core developer team since early in
the development: “Making nodes invisible is not easy
by any stretch of the imagination and is not some-
thing we can or should address before 1.0” [Clarke
and Toseland, 2005]. The FProxy installation wiz-
ard notes the following: “Freenet cannot hide con-
nections made to others, only what is transferred
through them” [Freenet Project, 2017a]. At the time
of writing, there is no clear mention in the project
roadmap for implementing any type of concealment
feature [Freenet Project, 2017b]. This seems to clash
with the goal of the Freenet project to create a truly
membership-concealing censorship resilient overlay
network.

7 Conclusion

An overview has been given of Freenet opennet at-
tacks, mapping techniques, and their applicability to
the darknet. Due to the continuous development of
the Freenet project, findings in the past cannot al-
ways be replicated in the present. In addition, most
attacks for the opennet cannot be applied to the dark-
net due to the different nature of the two topolo-
gies.

A two step method for the detection of Freenet dark-
net nodes has been introduced, which can retrieve the
IP address of a Freenet node based on captured traf-
fic. In an idle network, and a network that is doing
random inserts and requests, the mean accuracy is re-
spectively 14% (s = 10%) and 43% (s = 17%). The
interconnectivity of the retrieved nodes can be de-
tected based on the traffic, which allows an attacker
to construct a mapping of the darknet.

8 Future work

One could consider evading the SVM trained on the
normalised IP packet length frequencies by padding
all packets to the same size. This approach has
been taken by Tor, but traffic analysis remains pos-
sible based on the frequency and direction of pack-
ets [Juarez et al., 2014]. A straightforward applica-
tion for Freenet would be to always pad all packets to
a random specific length, or to the maximum MTU.
The implementation of the latter can be seen in Ap-
pendix E. There would be a significant increase in
overhead, while applying rule based detection on the
traffic would still be possible by creating a rule to
match for this specific length. In the case of a ran-
dom length it could be made so that each node has
a random unique length it would pad to. For exam-
ple, node A might always pad to 1337 bytes, while
node B will pad to 1290 bytes. Traffic analysis would
be required by an attacker to discover the specific
length for each node before a detection rule could be
made.

By adding extra logging rules to the FRED source
code it should be possible to determine size of the
outgoing packets and which message types they con-
tain. This information could then be used to make
assumptions on which message types were sent based
on IP packet lengths as found in traffic from Freenet
nodes. Since a packet may contain multiple messages,
and due to the padding, it might be a difficult task
to achieve. Future work could look into the feasibil-
ity of creating such a mapping and any methods to
prevent it from happening. The latter could be done
by padding all the packets to the same size. This
would make it impossible to distinguish between the
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different message types based on the length of the
packets.

When data is inserted which is larger than the MTU,
multiple packetTransmit messages will be sent. In the
case of large files this would lead to a large number
of these types of messages being sent, which would
almost all have the maximum IP packet size. This
corresponds with the higher frequency at 1260 bytes
in Figure 5a and Figure 5b. When a capture is done
of the entire network, this might be used to trace the
node which did the original insert. Since the network
occasionally reinserts data, there might be a overlap
between new files being inserted and reinserts, this
might make the task difficult. Future work could look
into the feasibility of this attack.

The experiments were all done using IPv4, while the
FRED also supports IPv6. The rules in Section 4.2.1
should also apply for IPv6 in the test network since
the FRED takes into account the larger overhead of
IPv6 UDP traffic, regardless of IP version used (see
Appendix A for details). It is unclear if an SVM
trained on IPv4 traffic would also detect IPv6 Freenet
nodes, or even a mixture of both. IPv6 traffic should
have a larger average IP packet length due to the
increase in the IP header size. Future research could
look into training a data set on a mixture of both
IP versions and checking if the results found in this
paper would also apply for mixed data sets.
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Appendix A MTU and IP packet size

Listing 1 shows the part of the FRED source code which defines the values for the minimum and maximum
MTU for IPv4 and IPv6. The default IP+UDP header size is set to the IPv6+UDP value of 48 bytes. For
the maximum UDP payload size the value is used from the innerCalculateMaxPacketSize method, where
the minimum of MAX ALLOWED MTU and the result of the getMinimumMTU method is subtracted by
UDP HEADERS LENGTH. During the experiments the result of innerCalculateMaxPacketSize always was
1232, as observed by the maximum UDP payload sizes seen in the packet captures. Thus, the value of the
Math.min function on line 306 would have to be 1280 to get to the observed maximum UDP payload of 1232
bytes. This indicates that the IPv6+UDP header size is used as 1280 − 1232 = 48.

Listing 2 shows the getMinimumMTU method which returns either the maximum IP packet size, or the
MTU found by the IP detector. Since the minimum of MAX ALLOWED MTU and the result of the
method always have been 1280, it can be concluded that the getMinimumMTU method always returns the
maxPacketSize. This could be caused by one of two things: the value of “detected” is larger than or equal to
“mtu”, or the value of “ipDetector” is always “null”. The MTU of the interfaces of the VMs was set to 1500,
so the latter would have to be the case. The “ipDetector” variable was set to null because the correct IP
version could not be detected. In addition, Java attempts to retrieve the MTU from the interfaces [Freenet
Project, 2013b], which it was also not able to do in the experimental setup.

During the experiments only IPv4 was used, while the FRED was taking into account that the IP header
would be 20 bytes larger, which lead to the observed maximum IP packet length of 1260 bytes. The end
result is a wasted 20 bytes when IPv4 is used if the FRED is unable to detect that it is using this IP
version.

A choice was made by the Freenet developers to have the MTU hard coded to prevent fragmentation of the
IP packets [Freenet Project, 2011] [Freenet Project, 2013a]. An open issue is in the bugtracker which states
the problem should be solved by doing a path MTU discovery [Freenet Project, 2013c].

Note that regardless of the MTU set by the node, the receiving end has a hard coded receive buffer of 1500
bytes as can be seen on line 194 of Listing 1. So the MTU has to be lower or equal to 1500 to allow the
other side to parse the packets.

Listing 1: Selected lines from io/comm/UdpSocketHandler.java.

194 private static final int MAX_RECEIVE_SIZE = 1500;

267 // CompuServe use 1400 MTU; AOL claim 1450; DFN@home use 1448.

268 // http :// info.aol.co.uk/broadband/faqHomeNetworking.adp

270 // http :// www.studenten -ins -netz.net/inhalt/service_faq.html

271 // officially GRE is 1476 and PPPoE is 1492.

272 // unofficially , PPPoE is often 1472 (seen in the wild). Also PPPoATM is sometimes

1472.

273 static final int MAX_ALLOWED_MTU = 1280;

274 static final int UDPv4_HEADERS_LENGTH = 28;

275 static final int UDPv6_HEADERS_LENGTH = 48;

276 // conservative estimation when AF is not known

277 public static final int UDP_HEADERS_LENGTH = UDPv6_HEADERS_LENGTH;

278

279 static final int MIN_IPv4_MTU = 576;

280 static final int MIN_IPv6_MTU = 1280;

281 // conservative estimation when AF is not known

282 public static final int MIN_MTU = MIN_IPv4_MTU;
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283

284 private volatile int maxPacketSize = MAX_ALLOWED_MTU;

303 /** Recalculate the maximum packet size */

304 int innerCalculateMaxPacketSize () { //FIXME: what about passing a peerNode though and

doing it on a per -peer basis? How? PMTU would require JNI , although it might be worth

it...

305 final int minAdvertisedMTU = node.getMinimumMTU ();

306 return maxPacketSize = Math.min(MAX_ALLOWED_MTU , minAdvertisedMTU) -

UDP_HEADERS_LENGTH;

307 }

Listing 2: Selected lines from node/Node.java.

4714 public int getMinimumMTU () {

4715 int mtu;

4716 synchronized(this) {

4717 mtu = maxPacketSize;

4718 }

4719 if(ipDetector != null) {

4720 int detected = ipDetector.getMinimumDetectedMTU ();

4721 if(detected < mtu) return detected;

4722 }

4723 return mtu;

4724 }

Appendix B HMAC length

Listing 3 shows the fixed HMAC length of 10 bytes as found in the source code of the FRED.

Listing 3: A line from node/NewPacketFormat.java.

33 private static final int HMAC_LENGTH = 10;

Appendix C Maximum message size

Listing 4 displays the maximum message size and Listing 5 shows the comment explaining that large messages
are bad for the traffic flow.

Listing 4: A line from node/NewPacketFormat.java.

912 public static final int MAX_MESSAGE_SIZE = 4096;

Listing 5: Selected lines from node/MessageItem.java.

45 buf = msg.encodeToPacket ();

46 if(buf.length > NewPacketFormat.MAX_MESSAGE_SIZE) {

47 // This is bad because fairness between UID’s happens at the level of message

queueing ,

48 // and the window size is frequently very small , so if we have really big messages

they

17



49 // could cause big problems e.g. starvation of other messages , resulting in

timeouts.

50 // (especially if there are retransmits).

51 Logger.error(this , "WARNING: Message too big: "+buf.length+" for "+msg2 , new

Exception("error"));

52 }

Appendix D Fragment size

In Listing 6 shows the maximum fragment header size and the minimum amount of data bytes in a fragment.
For each fragment, at least 10 bytes are reserved.

Listing 6: A line from node/NewPacketFormat.java.

783 while (( packet.getLength () + 10) < maxPacketSize) { // Fragment header is max 9 bytes ,

allow min 1 byte data

Appendix E Padding to the maximum

In Listing 7 the change can be seen for NewPacketFormat.java to pad all packets to the maximum MTU.
Applying this should overwrite any settings the user has made concerning the use of padding.

Listing 7: Diff of NewPacketFormat.java between the change made for always using maximum padding, and
commit d38a867b12ab2e245b33f4a3ca986ccdc13297d9 of https://github.com/freenet/fred.git.

diff --git a/src/freenet/node/NewPacketFormat.java b/src/freenet/node/NewPacketFormat.java

index 863 eeb8 ..937 d3e0 100644

--- a/src/freenet/node/NewPacketFormat.java

+++ b/src/freenet/node/NewPacketFormat.java

@@ -493,6 +493,7 @@ public class NewPacketFormat implements PacketFormat {

}

}

}

+ paddedLen = maxPacketSize;

byte[] data = new byte[paddedLen ];

packet.toBytes(data , HMAC_LENGTH , pn.paddingGen ());
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