
System and Network Engineering - University of Amsterdam

Research Project 2

Discriminating reflective (D)DoS
attack tools at the reflector

July 9, 2017

Authors
M.W. Grim
max.grim@os3.nl

F. Mijnen
fons.mijnen@os3.nl

Supervisor
L. Haagsma

haagsma@fox-it.com

Abstract

This research focuses on a specific DDoS attack called a Reflective Distributed Denial of
Service (RDDoS) attack. A RDDoS attack uses reflectors to direct vast amounts of traffic to
a victim. Tools that generate these attacks can be found on the Internet and are accessible
to anyone with knowledge about computers. The goal of this research is to analyse network
packets captured at the reflector for behavioural patterns in order to identify the tool being
used for the attack. This is done by performing both manual analysis and machine learning
techniques. In the latter case both clustering algorithms and trained multiclass classifier
models are used to determine the tool being used based on the incoming network data. This
research will show that it is feasible to apply machine learning techniques on network captures
to successfully identify different RDDoS tools used for an attack both with unsupervised and
supervised learning.

Acknowledgements

We would like to thank Lennart Haagsma from Fox-IT, who not only provided us with
data collected from multiple open DNS resolver honeypots but also gave us great supervision
during our project. Without his data and expertise we would not have been able to perform
this research.

1

Contents

1 Introduction 3
1.1 Research questions . 4
1.2 Related work . 4
1.3 Report outline . 5

2 Background 6
2.1 Distributed Denial of Service (DDoS) . 6
2.2 Reflective Distributed Denial of Service (RDDoS) attacks 7
2.3 Amplification attacks . 9
2.4 Machine learning . 11

2.4.1 Density-Based Spatial Clustering of Applications with Noise 11
2.4.2 Multiclass Neural Network . 12
2.4.3 Multiclass Logistic Regression . 12
2.4.4 Multiclass Decision Forest . 13

3 Methodology 14
3.1 Lab generated data . 14

3.1.1 DNS DDoS scripts . 14
3.1.2 Test environment setup . 16
3.1.3 Attacking & data collection . 16
3.1.4 Multiclass classification . 17
3.1.5 Training the model . 17
3.1.6 Azure Machine Learning . 18

4 Results 20
4.1 Fox-IT data . 20

4.1.1 Dataset 1: 25 packets per PCAP . 20
4.1.2 Dataset 2: 250 packets per PCAP . 22

4.2 Lab generated data . 27
4.2.1 Accuracy results . 28
4.2.2 Training with fewer features . 30
4.2.3 Principal Component Analysis (PCA) . 30
4.2.4 Decision tree . 32

5 Discussion 36

6 Conclusion 39

7 Future work 40

A Scripts 42

B DNS packets in Fox-IT dataset 47

C Features generated from DNS packets 51

2

CHAPTER 1

Introduction

In 1974 a 13-year-old launched the very first known Denial of Service (DoS) attack. He issued a
console command to all machines in a classroom bricking all computers in the Computer-Based
Education Research Laboratory at the University of Illinois Urbana-Champaig, effectively denying
access to the machines for all students until the machines were power-cycled [1]. This rather
harmless prank is a bleak comparison to the professionalised and malicious DoS attacks Internet
users face today. In time, the DoS attacks transitioned to Distributed Denial of Service (DDoS)
attacks where multiple systems are used in the DoS. The world first realised the colossal damage
a DDoS attack can cause on February 7, 2000, when a 15-year-old Canadian known by the alias
mafiaboy launched a DDoS attack on large Internet websites such as Yahoo! and Amazon causing
an estimated 1.2 billion dollars in damages. Three years later, the SQL Hammer worm was
powerful enough to launch a DDoS attack affecting South Korea in 2003. With the effective DoS
of a country it was becoming more and more apparent that DoS attacks would be a big problem
for the internet.

In the 43 years since the first DoS, the problem still persists today. To this day systems are
attacked in large DDoS attacks which are still increasing in size (see Figure 1.1). As attacks
are becoming more advanced and available to consumers the threat of being targeted by DDoS
attacks increases. A disturbing trend in DDoS attacks is emerging where hackers provide their
DDoS capabilities to consumers. A considerable amount of money can be made for these hackers,
where reported earnings are hundred thousands of dollars every year [2]. DDoS attacks now often
utilise reflection to increase the size of the attack. In these amplification attacks, the attacker uses
legitimate services on the Internet and spoofed IP address to mislead the legitimate servers into
sending traffic to a victim. The traffic sent from the legitimate servers is often larger than the
request to send traffic and therefore amplifies the size of the attack.

Figure 1.1: Growth of Distributed Denial of Service (DDoS) attacks in size over the last
six years [3].

For forensic investigation, dealing with Reflective Distributed Denial of Service attacks is
exceptionally hard since the attack hides the botnet behind legitimate services. No IP addresses
can be found, and the traffic received is crafted by the legitimate service, which means deducting

3

the exact tool that has been used is difficult to find. In this research, we will attempt to perform
this classification of RDDoS tools by capturing RDDoS requests and analysing the network packets.

1.1 Research questions

In this research we will propose and test a method to discriminate different Reflective Distributed
Denial of Service (RDDoS) attacks which use DNS and identify and group different attack scripts.
In order to do this, we will look into the following research questions.

1. Do Reflective Distributed Denial of Service (RDDoS) attacks leave distinctive traces

2. Can a fingerprint be build using distinctive traces left by reflective DDoS attacks

3. Is it possible to identify the tool / script / service used in a reflective DDoS attack

4. Can machine learning be utilised to automate the identification process

1.2 Related work

This section presents an overview of relevant work done in the field of Distributed Denial of
Service (DDoS) and Reflective Distributed Denial of Service (RDDoS) taxonomies, detection and
prevention.

Previous research on “Distributed Denial of Service: Taxonomies of Attacks, Tools, and Coun-
termeasures” by Specht and Lee focused on proposing clear definitions and taxonomies for the
broad landscape of (R)DDoS attacks [4]. This taxonomy makes clear distinctions between resource-
and bandwidth depletion attacks. Additionally it differentiates between secondary victims (such
as zombies and reflectors) and primary victims which are the actual target in an attack (see
Figure 1.2).

Feinstein et al. (2003) calculated the entropy of captured packets and used distribution analysis
to search for anomalies in their attributes. Their results show that they were able to successfully
detect attacks [5]. This was partially because the tools often used by attackers were quite unso-
phisticated and did not attempt to properly hide their marks, allowing the researchers to quickly
detect anomalies.

Considering each of the steps and their precursors of a starting DDoS attack, K. Lee et al.
used the attributes of network captures as features in a hierarchical clustering model to proactively
detect DDoS attacks in a network. This model proved to be effective and efficient in detecting
the start of the actual attack, where older methods only focused on traffic generated during the

Figure 1.2: Taxonomy of DDoS attacks [4].

4

attack [6]. As a consequence DDoS attacks could be detected in its earliest stage, providing more
time to commence countermeasures.

Other research has been done by Zi et al. into an adaptive clustering method using feature
ranking to detect DDoS attacks. The algorithm is a modification of the k-means algorithm called
the Modified Global K-means (MGKM) algorithm. The MGKM algorithm is described as an
algorithm with an adaptive process, in that it uses feature ranking to adjust the working feature
vector, allowing it to find different patterns in DDoS attacks and improve its own effectiveness
while running [7].

Wei et al. (2013) used the inherent linear relationships of attacking and responsive flows to
detect RDDoS attacks. The advantage of such an approach is that it is protocol independent. In
order to detect these attacks a Rank Correlation based Detection (RCD) is used. RCD can be
used to calculate the rank correlation between flows and fire alerts once a positive results comes
back, as an indicator for RDDoS attacks [8].

Rozekrans and Mekking researched whether implementing Response Rate Limiting (RLL) is
effective in defending against DNS amplification attacks [9]. This was done by tuning the RLL
settings while sending queries and measuring the in- and outbound traffic. Their main conclusion
was that RLL is a proper defence against current amplification attacks but not more sophisticated
attacks.

To our knowledge, no research has been done before in determining which toolkit is used for
an incoming Reflective Distributed Denial of Service, with or without using machine learning.

1.3 Report outline

This report will continue with a summary on relevant subjects in chapter 2. Firstly the Denial of
Service (DoS), Distributed Denial of Service (DDoS) and Reflective Distributed Denial of Service
(RDDoS) attack types will be described and defined in chapter 2. Secondly, this same chapter
will review some concepts of machine learning and the algorithms relevant to this research. Next,
chapter 3 portrays the methodology of the research and which choices were made in the experi-
ments. Thereafter results are described in chapter 4, which is split up into two parts. Chapters
5 and 6 will discuss the results and draw conclusions from those. Finally, chapter 7 will discuss
further research to be done in this field.

5

CHAPTER 2

Background

This research mainly focuses on two subjects: Distributed Denial of Service (DDoS) attacks
(specifically RDDoS attacks) and the classification of tools that perform these attacks with the
help of machine learning. Though these subjects are generally well known, it is important to
clearly specify the context and terminology of these subjects as they play a central role in this
research.

2.1 Distributed Denial of Service (DDoS)

In essence, a Denial of Service (DoS) attack is an attack on one or multiple systems where the
system is made unavailable, denying service to legitimate users. In general, there are two flavours
of DoS attacks: bandwidth depletion and resource depletion (see Figure 1.2).

Bandwidth depletion attacks aim at flooding the bandwidth of a victim in order to ensure
legitimate traffic can no longer reach the victim. By sending out more traffic than a victim can
handle, all other traffic can effectively be blocked out, resulting in a DoS. Usually a single entity
has only a limited amount of bandwidth. Since an attacker has to generate more traffic than an
attacker can receive it has to devise methods that increase their ability to generate vast amounts
of traffic.

The second DoS attack type is a resource depletion attack. This attack, instead of bringing
down a network by depleting its total bandwidth, depletes a specific resource of a service or server
by exploiting a weakness. These services are often remotely available services like FTP, web-servers
or other servers with open ports listening to network traffic. Sending a malicious malformed packet
to such a service may cause some sort of internal error, effectively bringing down the server or
degrading the functionality severely. This research will solely focus on the former type of Denial
of Service attack, the bandwidth depletion attack.

As mentioned before, attackers need to send out more traffic to the victim than it can handle
to perform a bandwidth depletion attack. Considering that one machine can only generate so
much traffic, often not enough to bring down a professionally hosted server, attackers started to
distribute their DoS attacks, which was the start of the well-known Distributed Denial of Service
(DDoS) attacks (see Figure 2.1). As the name suggests, a DDoS attack distributes the attack
over multiple machines attacking the victim all at once. Using multiple machines in an attack
significantly increases the bandwidth and therefore the power of an attack.

A DDoS attack consists of many components working closely together. The entire infrastruc-
ture used to create a DDoS attack is known as the attack platform. This attack platform consists
of all components required to perform the DDoS attack, including machines that generate traffic
and a central or distributed control component. The attacker uses the attack platform to launch
DDoS attacks against machines which are reachable from the Internet. The machine under attack
is the primary victim, whereas the secondary victims are all machines infected and used by the
attacker to generate traffic [4]. In a DDoS attack the infected machines (often refered to as zom-
bies) are used to generate all the traffic in the attack. The collection of these infected machines
is called a botnet. It is unclear how large the average botnet is or how powerful these botnets are,
but botnets can grow to enormous sizes. In 2013 Symantec researched the ZeroAccess botnet,
estimating the size of the botnet to an astonishing 1.9 million machines [10].

Because a DDoS attack uses large networks to generate traffic some degree of control over the
bots is desirable. Configuring targets, starting and stopping attacks and other actions must be
controllable by the attacker. In general, botnets are controlled by a one or more Command and
Control (C&C) server(s) which control the bots in the botnet. The C&C can relay the attacker’s

6

Figure 2.1: Distributed Denial of Service attack generated by multiple zombies. These
zombies, which are secondary victims, listen to a Command and Control (C&C) server
that is controlled by the attacker. Note that in this case the attacker is hidden.

commands to the bots and control the botnet. The infrastructure of a botnet is built as a simple
agent-handler model where the bots are agents handled by the C&C. It is important to note that
the C&C often uses covert channels in order to disguise the communication between the C&C and
bots. Frequently used covert channels include IRC, HTTP, DNS, and ICMP.

2.2 Reflective Distributed Denial of Service (RDDoS) attacks

A Reflective Distributed Denial of Service (RDDoS) attack is a variant of a DDoS attack which
abuses legitimate services to direct traffic at the victim. These legitimate services (often referred
to as the reflectors) respond to requests containing a spoofed source IP, therefore directing traffic
to the intended victim. By spoofing the source IP address an attacker can trick legitimate services
into sending traffic to the victim. The use of reflection for a DDoS attack both hides the identity
of the attacker from the primary victim and allows the attacker to amplify its attack significantly.
Amplification is discussed in more detail in the next section.

One simple and classic reflection attack is the SMURF attack. Although the SMURF attack
is not distributed in the same way as a RDDoS attack, it does make use of reflection and is a
good starting point to explain the concept. SMURF attacks make use of Internet Control Message
Protocol (ICMP) requests that are sent to the network’s broadcast address (see Figure 2.2). The
router receiving this request will broadcast it to all devices in the subnet. Since the attacker is
able to spoof the source IP of the request, all devices to which the initial request is broadcasted
by the router will respond to what they believe is the legitimate source IP. Because of the nature
of the attack the responding devices have no way to verify the source IP and therefore have to
trust it. Nowadays a SMURF attack is not feasible anymore as routers block ICMP request sent
to the broadcast address [11].

In a report written by Brian Krebs, the author mentions that attacks are becoming easier to ac-
cess and lower in costs: “By offering a low-cost, shared distributed denial-of-service (DDoS) attack
infrastructure, these so-called booter and stresser services have attracted thousands of malicious
customers and are responsible for hundreds of thousands of attacks per year.” [12]. Because the
financial gain of providing a good DDoS service has become noticeable to attackers infrastructures
have become more professional. This financial incentive caused an emergence of “booter services”,
which aim to profit from users requiring an easy to use and powerful DDoS tool. On December
25 2014 an attacker group called the Lizzard Squad went as far as to bring down the Xbox Live
and PlayStation network to market their platform. It is unmistakable that a lot of money can
be made by providing these services. A small overview of a RDDoS attack platform is shown in
Figure 2.3.

7

Figure 2.2: Example of SMURF attack. In this example, the attacker sends a request
with a spoofed FROM address to the broadcast address. This is received by the router,
which in turn forwards the message to all the devices in the network. These devices
will respond to the request with the spoofed FROM address. In the end, the victim will
receive all these responses (which it didn’t request), flooding the victim with messages.
[11]

Figure 2.3: Infrastructure of a RDDoS attack using amplification.

8

2.3 Amplification attacks

Amplification attacks are attacks in which an attacker abuses a legitimate service as a reflector
to amplify an attack. Imagine an attacker having a network with a decent upload speed of a
100Mbps. Without the use of amplification or a botnet the attacker is only able to perform
bandwidth depletion attacks of that same bandwidth size. However, if an attacker could make
a request to a legitimate service that would send a response four times larger and meanwhile
allows for spoofing the source IP address, the attacker can significantly increase its attack size
(see Figure 2.4). This is what is called an (reflective) amplification attack [13]. Cloudflare, one
of the leading service providers in DDoS protection, notes that amplification is becoming more
important in DDoS attacks: “In order to increase your attack’s volume, you could try and add
more compromised machines to your botnet. That is becoming increasingly difficult. Alternatively,
you could find a way to amplify your 100Mbps to something much bigger.” [11].

(a) Reflective attack without amplification.
(b) Amplified reflective attack triggering a large
response.

Figure 2.4: Simplified illustration of a reflection attack vs. an amplified reflection attack.
In the amplified reflection attack the attacker crafts its requests in such a way that a
maximum response is generated (the amplification factor is as high as possible). Note
that for reflection attacks the attacker spoofs the source IP. Therefore all responses are
directed to the attacker.

In essence, a packet with a spoofed IP address is sent to a legitimate service using the victim’s
IP address as a spoofed source address. If the request packet is smaller than the response packet
the attacker can effectively amplify the bandwidth of his attack. A small packet can often request
a large response, for example requesting a large DNS record could amplify the response greatly.
The small request will thus become a large packet sent to the victim effectively amplifying the size
of the attack. Multiple protocols are susceptible to reflection attacks and almost all introduce an
amplification factor that may be utilised by the attacker. In 2014 US-cert, the United States com-
puter security response team released a list of possible reflection methods and their amplification
factor as shown in Table 2.1 [14]. The actual amplification factor depends on many circumstances
such as the configurations of the servers et cetera. The problem still persists today because of the
large amount of open DNS resolvers (see Table 2.2).

One of the more common and modern amplification attack is a DNS RDDoS attack [18].
Figure 2.5 shows a simple example of DNS amplification, where the request is smaller than the
triggered response. For Reflective Distributed Denial of Service (RDDoS) attackers it is important
to maximise the victims incoming traffic while minimising the attackers outgoing traffic.

Figure 2.5: Simplified example of a DNS amplification attack with a single attacker [19].

9

Table 2.1: Table of reflection protocols and their amplification factor collected and
combined from several sources [14, 15, 16].

Protocol Amplification factor

NTP 556,9
CharGEN 358,8
DNS 1 - 179
QOTD 140,3
RIPv1 131,24
Quake Network Protocol 63,9
LDAP 46-55
BitTorrent 4,0 - 54,3
SSDP 30,8
Portmap 7 - 28
Kad 16,3
Multicast DNS 2 - 10
SNMPv2 6,3
Steam protocol 5,5
NetBIOS 3,8

Table 2.2: Top 20 Countries with open Recursive DNS servers [17].

Country Total

China 1,498,166
United States 306,564
Republic of Korea 289,506
Brazil 200,980
Taiwan 184,089
Russian Federation 145,883
India 98,895
Turkey 86,264
Philippines 76,574
Poland 75,508

Country Total

Japan 60,731
Indonesia 50,945
Islamic Republic of Iran 46,386
Australia 44,455
Romania 43,928
Bulgaria 43,087
Ecuador 35,676
Argentina 35,578
Canada 33,198
Mexico 33,108

10

2.4 Machine learning

Broadly there are two classes of machine learning called unsupervised learning and supervised
learning. Supervised learning is used when the dataset does have an “expected output variable”
such as a continuous value or class, which we will refer to as labelled data. Using this variable
the machine learning algorithm can train its model on the input data, after which it is able to
perform estimations on data where the output variable is unknown.

On the other hand, unsupervised learning is used when the dataset does not have an “expected
variable” to train on, which we will refer to as unlabelled data. In this case, the data can be used
to find patterns or clusters, but not to learn an estimated value as there is nothing to learn.

Classification can be used to let a computer decide which class a specific row in a dataset
belongs to based on its trained decision boundaries. This is ideal for later research where we
will try to classify attacks based on the RDDoS tool used to initiate the attack. As mentioned
before this is a form of supervised learning. There are broadly two types of classification: binary
classification and multiclass classification (see Figure 2.6). Binary classification is used when the
data can only be one of two classes, whereas multiclass classifiers can classify any number of
classes.

In the following sections four algorithms will be highlighted that are used in this research:
Density-Based Spatial Clustering of Applications with Noise (DBSCAN), Multiclass Neural Net-
work (MNN), Multiclass Logistic Regression (MLR) and Multiclass Decision Forest (MDF). The
first algorithm is a clustering algorithm that is used for unsupervised learning while, on the other
hand, the latter three algorithms are classification algorithms that are used for supervised learning.

Figure 2.6: Simple 2D with two features: X1 and X2. On the left binary classification is
shown where only two classes are classified, whereas on the left multi-class classification
is shown with in this example three classes [20].

2.4.1 Density-Based Spatial Clustering of Applications with Noise

In order to cluster unlabelled data into a yet unknown number of clusters the Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) algorithm can be used. DBSCAN clusters
features into a multidimensional space where the distance between each feature is measured. If
enough items are within a certain distance it is marked as an independent cluster. This method
is able to cluster data without knowing the amount of clusters that are present and the clusters
may be of any shape. Considering the fact that we do not know the number of clusters and the
fact the data we will use contains more than two features DBSCAN seems to be a good fit for
clustering our data.

It is important to note that DBSCAN requires two user defined parameters to perform the

11

data modelling. A user must specify the maximum distance ε and the minimum number of points
in a cluster. The ε specifies the maximum distance two points may be apart to be considered
neighbours. A spatial analysis is then done and, when enough items are within distance vector ε,
a cluster is found (see Figure 2.7).

DBSCAN is therefore designed to find core points. These core points are points which have
more or equal points in distance ε than the minimum points and therefore form a cluster. These
core points are all identified in a certain dataset. If two core points are within one ε of each other
they form a cluster together, including all border points of both core points. DBSCAN checks
every core point for mutual core points and thus builds op a cluster without having to know the
number of clusters or the shape of the clusters.

Figure 2.7: A demonstration of DBSCAN where a cluster is formed when points are
within ε spacial distance [21].

2.4.2 Multiclass Neural Network

The Multiclass Neural Network (MNN) algorithm uses an Artificial Neural Network (ANN) to
classify data into multiple classes. Artificial Neural Networks use terminology analogous to the
human brain: neurons (nodes) are the basic foundation of an ANN and transform incoming values
into outgoing values. An ANN consists out layers of multiple neurons that are interconnected by
synapses, which are weighted edges [22]. There are three types of layers: the input layer, one or
multiple hidden layers, and a single final output layer (see Figure 2.8). All these layers perform
different kinds of transformations and the weights of the synapses are trained using the input data.
Deep Neural Networks contain many hidden layers and perform difficult and computationally
intensive tasks. However, often predictive tasks only need a few hidden layers [23]. Classification
using neural networks is a supervised learning model, and therefore requires a labelled dataset
that includes a label column. The advantages of using the Multiclass Neural Network algorithm
are the high accuracy and complexity of the model allowing it to do difficult tasks, though this
last property also can be a downside resulting in long training times.

2.4.3 Multiclass Logistic Regression

The Multiclass Logistic Regression (MLR) algorithm uses logistic regression to classify data into
multiple classes. It is sometimes also referred to as Multinominal Logistic Regression or Polyto-
mous Logistic Regression [24]. Just as the MNN algorithm it uses supervised learning to train
the model and therefore requires a labelled dataset. Ordinary logistic regression can be used to
predict the probability of a single outcome and can therefore be used for binary classification. Mul-
ticlass Logistic Regression is able to predict the probability of multiple outcomes and is therefore
perfectly suitable for multiclass classification [25].

One advantage of the MLR algorithm is that after training the weight assigned to features
can be reviewed. This is valuable data, because from this data it can be inferred which features
are important to which classes, and which features are not of any value to the trained model.
One of the biggest advantages of using the Multiclass Logistic Regression over a Multiclass Neural
Network is that it is faster in training the model. However, the MLR model trains on linear
relationships, making it less suitable for data showing only non-linear relationships.

12

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer 1

Hidden
layer 2

Input
layer

Output
layer

Figure 2.8: Example of an Artificial Neural Network (ANN) with one input layer con-
sisting of four neurons, two hidden layers both consisting of five neurons and one output
layer consisting of one neuron.

2.4.4 Multiclass Decision Forest

The Multiclass Decision Forest (MDF) algorithm, not to confuse with the Multiclass Decision
Jungle algorithm, makes uses of decision trees to classify data. The decision forest algorithm
builds up a series of decision trees during the training of the model. It builds multiple decision
trees (see Figure 2.9) and then uses a voting mechanism to select the best N decision trees. The
voting process makes use of non-normalised frequency histograms, which are then summed and
normalised to get the probabilities for all labels. Trees with the highest prediction confidence will
be selected as the trees to use [26].

Advantages of using the Multiclass Decision Forest algorithm are that it is efficient both in
computation time and memory usage. Additionally, decision trees are not influenced by noise and
can have non-linear decision boundaries. However, decision trees may be too simple and restrictive
for more complex problems [27].

Figure 2.9: The Multiclass Decision Forest (MDF) builds multiple decision trees, after
which a voting mechanism selects the N best trees based on the highest prediction
confidence [28].

13

CHAPTER 3

Methodology

This research will be using two data sources of network packet captures. The first dataset will be
real data provided Fox-IT from actual RDDoS attacks, which is collected from open DNS resolvers
which intentionally serve as honeypots. The second dataset will be generated in a test lab. As
mentioned in chapter 2 capturing the data at the victim’s side is virtually useless considering
the packets generated by the service are legitimate and have little connection barring the domain
name and certain DNS query settings. All data used will be request packets from an RDDoS DNS
tool to a reflector.

We will be performing two experiments. First, we will analyse the actual data as provided by
Fox-IT. This will consist of a static analysis where we will identify and analyse all differentiating
features between the attacks. Our second experiment will be performed on a different dataset.
In order to test trained -and other machine learning algorithms on attacks we will be creating
our own test dataset in a lab using different RDDoS DNS tools. With this dataset, we can verify
whether we can identify different RDDoS attack tools since all PCAPs are labelled.

The data Fox-IT captures is based on multiple honeypots providing open services for a whole
host of RDDoS services like DNS, NTP, Chargen etc. The requests used in these attacks are then
stored in a MongoDB database where they are stored by an arbitrary attack ID. The attacks are
grouped based on time of the attack and the victims IP address. Fox-IT will be providing us with
two datasets. The first dataset contains 14807 PCAPs with 25 packets per PCAP. The second
dataset consists of 1868 PCAPs with 250 packets per PCAP.

For this research, we choose to focus on DNS as an RDDoS attack protocol. We considered
the limited time in which this research can be done and decided that it would be more beneficial
to really investigate DNS rather than shallowly investigate and discuss multiple protocols.

3.1 Lab generated data

A mentioned in the introduction a part of the captures from RDDoS attacks will be generated in
a lab environment. Because the data is generated it is known beforehand which tools are used.
Therefore, the data can be labeled and used for supervised learning.

3.1.1 DNS DDoS scripts

In this research four different DNS RDDoS tools are used, which are ethan, flooder, saddam and
tsunami (see Table 3.1. Flooder, Ethan and Tsunami are written in C, whereas Saddam is written
in Python2. The scripts differ in functionality, some support multi-threading whereas others only
support a single thread. Some allow a user to set the UDP source port, whereas other scripts have
a fixed or random UDP source port.

One property of these scripts is that they try to utilise Domain Name System (DNS) ampli-
fication, such as described in section 2.3. The higher the amplification factor, the more effective
the script is. In order to make sure that the scripts used actually do have an amplification factor
higher than 1.0 a simple measurement was made before using them in the experiments. To mea-
sure the amplification factor of these scripts they are executed one by one, capturing the frame
length of packets with respectively the UDP source port or the UDP destination port set to 53 on
the reflector. This results in Table 3.2 and Figure 3.1, where the amplification factor is measured
for each tool.

14

Table 3.1: Tool comparison

DNS tool Source Language Threading

saddam GitHub.com Python 2 yes
flooder Pastebin.com C yes
ethan GitHub.com C no
tsunami Infosec-Ninjas C yes

tsunami ethan flooder saddam
0.0

2.5

5.0

7.5

10.0

12.5

A
m

pl
ifi

ca
tio

n
fa

ct
or

Amplification factor per tool

Figure 3.1: Amplification factor per tool

Table 3.2: Tool amplification measure. Frame lengths are in octets. The amplification
factor is the outgoing frame length divided by the incoming frame length.

DNS tool Incoming frame length Outgoing frame length Amplification factor

tsunami 78 280 3,59
ethan 67 445 6,64
flooder 83 1079 13,00
saddam 78 1079 13,83

15

3.1.2 Test environment setup

For the purpose of generating labelled RDDoS captures a test environment was devised. The
setup consists out of three servers, connected with simple a switch. The three servers serve as the
attacker that conducts the attack, the reflector which is configured as an open DNS resolver, and
the victim that receives the attack. The setup is shown in Figure 3.2. The specifications of the
setup are listed in Table 3.3.

Table 3.3: Test environment setup specifications.

Machine Type CPU Memory OS

Attacker
(dijon)

Dell Poweredge R230 Intel Xeon CPU
E3-1240L 2.10GHz

16 GB 4.10.0-22-generic
Ubuntu 17.04

Reflector
(nice)

Dell Poweredge R230 Intel Xeon CPU
E3-1240L 2.10GHz

16 GB 4.10.0-22-generic
Ubuntu 17.04

Victim
(berlin)

Dell Poweredge R210 I Intel Xeon CPU
L3426 1.87GHz

16 GB 4.10.0-22-generic
Ubuntu 17.04

Network
switch

TP-Link TL-SG1008D - - Unmanaged

Figure 3.2: Example of the test lab performing a DNS RDDoS, where the DNS record
is first resolved and then send from the reflectors cache to the victim Berlin.

3.1.3 Attacking & data collection

Executing the attacks and capturing the network packets is completely automated by a script
(see A.1). The captures are collected and stored on the reflector (the open DNS resolver). First,
script starts in a counting loop. In this case, this loop is done 250 times. At each instance, the
script opens up an SSH session to the attacker host, launches the attack script with the correct
parameters, and retrieves its PID. Then the script opens up a second SSH session to the reflector
host, at which it starts tcpdump to capture the packets with on UDP destination port 53 and with
the IP address of the victim. The tcpdump program is set to capture a million rows, after which
it terminates. Because the PID of the monitoring SSH session also is stored, and the SSH session
terminates as soon as a million captures are made, the script waits for this PID to finish, after
which it kills the PID of the attack script at the attacker’s host. Then, the loop can continue to
the next attack. In total 1 million packets are captured per attack, and per tool 250 attacks are
performed. Because in this research 4 different tools are used, this totals to an amount of 1 billion
packet captures.

The tshark program is used to convert the binary PCAP files to Comma-separated values
(CSV) files, where we select the columns that will be used. From these columns the features
are generated, reducing a CSV from a million rows into a single tool Then, all 250-feature rows
are merged into a single file with the attack tool as its label. The complete process is visualised
in Figure 3.3. The script that converts PCAP to CSV is listed in appendix A.2, and the script
that converts CSV files to features is listed in appendix A.3, with the helper functions listed in

16

appendix A.4 and appendix A.5. What features exactly are generated is listed in that particular
appendix.

Figure 3.3: Illustration of data collection pipeline. First the network data is captured
and stored as Packet Capture (PCAP) files. For each tool 250 experiments are done,
each experiment capturing one million packets. These PCAP files are then converted
into CSV files, only exporting the fields used for the features. Thereafter the features
are generated from these CSV files, reducing one million captures into a single feature
row. Finally all feature rows are merged into one large file containing the label of the
attack tool used.

3.1.4 Multiclass classification

What we are trying to do is classify attacks based on the captured data. Figure 3.4a shows a
simple 2D example of classification of unknown data with just two features: X1 and X2. When a
model is trained beforehand on other data, those decision boundaries can be applied on this data
(see Figure 3.4b). Then, if we feed the algorithm with data to be estimated, the algorithm can
classify the data based on the decision boundaries, which is illustrated in Figure 3.4c.

3.1.5 Training the model

Now that the raw data is converted to features, it is time to train the model. The data is randomly
split up into a training set and a test set, where the training set contains 90% of the data and the
test set 10% of the data. The training set is fed into the machine learning algorithm. Once the
model is trained, it is fed with the test data. For each row in the test data, the trained model will

(a) Unclassified data with fea-
tures X1 and X2.

(b) Applying the decision bound-
aries of the trained model.

(c) Classifying the data based on
the trained model.

Figure 3.4: 2D example of how a multiclass classifier conceptually works.

17

give an estimated class. This estimated class can be compared with the actual (known) class of
the test row, which is how the model is evaluated overall. See Figure 3.5 for the whole process.

Figure 3.5: The pipeline for training a machine learning algorithm and using test data
to evaluate the accuracy of the trained model. First, the raw data is converted into a
set of features, which is then randomly split into a training dataset and a test dataset.
In all the experiments of this report, the training dataset will contain 90% of the data
whereas the test dataset contains 10% of the data. Feeding the training data into the
machine learning algorithm results in a trained model, which can, in turn, be used to
classify the test data, returning an estimated class for each row in the test data. Because
the label is known beforehand, this can be used in combination with the estimated label
to evaluate the accuracy of the model.

We also perform 10-fold cross validation. This reduces the odds of over-fitting on a specific
train set, whereas now this experiment is repeated 10 times with other sub-sets of the data,
making sure all the data is used both in training and in testing the dataset. This will execute the
experiment 10 times with different sets of training and test data. The evaluations performed after
each estimation are averaged into a total accuracy rate.

3.1.6 Azure Machine Learning

We chose Azure Machine Learning, which is a Software as a Service (SaaS) application, to train
the models and evaluate the results. It has an intuitive interface that allows for fast prototyping
without the need to write a lot of code. Also, supports visualisations and can import data from
an HTTP web server, automating the entire process. See Figure 3.6 for an example pipeline in the
Azure ML User Interface. This particular example first imports data from a storage account, after
which it transforms the data into categorical features and renames some columns. Once finished,
the resulting data is fed into a 10-fold cross validation module that uses the Multiclass Logistic
Regression algorithm as a classifier. This module both trains and tests the model 10 times, after
which the evaluation model calculates the statistics on accuracy and other performance measures.

18

Figure 3.6: Example of the Azure Machine Learning interface that can be used to build
pipelines that train, sore and evaluate models.

19

CHAPTER 4

Results

The results will be split in two distinct result sections. In the first section, we will review the
results of the static analysis of the datasets provided by Fox-IT. The second section will look at
the data generated by ourselves in the test lab.

4.1 Fox-IT data

Fox-IT provided us with two different data sets. The PCAPs contain DNS requests, UDP -and IP
header data. These 3 parts of a network packet can then be used to try and discriminate between
RDDoS attack tools.

4.1.1 Dataset 1: 25 packets per PCAP

The first dataset from Fox-IT contains 14807 PCAP’s which contain a total of 368.442 packets to
inspect. In order to differentiate between attacks we must find the differences between attacks.
The first step was therefore to list all the fields in each packet and see where different values could
be found. We have observed that the UDP source port, DNS ID, and IP ID often change both
between PCAP’s and inside PCAP’s themselves. This could be an interesting feature when for
example measuring the minimum and maximum values or variance of these fields.

Furthermore the TTL field was shown to vary between attack. However, we expect that this
field will be detrimental to our efforts to identify RDDoS tools. Botnets may change from attack
to attack. Some bots may be added where new machines are infected, or bots are lost where
machines are cleaned. This means the TTL pattern could vary between attacks of the same tool.
Therefore we will ignore the TTL in further experiments. Furthermore, the IP Header checksum
must be correct for routers to forward the data so this field will be ignored as well since the way
the field is used will be identical between all tools. The total length and source address were also
found to vary. Obviously the source address is the address of the primary victim and can therefore
vary between attacks. The total length was found to always be correct, since it is essential that
the entire request is received correctly we expect that the total length will always be valid. We
validated this assumption on the dataset and observed no invalid total length field. Therefore, we
believe it is reasonable to assume that the total length field is not a noteworthy feature.

The UDP header was also inspected for valuable features. The source port was found to often
change. The checksum, though not changing in our dataset, could be legitimately used by some
tools and not used at all by others. We therefore decided that it could be a differentiating feature.
The source port, as mentioned above, was shown to frequently change.

When we set the DNS ID, IP ID and UDP source port to 1 we observed other variances in the
data. After listing the variance of the data we observed a different IP Header in a small number
of packets in the dataset. These PCAP’s have at least one packet with a Differentiating Service
(DS) field (also widely known as a DSCP field, however we will adhere to the naming specified
in the RFC [29]) set to 0x40 as shown in Table 4.1. An example of these packets are found in
appendix B.

We can identify two different headers, one with the DS field set to 0x40 or 16 which assigns
the packet to DS Field class to 2. This class sets the priority to immediate forwarding of the
packet [30]. It is possible that the simple fact that the DS Field is set to 0x40 indicates two
different attack tools. In order to verify this hypothesis we will split the data set into two. One
set where the DS Field is set to 0x40 and one where the field is set to 0x00. Furthermore, it is
also important to see if the fact that the DS field is uniform in a PCAP. It could be possible that

20

a PCAP contains a mix of DS field set to 0x40 and 0x00. We observe that 39 PCAP’s contain
only packets with a DS field set to 0x40, and 178 which contain one or more packet(s) with a DS
field set to 0x40. This indicates that a large number of attacks actually vary in the usage of the
DS field.

In order to determine whether these differences indicates a different attack tool or not the
datasets should be compared. The first observation we can make is that only 0,8% of the packets
have the DS Field set to 0x40. This could indicate that only a small amount of attacks were made
with a attack tool that uses this setting. However we should look further into the data and see if
the attacks are actually different. When looking at the PCAPs containing at least one packet with
a DS Field set 0x40, we observe that the DNS ID is repeated more times than the average repeat
in the data set. When looking at the entire dataset we observe that out of the 14.807 PCAPs
from the dataset, 74% of the PCAPs contain either 2 or 3 unique DNS ID’s. However, when we
filter to only look at PCAPs that contain at least one DS Field set to 0x40 we observe that the
56% of the PCAPs now have 1 unique DNS ID. Where 2 or 3 unique ID’s makes up 74% of the
PCAPs in the entire set, it only represents 34% of the this subset. All datasets and unique DNS
ID values are represented in Table 4.2.

We observed some other interesting characteristics when analysing the subset of PCAPs con-
taining at least one packet with a DS field set to 0x40. In the entire dataset, we found 8 different
domain names used for the queries. However, when only looking at the subset where the DS field
is set to 0x40 we find 4. Moreover of the 217 PCAPs in the subset, 127 contained 2 specific domain
names which were capitalised. When the data is again divided into capitalised and non-capitalised

Table 4.1: A representation of the IP header fields found in the DNS dataset 1.

Version Header length DS Flags Frag. offset Prot Frequency
4 20 0x00000000 0x00000000 0 17 365532 (99.2%)
4 20 0x00000040 0x00000000 0 17 2905 (0.8%)

Table 4.2: Collection of tables showing the occurrences of Unique DNS IDs per PCAP.

(a) Total data set.

Unique
DNS ID

Frequency

1 2455 (16,5%)
2 6105 (41,1%)
3 4848 (32,6%)
4 1277 (8,6%)
5 157 (1%)
6 14 (0,09%)
7 1 (0,006%)

(b) Subset of a consisting of PCAPs con-
taining at least 1 packet with DS Field set
to 0x40.

Unique
DNS ID

Frequency

1 123 (56,7%)
2 39 (18%)
3 36 (16,6%)
4 16 (7,4%)
5 3 (1,4%)
6 0 (0,00%)
7 0 (0,00%)

(c) Subset of B where query domains are
capitalised.

Unique
DNS ID

Frequency

1 105 (82,7%)
2 21 (16,5%)
3 0 (0,00%)
4 1 (0,8%)
5 0 (0,00%)
6 0 (0,00%)
7 0 (0,00%)

(d) Subset of B where query domains are
not capitalised.

Unique
DNS ID

Frequency

1 18 (20%)
2 18 (20%)
3 36 (40%)
4 15 (16,7%)
5 3 (3,3%)
6 0 (0,00%)
7 0 (0,00%)

21

domains an even clearer difference between PCAPs is observed. For capitalised domain names
82% of the PCAPs contain only one DNS ID. We believe it is likely that the PCAPs containing
capitalised domains are from a different tool. Other differences were not found, the packets are
shown in Appendix B.

Since the fields are all the same, and the only difference in the attacks are marginal, we will
require more packets in order to truly check the patterns in the data. The actual data is almost
uniform across all PCAP’s. Only the DS field is different among all these PCAPs as well as
the queried domain. Since we have only been able to identify two tools it will be necessary to
do pattern recognition and further analysis on the data. However, Fox-IT provided us with 25
packets per attack which makes it impossible to do accurate pattern analysis. Therefore we were
provided with a second dataset from Fox-IT for DNS attacks containing 250 PCAPs per attack.
This should allow us to perform more in-depth analysis of the captures.

4.1.2 Dataset 2: 250 packets per PCAP

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Unique DNS ID

0

50

100

150

200

250

O
cc

ur
re

nc
e

All data

Figure 4.1: A chart plotting the unique DNS ID’s found per PCAP in the entire dataset.

This dataset consists of 1.868 PCAPs with each containing approximately 250 packets. By
repeating the experiments done on the previous dataset we can make some observations. First,
the tool using capitalised letters seems to be missing in this dataset. We can still differentiate and
compare the attacks containing at least one packet with the DS field set to 0x40. After splitting
the dataset we can see a very distinct count of unique DNS IDs depending on the data.

Observing the entire dataset it becomes clear that a large number of PCAPs contain a unique
DNS ID count from 7-13 make up 62% of the attacks as shown in Figure 4.2. However, we can
observe that plenty of PCAPs have only 2 unique DNS IDs. Interesting is that between 2 and 7-13
the number of unique DNS IDs found is relatively low, which shows that PCAPs with 2 unique
DNS IDs and 10-13 are different tools. Furthermore, when only looking at PCAPs where unique
DNS ID count < 7 we observe that a unique DNS ID count of 2 represents 60% of the data set.
The distribution of unique DNS IDs is is shown in Figure 4.2. A clear difference between the
complete dataset in Figure 4.1 and this dataset can be observed.

We can conclude that PCAPs containing at least one packet with a DS field set to 0x40 behave
differently compared to the entire dataset when looking at the unique DNS ID count. We can
validate this the hypothesis that this is indeed a different tool by looking at the behaviour of the
other frequently changing data fields like UDP source port and IP ID. When we look at the unique
IP IDs in the PCAPs we can observe that different behaviour is shown much like the DNS ID as
shown in Figure 4.3 and Figure 4.4.

When we plot all the unique IP IDs found in Figure 4.3 we can observe a chart that vaguely
resembles a Gaussian distribution. However when we narrow the dataset down to only include
PCAPs where the DS field is set as shown in Figure 4.4 we can observe an entirely different

22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Unique DNS ID

0

10

20

30

40

50

60

70

80
O

cc
ur

re
nc

e
DS field set to 0x40

Figure 4.2: Unique DNS IDs in PCAPs where at least one packet contains a DS field
set to 0x40. A significant higher relative presence of 2 unique DNS IDs can be observed
here.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
Unique IP ID

0

25

50

75

100

125

150

175

O
cc

ur
re

nc
e

All data

Figure 4.3: Unique IP ID observed in all PCAPs

distribution of the data. This different behaviour further justifies our belief that the PCAPs
containing a set DS field are from a different tool. It should be noted here that the distribution
of the last frequently changing field, the UDP source port, shows very similar behaviour as the IP
ID. We will therefore not look into it further in this report.

Furthermore, we observed some PCAPs contain malformed packets as shown in appendix B.
This could also be an indicator of a different tool. However, when we again try and recognise
different patterns in frequently changing fields we find no major differences between the PCAPs
containing malformed data and all data. If we compare the unique IP IDs from Figure 4.5 and
all data in figure Figure 4.3 we observe that the distribution appears to be identical. We even
observed packets that both have malformed packets and a DS field set to 0x40.

This led us to believe that perhaps, PCAPs with no malformed packets could lead to a new
tool. When we plot the unique DNS ID’s of tools with no malformed packets we can see slight
differences. However, we do not believe this is conclusive enough to identify an attack. We can
make one interesting observation here though, PCAPs with only one unique DNS ID never have
the DS field is set to 0x40 and never contain a malformed packet. This could indicate a different
tool.

However, there are other subtle differences we can use to identify the tools. When the frequently
changing fields change, and how they change compared to each other can also be used to identify
tools. We observed that when the DNS IDs are reused for multiple domain names, the combination
of DNS ID, UDP source port and IP ID are never unique. This means that the DNS ID is not
only used with multiple domain names, but also with multiple UDP source ports and IP IDs. We

23

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
Unique IP ID

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

O
cc

ur
re

nc
e

DS field set to 0x40

Figure 4.4: Unique DNS IDs in PCAPs where at least one packet contains a DS field set
to 0x40. A significant higher relative pressence of 2 unique DNS IDs can be observed
here

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
Unique IP ID

0

20

40

60

80

100

120

140

O
cc

ur
re

nc
e

PCAP contains atleast one malformed packet

Figure 4.5: Unique IP ID in PCAPs with malformed packets. Distribution remains
roughly equal compared to the entire dataset.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Unique DNS ID

0

10

20

30

40

50

60

O
cc

ur
re

nc
e

PCAP contains no malformed packet

Figure 4.6: Unique DNS IDs in PCAPs where no malformed packets are present. Dis-
tribution remains roughly the same.

24

believe this behaviour is a sign of a different tool.
Furthermore, when we further look into the PCAPs containing only one DNS ID we have

observed some PCAPs containing a static IP ID, DNS ID and UDP source port. We expect that
this is also a different tool considering the static nature of these normally changing fields.

Moreover, we expect that the large peak around 2 unique DNS IDs is a different tool compared
to the more equal distribution of around 10 unique IDs. However, we have found no further
substantial evidence to substantiate this claim. Without clear differences in behaviour, we believe
it is incorrect to determine these small differences as different attacks.

After this static analysis, we believe we have identified the important features that can be used
to identify an attack. For the IP header, we believe that the DS Field or Type of Service field,
identifier (the IP ID) and flags can show substantial differences. For the UDP header, we expect
that the source port and checksum could be interesting. The headers and their fields are shown
in Figure 4.7 For the DNS payload, we believe that every field of the packet could be interesting.
Furthermore as mentioned we will be using metadata to determine the attack tool. Every feature
we will be using is specified in appendix C.

(a) IP header (b) UDP header

Figure 4.7: A diagram of an IP header (4.7a) and a UDP header (4.7b). Yellow fields
will be used for fingerprinting where green fields will be ignored.

We would like to be able to recognise the different tools without having to perform a cum-
bersome static analysis of the data. By identifying features that could be interesting we believe
that we can cluster the data using DBSCAN specified in subsection 2.4.1. First, we plotted the
Fox-IT data simply using every feature. In this example we set the ε to 1,5 and the plot is shown
in Figure 4.8.

25

2 0 2 4 6

2

0

2

4

6

Estimated number of clusters: 1

Figure 4.8: Scatter plot of all features from the Fox-IT dataset 2. Black dots displays
noise.

We expect that the linear form of the clustering is due to a number of features being identical.
As we mentioned all packets are almost identical and therefore hard to cluster using all features.
We, therefore, expect that using only the features that differ from each other should give different
results as shown in Figure 4.9. Note that DBSCAN plots multiple features to a 2D figure which
can make the clustering unclear as is the case here.

0 2 4 6 8 10

6

4

2

0

2

Estimated number of clusters: 2

(a) Unique features with noise

0.8 0.6 0.4 0.2 0.0 0.2 0.4

0.5

0.0

0.5

1.0

Estimated number of clusters: 2

(b) Unique features without noise

Figure 4.9: Clustering of the Fox-IT dataset based on unique features, one with noise
(4.9a) and one clustering with noise removed (4.9b).Black dots indicate noise, while
clusters are grouped by colour.

In order to further increase the accuracy of the clustering algorithm, we will attempt to narrow
down the features used to features we have identified to differentiate the attacks. The features
used in this case are as followed: DNS ID longest repeat, DNS ID unique length, DNS RR UDP
payload minimum size, IP ID longest repeat, IP ID unique length, IP DS field unique length, UDP
source port longest repeat, and UDP source port unique length as shown in Figure 4.10

Furthermore, we would like to test if the clustering algorithm is capable of detecting new tools.
The tools used in the generation of our lab data could be interesting to add to the data. For this
we took 250 packets per PCAP of lab-generated data and merged it with the dataset from Fox-IT.
We can then compare and see if the tools we use show new clusters. Since we are now unsure
whether the selected features are enough to identify the data we will use unique features to identify

26

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Estimated number of clusters: 2

(a) Selected features with noise

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Estimated number of clusters: 2

(b) Selected features without noise

Figure 4.10: Clustering of the dataset based on selected features, with noise (4.10a) and
without noise (4.10b). Black dots indicate noise.

the clusters. First, to test the clustering algorithm we clustered our lab data expecting to find 4
clusters.

1.5 1.0 0.5 0.0 0.5
1.5

1.0

0.5

0.0

0.5

Estimated number of clusters: 4

(a) Cluster of lab generated data based on the
unique features

2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0
Estimated number of clusters: 7

(b) Cluster of lab generated data combined with Fox-
IT data based on the unique features

Figure 4.11: Clustering of unique features of the lab generated dataset (4.11a) and the
lab generated data combined with Fox-IT data (4.11b).

We can observe new clusters showing up in Figure 4.11b. However, we would expect to find
between four and six clusters instead of seven since the clustering in Figure 4.9b shows two clusters
when the Fox-IT dataset is clustered based on unique features. A reasonable explanation for this
would be a change in the unique columns which could change the clusters. Another plausible
explanation is that outliers of our lab generated data could, together with Fox-IT data outliers,
form a cluster which is larger or equal to the minimum points. A complete overview of our findings
in the Fox-IT data can be found in Table 5.1.

4.2 Lab generated data

This section describes the results produced by training and evaluating several multiclass classifiers.
The data used, which in total consists of 250 billion captured packets, is collected in a closed
environment spawning automated Reflective Distributed Denial of Service (RDDoS) attacks using
the methodology described extensively in section 3.1.

27

4.2.1 Accuracy results

Initially, two algorithms were used to test the multiclass classifiers. These algorithms were the
Multiclass Neural Network (MNN) algorithm and the Multiclass Logistic Regression (MLR) algo-
rithm, which are both described in subsection 2.4.2 and subsection 2.4.3. Table 4.3 shows the first
evaluation for both algorithms. For this first evaluation the lab generated PCAP data was used,
where each PCAP signifies one attack initiated by one script and holds 1 million packet captures.

Table 4.3: The first classifier evaluation results after training the multiclass classifier
using a MNN and a MLR algorithm. For these results the lab generated PCAP data
was used containing 1 million packets per PCAP file. Because both the precision and
recall are at 100% this results in a 100% accuracy.

Evaluation measure Multiclass Neural Network Multiclass Logistic Regression

Precision 100% 100%
Recall 100% 100%
Accuracy 100% 100%

Because of these highly accurate results, it is attractive to look further into the data. Perhaps
it is possible to reduce the overall number of captures collected from an attack or to reduce the
number of features that are used while training the model. Reducing the number of captured
packets or the number of features reduces the storage required, training time for the model, and
the amount of time needed to capture the data before it can be fed into the classifier.

To verify the possibility to reduce these components the model was retrained with fewer packets
per attack, specifically with 10.000 packets and with 1.000 packets. The results of the reduction in
captures per attack are shown in Table 4.4. We can observe that reducing the number of packets
per attack to 10.000 of 1.000 does not influence the accuracy of the classifier.

Table 4.4: The classifier evaluation results after training the multiclass classifier with
lower numbers of captures per attack. As can be seen reducing the captures per attack
to 1.000 does not influence the accuracy of the classifier.

Captured packets per attack MNN accuracy MLR accuracy

1.000.000 100% 100%
10.000 100% 100%
1.000 100% 100%

The question remains whether this reduction in captured packets has other consequences than
the accuracy. Both the MNN and the MLR algorithms have the property to express the probability
for each class. Table 4.5 shows an excerpt for the evaluation results for the MLR algorithm. Note
that this table is heavily condensed both in columns and rows in order to fit on the page. In this
table it is clear that the MLR algorithm scores each feature of rows with a certain probability. The
first row, for example, has a score of probability score of 0,9864 for the class tsunami. Because this
probability is the highest, the model will classify this row as tsunami. Because the original label
is also known, it can be compared to this known label to evaluate the correctness of the model.

28

T
ab

le
4.

5:
E

x
am

p
le

of
sc

o
re

d
d

a
ta

se
t

fo
r

M
L

R
w

it
h

1
.0

0
0

ca
p

tu
re

s.
F

ea
tu

re
s

a
re

o
m

-
m

it
te

d
to

fi
t

th
e

ta
b

le
o
n

th
e

p
a
g
e.

la
b

e
l

d
n

s.
id

lo
n

g
e
st

re
p

e
a
t

d
n

s.
id

m
a
x

d
n

s,
id

m
a
x

P
(fl

o
o
d

e
r)

P
(e

th
a
n

)
P

(s
a
d

d
a
m

)
P

(t
su

n
a
m

i)
S

c
o
re

d
la

b
e
l

ts
u

n
am

i
10

00
32

03
7

3
2
0
3
7

0
,0

0
6
0

0
,0

0
4
6

0
,0

0
3
0

0
,9

8
6
4

ts
u

n
a
m

i
et

h
an

10
00

36
67

3
6
6
7

0
,0

0
1
7

0
,9

8
9
6

0
,0

0
2
3

0
,0

0
6
4

et
h

a
n

fl
o
o
d
er

5
65

49
0

6
5
4
9
0

0
,9

8
2
1

0
,0

0
2
9

0
,0

0
9
8

0
,0

0
5
2

fl
o
o
d

er
et

h
an

10
00

19
33

0
1
9
3
3
0

0
,0

0
1
7

0
,9

8
9
6

0
,0

0
2
3

0
,0

0
6
4

et
h

a
n

fl
o
o
d
er

5
64

21
8

6
4
2
1
8

0
,9

8
2
1

0
,0

0
2
9

0
,0

0
9
8

0
,0

0
5
2

fl
o
o
d

er
et

h
an

10
00

22
11

8
2
2
1
1
8

0
,0

0
1
7

0
,9

8
9
6

0
,0

0
2
3

0
,0

0
6
4

et
h

a
n

ts
u

n
am

i
10

00
26

66
3

2
6
6
6
3

0
,0

0
6
2

0
,0

0
5
1

0
,0

0
3
1

0
,9

8
5
7

ts
u

n
a
m

i
sa

d
d

am
1

65
49

4
6
5
4
9
4

0
,0

0
9
5

0
,0

0
2
5

0
,9

8
5
2

0
,0

0
2
8

sa
d

d
a
m

ts
u

n
am

i
10

00
18

79
7

1
8
7
9
7

0
,0

0
6
0

0
,0

0
4
7

0
,0

0
3
0

0
,9

8
6
3

ts
u

n
a
m

i
fl

o
o
d
er

5
59

54
0

5
9
5
4
0

0
,9

8
2
0

0
,0

0
2
9

0
,0

0
9
9

0
,0

0
5
2

fl
o
o
d

er
ts

u
n

am
i

10
00

52
22

8
5
2
2
2
8

0
,0

0
6
2

0
,0

0
5
1

0
,0

0
3
1

0
,9

8
5
6

ts
u

n
a
m

i
ts

u
n

am
i

10
00

58
71

9
5
8
7
1
9

0
,0

0
5
8

0
,0

0
4
3

0
,0

0
2
9

0
,9

8
7
0

ts
u

n
a
m

i
fl

o
o
d
er

9
61

00
2

6
1
0
0
2

0
,9

8
2
1

0
,0

0
2
9

0
,0

0
9
8

0
,0

0
5
2

fl
o
o
d

er
fl

o
o
d
er

5
49

73
7

4
9
7
3
7

0
,9

8
2
1

0
,0

0
2
9

0
,0

0
9
8

0
,0

0
5
2

fl
o
o
d

er
fl

o
o
d
er

5
59

05
8

5
9
0
5
8

0
,9

8
2
1

0
,0

0
2
9

0
,0

0
9
8

0
,0

0
5
2

fl
o
o
d

er
et

h
an

10
00

30
09

8
3
0
0
9
8

0
,0

0
1
7

0
,9

8
9
6

0
,0

0
2
3

0
,0

0
6
4

et
h

a
n

sa
d

d
am

1
65

53
3

6
5
5
3
3

0
,0

0
9
4

0
,0

0
2
5

0
,9

8
5
3

0
,0

0
2
8

sa
d

d
a
m

sa
d

d
am

1
65

48
8

6
5
4
8
8

0
,0

0
9
6

0
,0

0
2
6

0
,9

8
5
0

0
,0

0
2
9

sa
d

d
a
m

et
h

an
10

00
16

51
9

1
6
5
1
9

0
,0

0
1
7

0
,9

8
9
6

0
,0

0
2
3

0
,0

0
6
4

et
h

a
n

ts
u

n
am

i
10

00
35

85
0

3
5
8
5
0

0
,0

0
5
9

0
,0

0
4
5

0
,0

0
3
0

0
,9

8
6
7

ts
u

n
a
m

i
fl

o
o
d
er

5
63

43
5

6
3
4
3
5

0
,9

8
2
2

0
,0

0
2
9

0
,0

0
9
7

0
,0

0
5
2

fl
o
o
d

er
sa

d
d

am
1

65
51

9
6
5
5
1
9

0
,0

0
9
6

0
,0

0
2
5

0
,9

8
5
1

0
,0

0
2
9

sa
d

d
a
m

ts
u

n
am

i
10

00
35

36
8

3
5
3
6
8

0
,0

0
5
9

0
,0

0
4
6

0
,0

0
3
0

0
,9

8
6
5

ts
u

n
a
m

i
ts

u
n

am
i

10
00

72
81

7
2
8
1

0
,0

0
6
1

0
,0

0
4
9

0
,0

0
3
1

0
,9

8
5
9

ts
u

n
a
m

i
ts

u
n

am
i

10
00

40
56

6
4
0
5
6
6

0
,0

0
6
2

0
,0

0
5
2

0
,0

0
3
1

0
,9

8
5
4

ts
u

n
a
m

i
fl

o
o
d
er

10
60

81
8

6
0
8
1
8

0
,9

8
2
1

0
,0

0
3
0

0
,0

0
9
8

0
,0

0
5
2

fl
o
o
d

er
fl

o
o
d
er

5
62

22
2

6
2
2
2
2

0
,9

8
2
0

0
,0

0
3
0

0
,0

0
9
8

0
,0

0
5
2

fl
o
o
d

er
ts

u
n

am
i

10
00

82
87

8
2
8
7

0
,0

0
5
9

0
,0

0
4
4

0
,0

0
2
9

0
,9

8
6
8

ts
u

n
a
m

i
ts

u
n

am
i

10
00

18
73

2
1
8
7
3
2

0
,0

0
6
0

0
,0

0
4
7

0
,0

0
3
0

0
,9

8
6
3

ts
u

n
a
m

i
sa

d
d

am
1

65
49

9
6
5
4
9
9

0
,0

0
9
7

0
,0

0
2
6

0
,9

8
4
9

0
,0

0
2
9

sa
d

d
a
m

29

Because these probabilities are stored these can be averaged for the correct label, which signifies
a certain amount of “certainty” of the trained model. Table 4.6 shows these average scored
probabilities respectively using a MNN and a MLR while reducing the number of captured packets.
The MNN turns out to be more confident in general with an average probability of 99% compared
to 98% for the MLR algorithm. However, both these values are exceptionally high and therefore the
differences are insignificant for the final result, especially since both algorithms have an accuracy
of 100%. Additionally, we can note that decreasing the number of captures for a feature row
barely influences the confidence.

Though we deem the differences to be insignificant, it is interesting to note that in 7 out
of 8 cases the average scored probability for the correct class increases instead of decreases by
a minimal amount (the exception is the saddam class in the MLR). Because we also consider
these differences as insignificant we can conclude that reducing the number of captures has no
meaningful impact on the classification and can safely be done without influencing the result.

Table 4.6: Average scored probabilities for classes using MNN and MLR.

Attack label Algorithm 1.000.000 captures 10.000 captures 1.000 captures

flooder
MNN 0,9999231884 0,9999231884 0,9999321089
MLR 0,9852063487 0,9852063487 0,9852958462

ethan
MNN 0,9999454031 0,9999454031 0,9999536729
MLR 0,9882222996 0,9882222996

saddam
MNN 0,9999306398 0,9999306398 0,9999332861
MLR 0,9875003358 0,9875003358 0,9869602409

tsunami
MNN 0,9999223037 0,9999223037 0,9999306374
MLR 0,9841269312 0,9841269312 0,9875378556

4.2.2 Training with fewer features

The Multiclass Logistic Regression algorithm stores the weights it assigns to features for different
classes, as mentioned in subsection 2.4.3. These weights indicate the importance of the features for
different classes and thus signifies what features might be irrelevant and can be left out. I.e. when
features score a weight of 0 among all classes they are not contributing to the model. Because of
this useful property some additional experiments were done using the MLR algorithm with only
a selected set of features.

Using the feature weights, the number of features can be limited to only the ones used in
the model. Table 4.7 shows the output for the MLR algorithm. From the in total 71 features
present in the dataset, only 21 are used by the classifier. Other unused features have a value of
0 over all the classes and are therefore omitted in the table. Using these results we can re-train
and evaluate the MLR classifier with a thousand captures per attack and only these 21 features.
Again, reducing the features saves both storage and training time for the model, as fewer features
have to be calculated, stored and evaluated. After reducing the dataset to only these features,
evaluation again results in an accuracy of 100% (see Figure 4.12 for the final confusion matrix).
Table 4.8 shows the average probabilities of this newly trained model compared to the model
using all the features. Reducing the number of features shows no significant differences in average
probabilities over all the classes. Therefore we can conclude that in this case, with only four attack
tools, calculating and storing 21 features to train the classifier on suffices.

4.2.3 Principal Component Analysis (PCA)

To visualise the data in a scatter plot Principal Component Analysis (PCA) was performed on the
top 10 set of weighted features provided by the Multiclass Logistic Regression (MLR) algorithm

30

Table 4.7: Feature weights from MLR. Features with a weight of 0 are omitted, but can
be found in the appendix C

Feature flooder ethan saddam tsunami

Bias 0.622728 2.57913 -1.90491 -1.29728
dns.qry.class unique -0.79392 0 1.90643 0
dns.id unique len -0.761273 0 1.87811 0
dns.qry.type unique 0.117726 -1.15283E-7 0 -1.79597
ip.dsfield.dscp unique -0.122946 0 0 1.79175
udp.srcport unique len -0.117052 0 1.53162 0
ip.id longest cons -1.4457 0 0.421945 0.0336367
udp.checksum used 0 1.07789 0 -0.249253
dns.count.add rr max 0 -1.07032 0 0.241751
dns.count.add rr min 0 -1.07032 0 0.241751
dns.count.add rr unique 0 -1.07032 0 0.241751
udp.checksum.status unique 0 -1.07032 0 0.241751
dns.rr.udp payload size max 0.969494 -0.250661 0 0
dns.rr.udp payload size min 0.969494 -0.250661 0 0
dns.rr.udp payload size unique 0.969494 -0.250661 0 0
dns.id shortest repeat -0.504329 0.105602 -0.140917 0.541862
udp.srcport shortest repeat -0.504329 0.105602 -0.140917 0.541862
dns.id longest repeat -0.490286 0.103192 -0.148379 0.537796
udp.srcport longest repeat -0.48792 0.102797 -0.14966 0.537126
udp.srcport max 0 -0.16494 0 0
udp.srcport min 0 0 0 0.132509
dns.id max 0 -0.0262525 0 0

Figure 4.12: Confusion matrix from the evaluation results of the MLR classifier on the
dataset of 1.000 captures per attack, trained only with the 21 selected features that were
weighted by the same MLR model.

31

Table 4.8: Average scored probabilities for classes using MLR before and after applying
feature selection on the dataset of 1.000 captures per attack.

Attack label 1.000 captures (all features) 1.000 captures (selected features)

ethan 0,9906537163 0,9906696107
flooder 0,9852958462 0,9855052562
saddam 0,9869602409 0,9867325054
tsunami 0,9875378556 0,9874639342

(see Table 4.7). This reduces the number of dimensions from 10 to 3, and can thus be used in
a 3D scatter plot. The results are shown in Figure 4.13. In this figure clearly separated clusters
of categorised points are visible, which are separable by the human eye. The plot is shown
from two angles to correctly display the dimensions. This visualisation indicates that the data is
easily distinguishable, confirming the earlier high accuracy numbers of both the MNN and MLR
algorithms.

4.2.4 Decision tree

Because of the high accuracy obtained by using the MNN and MLR algorithms we experimented
with another algorithm called the Multiclass Decision Forest (MDF) algorithm (earlier described
in subsection 2.4.4). After setting the number of trees to be generated to one, 100% accuracy was
still obtained with the dataset of 1.000 captures per attack and with the selected features from
MLR in place. This decision tree is shown in Figure 4.14a.

In all of the previous results features used are pattern sensitive. That is, in our attacks we only
use one attacker. However, if multiple attackers use the reflector at the same time for the same
target, some of these features such as the longest repeat and the longest consecutive increasing
subset are influenced by a second or third simultaneous attacker. Therefore we also attempted to
construct a decision tree without these fields, which is shown in Figure 4.14b. This tree also has
an accuracy of 100%.

Because there are only three decision nodes and four leafs, it is trivial to write a small script
that performs the classification of the RDDoS data. This script is listed in Code 4.1.

32

−600−400−200 0 200 400−
20

0
−

15
0

−
10

0
 −

50

0
 5

0
 1

00
 1

50
 2

00

−1500
−1000

 −500
 0

 500

PC2

P
C

1

P
C

3

ethan

flooder

saddam

tsunami

(a)

−1500 −1000 −500 0 500−
20

0
−

15
0

−
10

0
 −

50

0
 5

0
 1

00
 1

50
 2

00

−600
−400

−200
 0

 200
 400

PC1

P
C

2

P
C

3

ethan

flooder

saddam

tsunami

(b)

Figure 4.13: 3D scatter plot of the data points categorised by attack tool after performing
Principal Component Analysis (PCA) on the top 10 features weighted by the Multiclass
Logistic Regression (MLR) algorithm. A and B show different angles of the same plot.

33

(a
)

F
ro

m
le

ft
to

ri
g
h
t,

to
p

to
b

o
tt

o
m

:
u
d
p
.s

rc
p

o
rt

sh
o
rt

es
t

re
p

ea
t,

d
n
s.

rr
.u

d
p

p
ay

lo
a
d

si
ze

m
in

a
n
d

u
d
p
.c

h
ec

k
su

m
.s

ta
tu

s
u
n
iq

u
e

le
n
.

(b
)

F
ro

m
le

ft
to

ri
g
h
t,

to
p

to
b

o
tt

o
m

:
u
d
p
.s

rc
p

o
rt

u
n
iq

u
e

le
n
,

d
n
s.

co
u
n
t.

a
d
d

rr
m

in
a
n
d

d
n
s.

rr
.u

d
p

p
ay

lo
a
d

si
ze

m
in

.

F
ig

u
re

4.
14

:
T

w
o

d
ec

is
io

n
tr

ee
s

g
en

er
a
te

d
u

si
n

g
th

e
M

u
lt

ic
la

ss
D

ec
is

io
n

F
o
re

st
(M

D
F

)
al

go
ri

th
m

.
B

ot
h

tr
ee

s
a
re

g
en

er
a
te

d
o
n

th
e

d
a
ta

se
t

co
n
ta

in
in

g
1
.0

0
0

ca
p

tu
re

d
p

a
ck

et
s

p
er

at
ta

ck
,

w
it

h
th

e
21

se
le

ct
ed

fe
a
tu

re
s

d
is

cu
ss

ed
in

su
b

se
ct

io
n

4
.2

.2
.

H
ow

ev
er

,
th

e
tr

ee
on

th
e

ri
gh

t
h

as
al

so
el

im
in

a
te

d
a
ll

fe
a
tu

re
s

th
a
t

in
fe

r
p

a
tt

er
n

s.

34

Code 4.1: Script written in Python3 that uses the knowledge obtained from the Mul-
ticlass Decision Forest (MDF) algorithm to classify the data from an CSV file. The
classify tree function consists out of only three if statements, which makes classifi-
cation fast. This script loops trough all the lines in the CSV feature file, calling the
classify tree function and printing whether the classifier is correct or not for each
line.

1 import os, csv

2

3 def classify_tree(o):

4 a = int(o['dns.count.add_rr_min']) <= 0

5 b = int(o['dns.rr.udp_payload_size_min']) <= 4096

6

7 if int(o['udp.srcport_unique_len']) <= 1:

8 return 'ethan' if a else 'tsunami'

9 return 'saddam' if b else 'flooder'

10

11 all_files = filter(lambda x: x.endswith('csv_feature'), os.listdir('.'))

12 for filename in all_files:

13 data = list(csv.DictReader(open(filename, 'r')))[0]

14 print(data['label'] == classify_tree(data))

35

CHAPTER 5

Discussion

Do reflective DDoS attacks leave distinctive traces

We have observed that reflective attacks can leave distinctive traces. From the 4 different tools
we have tested in the lab environment, we can clearly differentiate these attacks from each other.
However, we must address the fact that identifying these attacks in lab environments is a different
problem than identifying attacks in the wild on honeypots. We expect it is quite likely that
different tools will have minute differences. However, it is also not impossible that two tools will
look exactly the same.

In dataset 1 provided by Fox-IT we expect to have identified 2 different tools. However, we
have concluded that a larger amount of packets than 25 are required to perform data analysis. In
Fox-IT dataset 2 we are confident that we have identified at least 4 different tools. We have found
evidence for more tools but are uncertain if these indicate actual attacks. An overview of the
tools can be found in Table 5.1. The degree of certainty is a guide to display how much evidence
for the fact that these are indeed different attack tools is found. For fairly certain and uncertain
we expect it to be plausible that more than one tool falls in this dataset. Also, note that some
of the PCAPs remain unidentified in these classifications. These PCAPs could be outliers of the
identified tools or completely different attack tools.

Table 5.1: Overview of tools identified in the Fox-IT dataset 2

Tool Features Certainty

A ≈ 2 unique DNS IDs / 250 packets, DS Field set to 0x40 Certain

B Static DNS ID, UDP source port and IP ID per attack Certain

C DNS ID, UDP source port, and IP ID always change together,
and the DNS ID is never used for different domains.

Certain

D ≈ 1 unique DNS ID / 250 packets with no DS Field set to 0x00
and no malformed packets

Certain

E ≈ 10-13 unique DNS IDs / 250 packets and DS Field set to 0x00 Fairly certain

F 2 unique DNS IDs and DS Field set to 0x00 Fairly certain

G PCAPs contain malformed packets Uncertain

We can provide a good estimate that PCAPs which show consistent differences are from dif-
ferent tools. However, it is impossible to disprove that two similar PCAPs are not from two
different tools when the PCAPs are not labelled. This is essentially the problem with identifying
these RDDoS attacks from an unlabeled dataset. We believe it is likely that each tool has dif-
ferent features and can, therefore, be identified. However, we also believe it is possible that two
independent attackers create the exact same tool. Two particularly lazy programmers could, for
example, create two different tools which both have random DNS ID, UDP source port, and IP
ID generated once per attack. These generated features can then be used statically per attack.
Considering the fact that most DNS packets appear to be crafted the same across tools in the
Fox-IT dataset, the DNS packets are mostly the same, and that these frequently changing fields
are now also used the same way it is impossible to discriminate between two different tools.

36

Identifying RDDoS attacks relies on performing in-depth pattern recognition and other ad-
vanced distinction methods. Therefore multiple packets are required to identify attacks. Further-
more, we expect that even pattern recognition can be a flawed detection method for some tools.
This limitation is based on the very fact that an RDDoS attack is distributed. If a botnet of
50 bots sends requests to every reflector based on some pattern, the pattern might be different
with 100 bots. Longest consecutive DNS IDs, count of unique DNS ID, and other factors can
then start to change from attack to attack. This would disturb the pattern, and thus we conclude
that behavioural analysis can change when the botnet changes. The severity of this limitation is
completely dependent on the tool used, however. We have observed some tools that select a single
reflector per thread and tools that simply loop over every reflector in every thread.

Additionally, it is possible for an attacker to use different tools on different bots. Once this
happens one attack will have several patterns from several attack tools that intermingle. This
could create entirely new patterns which could lead researchers to believe that new attacks are in
fact a combination of existing tools. However, we expect that this limitation is less severe than
the different patterns caused by changing botnet structures. We suspect that the tools an attacker
uses are less frequent to change than a botnet, which changes frequently as bots get cleaned up or
new bots get infected. Furthermore, a certain collection of tools can still create a distinct pattern.
Thus, a collection of tools can be grouped into a single tool and still be identified per attack.
Exactly how much these limitations hinder recognition is unclear.

It should be mentioned that the similarity of tools in the Fox-IT dataset could be caused by a
loss of servers. Fox-IT has notified us that it lost two of its most used honeypots in recent months.
The new honeypots which of course have a different IP address are still being discovered and put
into reflector lists of attackers. If only a select group of attackers are using the honeypots it could
explain the limited attack tools found. We are uncertain to which degree this factors into the
results.

Can a fingerprint be build using distinctive traces left by reflective DDoS
attacks

We expect that fingerprinting RDDoS attacks is impossible. The concept of a fingerprint, in
this context, is some combination of unique identifiers that can be used to pinpoint to a single
RDDoS tool used in an attack. However, these tools do have to follow a specific protocol, i.e.
DNS, and are therefore quite alike in their behaviour. We believe that tools can be identical in
their network behaviour, yet still be completely different programs. Therefore, fingerprinting is
impossible considering the fact that two different tools could yield the exact same fingerprint.

Is it possible to identify the tool / script / service used in a reflective
DDoS attack

We have been successful in identifying four distinctive DNS RDDoS tools based on network cap-
tures with the help of a machine learning classifier. However, this does require a labelled dataset
containing all the features used beforehand, as a tool cannot be classified as such if the classifier
is unaware about its behaviour. Additionally, just as for the previous question, two tools can be
100% identical in their networking behaviour and still be other tools. In those cases not a single
machine learning algorithm would be able to keep those tools apart using the current methodology.

Can machine learning be utilised to automate the identification process

We have shown that clustering can achieve a certain degree of success when applied to real data.
However, clustering with an unknown number of expected clusters is hard. Using DBSCAN
allows us to perform clustering, but it is uncertain what the correct ε is to create correct clusters.
Furthermore, when verified on our lab data the clustering appears to be working correctly as
shown in Figure 4.11a.

37

We expect that using clustering together with static analysis could be effective in research.
Gathering a general idea in what ways the dataset differs and then clustering based on those
features, comparing it with the unique features and then selecting the right input for DBSCAN
could be valuable. We have shown that DBSCAN works with our lab generated data, and it
appears that new clusters indeed show up when new tools are added to a dataset.

As for supervised learning we can say with confidence that it is possible to correlate network
captures to the tools being used for the attack. However, there are some side notes here. Just as for
the previous question the same limitations hold here. When two different tools exhibit exactly the
same network behaviour it becomes hard, if not impossible, for a classifier to distinguish between
them. Additionally all tools have to be known beforehand by the classifier, as the classifier is not
able to classify a tool it was not trained on before.

However, despite these limitations, we believe that the supervised learning algorithms have
shown that machine learning can successfully automate the detection process to some degree.
This result confirms our suspicion that different RDDoS tools leave distinctive traces in most
cases. Furthermore, the classification of these tools could be condensed to only look at features
which do not require pattern recognition and thus bypass the limitations specified in this chapter.
We expect that the trained algorithms will remain accurate when adding more tools to the list of
tools. We therefore believe that the results of the supervised learning algorithms substantiate our
claim that DBSCAN can be used to cluster data.

38

CHAPTER 6

Conclusion

In this research, we have shown that RDDoS attacks using DNS reflectors can leave distinct traces
and can be identified based on certain behavioural patterns. Using data created in a lab we have
successfully identified 4 different attack tools using machine learning. However, when analysing
data gathered from actual honeypots in the real world it appears that identification is a lot harder.

We expect that though it is probable that RDDoS attacks leave distinct traces, it is far from
impossible that two tools leave identical traces. Thus we believe that creating fingerprints of these
RDDoS attacks is not possible. It is possible to see the difference between two different attacks,
and it is possible to prove that two different tools leave two different traces. However, when using
unlabelled data it is impossible to prove that two apparently identical attacks, and thus assumed
the same tool, are in fact the same tool. Therefore, we conclude that though identification of
different tools is likely possible, it is not impossible to incorrectly identify two extremely similar
tools as the same tool.

We have shown that identification likely requires a large set of captures packets. It is im-
probable that individual PCAPs can be identified as different attacks. This identification method
relies on pattern recognition and metadata about the attacks like the unique DNS IDs found in an
attack, the minimum and maximum value of a UDP port and other data that can be yielded from
the attacks. We acknowledge that some of this data can be different based on outside factors like
the size and shape of an attacking botnet. Though we expect that this could affect the recognition,
we believe that pattern recognition and looking at metadata, in combination with features gained
from the IP header, UDP header and DNS payload is the best method for identification.

We expect to have found at least 4 and possibly 7 different tools as shown in Table 5.1. The
identification process is based on manual inspection of approximately 1800 different attacks. When
performing machine learning on this data it is possible to plot the data based on unique features
and selected features. We have observed that the best results of plotting are achieved when the
data is plotted by using selected features. These selected features are based on features that are
identified as important features in the manual inspection.

As for the lab data we have shown that it is possible within a small test environment to
successful identify RDDoS tools with a high accuracy using a trained machine learning multiclass
classifier. The process of gathering the network captures can be fully automated. Newly emerged
scripts can be added to the automation process where the attacks are generated, data gathered
and added to the training set of the model. The results of these classifiers may prove useful in
network monitoring tools, forensic investigations and statistical analysis of network traffic.

Furthermore, the results gathered with supervised learning shows that RDDoS attacks can
indeed, and often do, leave distinctive traces. This result further builds on our hypothesis that it
is indeed likely that these distinctive traces are left by attack tools. For the four tools we used
all algorithms have shown to be 100% accurate in classifying the correct tool. Because of this we
argue that the Multiclass Decision Forest algorithm is the best choice in this case as it can be
expressed using only three if statements.

Considering the results of the static analysis, unsupervised machine learning, and supervised
machine learning we are confident that enough prove has been gathered to show that RDDoS
attack tools which use DNS leave distinctive traces that can be used to identify these tools.

39

CHAPTER 7

Future work

Instead of solely focusing on DNS the feasibility of the same approach could be tested on other
protocols such as NTP, SNMP, SSDP, and other protocols. These protocols do allow for the same
type of RDDoS attacks as DNS and could show similar distinctive behaviour. Apart from that this
research only trained the classifier on four tools that we were able to find in the limited amount of
time we had. Adding more tools may influence the accuracy results of the classifier in a negative
way. Other factors that might influence the accuracy are multiple attacks being executed at once,
possibly from multiple tools or attackers simultaneously. Yet another interesting approach may
be to include other features such as captures from the victim’s side. This data, combined with
the data from the reflector’s side, may lead to other interesting patterns.

Finally a different experiment could be done where the trained classifier is fed with the un-
labelled data received from Fox-IT. In this case it is impossible to evaluate the model as the
estimated label can not be verified against a known label. However, there could be some interest-
ing results in the probabilities assigned by the classifier to each of the trained classes giving some
indication of the input data to those trained classes.

40

Abbreviations

Additional RRs Additional Resource Records.

ANN Artificial Neural Network.

Authority RRs Authority Resource Records.

C&C Command and Control.

CSV Comma-separated values.

DBSCAN Density-Based Spatial Clustering of Applications with Noise.

DDoS Distributed Denial of Service.

DF Don’t Fragment.

DNS Domain Name System.

DoS Denial of Service.

DSCP Differentiated Services Code Point.

ICMP Internet Control Message Protocol.

MDF Multiclass Decision Forest.

MF More Fragments.

MGKM Modified Global K-means.

MLR Multiclass Logistic Regression.

MNN Multiclass Neural Network.

PCA Principal Component Analysis.

PCAP Packet Capture.

RB Reserved Bit.

RDDoS Reflective Distributed Denial of Service.

RLL Response Rate Limiting.

SaaS Software as a Service.

UDP User Datagram Protocol.

41

APPENDIX A

Scripts

Code A.1: Bash script that automates the execution of DNS RDDoS attacks by control-
ling the execution of the attack and tcpdump processes on the remote hosts (attacker and
reflector). First the attack is initiated on the attacker host, after which the process ID
is stored as a variable. Once the attack is started, tcpdump is launched on the reflector
server. Because tcpdump stops after one million captures the script will wait for it to
end, and once this happens the script will kill the earlier stored process ID of the attack
script at the attacker host, completing one successfull round of attack.

1 attacker_host="attacker_root"; reflector_host="reflector_root"

2 begin=0; end=249; current=$begin

3

4 function attack() {

5 echo "> Starting attack $1"

6

7 ssh -T $attacker_host <<EOF > tmp_pid 2> /dev/null

8 cd '/var/attack_scripts/dns_ddos_scripts/flooder'

9 nohup ./dns_amp_tool '10.0.0.4' '12345' 'reflection_file' '8' '1000000'

> /dev/null 2>&1 < /dev/null &↪→

10 echo \$!

11 EOF

12

13 attack_pid=$(tail -n1 tmp_pid); rm tmp_pid

14 echo "> Attack started with PID $attack_pid on $attacker_host"

15

16 # Monitoring

17 ssh -T $reflector_host "tcpdump -i eno2 udp port 53 and dst host

10.0.0.2 and not src 10.0.0.2 -w /mnt/captures/flooder_$1.pcap

-c 1000000" > /dev/null 2>&1 &

↪→

↪→

18 monitor_pid=$!

19 echo "> Monitoring started with PID $monitor_pid on $reflector_host"

20

21 wait $monitor_pid; echo "> Monitoring finished"

22 echo "> Stopping attack"

23 ssh -T $attacker_host "kill -9 $attack_pid" > /dev/null 2>&1

24 }

25

26 while [$current -le $end]

27 do

28 attack $current; ((current++)); echo ""

29 done

42

Code A.2: Bash script that loops through all the Packet Capture (PCAP) files in the
working directory, converting all the files to a Comma-separated values (CSV) file using
tshark. This script forks the tshark processes and makes sure only five processes run at
simultaneously. Only fields that are of interest for the multiclass classifier are exported.

1 pids=()

2 running=0

3

4 trap ctrl_c SIGINT

5 function ctrl_c() {

6 kill -9 $pids

7 exit

8 }

9

10 for file in *.pcap

11 do

12 newfile=`basename "$file" .pcap`.csv

13 echo $newfile

14 tshark -r $file -Tfields > $newfile -e ip.id -e ip.version -e

ip.dsfield.dscp -e ip.dsfield.ecn -e ip.flags.rb -e ip.flags.df

-e ip.flags.mf -e ip.proto -e udp.srcport -e udp.checksum -e

udp.checksum.status -e dns.id -e dns.flags.response -e

dns.flags.opcode -e dns.flags.truncated -e dns.flags.recdesired

-e dns.flags.z -e dns.flags.checkdisable -e dns.count.queries -e

dns.count.answers -e dns.count.auth_rr -e dns.count.add_rr -e

dns.qry.type -e dns.qry.class -e dns.resp.name -e

dns.rr.udp_payload_size -e dns.resp.type -e dns.resp.ext_rcode

-e dns.resp.edns0_version -e dns.resp.z -e dns.resp.z.do -e

dns.resp.z.reserved -e dns.resp.len &

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

15

16 pids+=($!)

17 sleep 1

18

19 running=$(pgrep tshark -c)

20

21 # Run 5 conversion scripts simultaneously

22 while [$running -ge 5]

23 do

24 echo "Converting..."

25 sleep 5

26 running=$(pgrep tshark -c)

27 done

28 done

29

30 wait $pids

43

Code A.3: This Python script opens a Comma-separated values (CSV) file provided as
a user parameter and from this generates all the features used for the classifier. Once
ready, the resulting CSV feature file is written to the specified output path. The helper
functions such as unique len and min max are listed in Code A.4 and Code A.5.

1 df = pd.DataFrame.from_records(iter(reader))

2 df = df.loc[df['dns.id'] != '']

3 df = df.apply(lambda x: x.str.strip()).replace('', -1)

4

5 data = {**{}, **min_max('ip.id', df), **repeat_stats('ip.id', df),

**unique_len('ip.id', df), **unique_len('ip.dsfield.dscp', df,

True), **unique_len('ip.flags.rb', df, True),

**unique_len('ip.flags.df', df, True), **unique_len('ip.flags.mf',

df, True), **unique_len('ip.proto', df, True),

**min_max('udp.srcport', df), **repeat_stats('udp.srcport', df),

**unique_len('udp.srcport', df), **unique_len('udp.checksum', df),

**unique_len('udp.checksum.status', df, True), **min_max('dns.id',

df), **repeat_stats('dns.id', df), **unique_len('dns.id', df),

**unique_len('dns.flags.response', df, True),

**unique_len('dns.flags.opcode', df, True),

**unique_len('dns.flags.truncated', df, True),

**unique_len('dns.flags.recdesired', df, True),

**unique_len('dns.flags.z', df, True),

**unique_len('dns.flags.checkdisable', df, True),

**min_max('dns.count.queries', df),

**unique_len('dns.count.queries', df, True),

**min_max('dns.count.answers', df),

**unique_len('dns.count.answers', df, True),

**min_max('dns.count.auth_rr', df),

**unique_len('dns.count.auth_rr', df, True),

**min_max('dns.count.add_rr', df), **unique_len('dns.count.add_rr',

df, True), **unique_len('dns.qry.type', df, True),

**unique_len('dns.qry.class', df, True),

**min_max('dns.rr.udp_payload_size', df),

**repeat_stats('dns.rr.udp_payload_size', df),

**unique_len('dns.rr.udp_payload_size', df, True) }

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

6

7 data['ip.id_longest_cons'] =

len(longest_consecutive_increasing(list(df['ip.id'])))↪→

8 data['udp.checksum_used'] = (len(df.loc[df['udp.checksum'] != 0]) > 0)

9 data['udp.srcport_longest_cons'] =

len(longest_consecutive_increasing(list(df['udp.srcport'])))↪→

10 data['dns.id_longest_cons'] =

len(longest_consecutive_increasing(list(df['dns.id'])))↪→

11 data['dns.rr.udp_payload_size_longest_cons'] =

len(longest_consecutive_increasing(list(df['dns.rr.udp_payload_size'])))↪→

12 data['label'] = args.l

13

14 with open(args.o, 'w') as output_file:

15 writer = csv.DictWriter(output_file,fieldnames=sorted(data.keys()))

16 writer.writeheader()

17 writer.writerow(data)

44

Code A.4: Helper functions that are part of the Python3 code listed in A.3.

1 def shortest_repeat(data):

2 return str(min(sum(1 for i in g) for k,g in groupby(data)))

3

4 def longest_repeat(data):

5 return str(max(sum(1 for i in g) for k,g in groupby(data)))

6

7 def min_max(name, data):

8 return {

9 name + '_min': str(data[name].min()),

10 name + '_max': str(data[name].max())

11 }

12

13 def repeat_stats(name, data):

14 return {

15 name + '_shortest_repeat': str(shortest_repeat(data[name])),

16 name + '_longest_repeat': str(longest_repeat(data[name]))

17 }

18

19 def unique_len(name, data, include=False):

20 unique = sorted(list(data[name].unique()))

21 unique = [str(i) for i in unique]

22

23 data = {}

24 data[name + '_unique_len'] = str(len(unique))

25

26 if include:

27 data[name + '_unique'] = str(','.join(unique))

28 return data

45

Code A.5: Helper functions that is part of the Python3 code listed in A.3. This function
calculates the longestt consecutive increasing subset from a list, such as [3,4,5,6,7]

but not [3,4,5,7,8] or [3,4,5,5,6] [31].

1 def longest_consecutive_increasing(intvect):

2 max_so_far = 0

3 curr_count = 1

4 max_pos = -1

5

6 #iterate through all integers in the vector

7 for counter1, integer in enumerate(intvect):

8 #case where we just started. No comparison needed yet.

9 if counter1 == 0:

10 pass

11 #case where we have an increase

12 elif intvect[counter1] == intvect[counter1-1] + 1:

13 curr_count += 1

14 #case where we dont have an increase

15 else:

16 if curr_count > max_so_far:

17 max_pos = counter1-curr_count

18 max_so_far = curr_count

19 curr_count = 1

20 #final case after exiting loop

21 if curr_count > max_so_far:

22 max_pos = len(intvect)-curr_count

23 max_so_far = curr_count

24 return intvect[max_pos:max_pos+max_so_far]

46

APPENDIX B

DNS packets in Fox-IT dataset

Packet 1 - Common DNS packet

0000 00 00 00 00 00 00 00 00 00 00 00 00 08 00 45 00E.

0010 00 40 fc 78 00 00 f5 11 44 5a 6c 1c 38 a9 7f 00 .@.x....DZl.8...

0020 00 01 1c 60 00 35 00 2c 00 00 b3 23 01 00 00 01 ...`.5.,...#....

0030 00 00 00 00 00 01 04 6c 65 74 68 02 63 63 00 00leth.cc..

0040 ff 00 01 00 00 29 23 28 00 00 00 00 00 00)#(......

Internet Protocol Version 4, Src: 108.28.56.169, Dst: 127.0.0.1

0100 = Version: 4

.... 0101 = Header Length: 20 bytes (5)

Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)

Total Length: 64

Identification: 0xfc78 (64632)

Flags: 0x00

Fragment offset: 0

Time to live: 245

Protocol: UDP (17)

Header checksum: 0x445a

User Datagram Protocol, Src Port: 7264, Dst Port: 53

Domain Name System (query)

Transaction ID: 0xb323

Flags: 0x0100 Standard query

Questions: 1

Answer RRs: 0

Authority RRs: 0

Additional RRs: 1

Queries

leth.cc: type ANY, class IN

Name: leth.cc

[Name Length: 7]

[Label Count: 2]

Type: * (A request for all records the

server/cache has available) (255)

Class: IN (0x0001)

Additional records

<Root>: type OPT

Name: <Root>

Type: OPT (41)

UDP payload size: 9000

Higher bits in extended RCODE: 0x00

EDNS0 version: 0

Z: 0x0000

47

Packet 2 - Malformed EDNS header

0000 00 00 00 00 00 00 00 00 00 00 00 00 08 00 45 00E.

0010 00 45 d7 32 00 00 f7 11 67 9b 6c 1c 38 a9 7f 00 .E.2....g.l.8...

0020 00 01 1b 48 00 35 00 31 00 00 7f 9d 01 00 00 01 ...H.5.1........

0030 00 00 00 00 00 01 04 6c 65 74 68 02 63 63 00 00leth.cc..

0040 ff 00 01 62 65 29 23 28 00 01 ff 00 29 23 00 00 ...be)#(....)#..

0050 00 00 00 ...

Internet Protocol Version 4, Src: 108.28.56.169, Dst: 127.0.0.1

0100 = Version: 4

.... 0101 = Header Length: 20 bytes (5)

Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)

Total Length: 64

Identification: 0xfc78 (64632)

Flags: 0x00

Fragment offset: 0

Time to live: 245

Protocol: UDP (17)

Header checksum: 0x445a

User Datagram Protocol, Src Port: 7264, Dst Port: 53

Domain Name System (query)

Transaction ID: 0xb323

Flags: 0x0100 Standard query

Questions: 1

Answer RRs: 0

Authority RRs: 0

Additional RRs: 1

Queries

leth.cc: type ANY, class IN

Name: leth.cc

[Name Length: 7]

[Label Count: 2]

Type: * (A request for all records the

server/cache has available) (255)

Class: IN (0x0001)

Additional records

<Root>: type OPT

Name: <Root>

Type: OPT (41)

UDP payload size: 9000

Higher bits in extended RCODE: 0x00

EDNS0 version: 0

Z: 0x0000

Data length: 0

48

Packet 3 - Differentiated services set to 0x40 and capitalised

0000 00 00 00 00 00 00 00 00 00 00 00 00 08 00 45 40E@

0010 00 43 f9 44 00 00 f6 11 d0 ed b2 fe f6 53 7f 00 .C.D.........S..

0020 00 01 e5 17 00 35 00 2f 00 00 ab 9e 01 00 00 015./........

0030 00 00 00 00 00 01 06 41 52 43 54 49 43 03 47 4fARCTIC.GO

0040 56 00 00 ff 00 01 00 00 29 23 28 00 00 00 00 00 V.......)#(.....

0050 00 .

Internet Protocol Version 4, Src: 178.254.246.83, Dst: 127.0.0.1

0100 = Version: 4

.... 0101 = Header Length: 20 bytes (5)

Differentiated Services Field: 0x40 (DSCP: CS2, ECN: Not-ECT)

Total Length: 67

Identification: 0xf944 (63812)

Flags: 0x00

Fragment offset: 0

Time to live: 246

Protocol: UDP (17)

Header checksum: 0xd0ed

User Datagram Protocol, Src Port: 58647, Dst Port: 53

Domain Name System (query)

Transaction ID: 0xab9e

Flags: 0x0100 Standard query

Questions: 1

Answer RRs: 0

Authority RRs: 0

Additional RRs: 1

Queries

ARCTIC.GOV: type ANY, class IN

Name: ARCTIC.GOV

[Name Length: 10]

[Label Count: 2]

Type: * (A request for all records the

server/cache has available) (255)

Class: IN (0x0001)

Additional records

<Root>: type OPT

Name: <Root>

Type: OPT (41)

UDP payload size: 9000

Higher bits in extended RCODE: 0x00

EDNS0 version: 0

Z: 0x0000

Data length: 0

49

Packet 4 - Differentiated services set to 0x40 and not capitalised

0000 00 00 00 00 00 00 00 00 00 00 00 00 08 00 45 40E@

0010 00 47 30 b2 00 00 f4 11 ca 8a ae 6d cb d6 7f 00 .G0........m....

0020 00 01 4c 69 00 35 00 33 00 00 d8 08 01 00 00 01 ..Li.5.3........

0030 00 00 00 00 00 01 0b 68 6f 66 66 6d 65 69 73 74hoffmeist

0040 65 72 02 62 65 00 00 ff 00 01 00 00 29 23 28 00 er.be.......)#(.

0050 00 00 00 00 00

.↪→

Internet Protocol Version 4, Src: 174.109.203.214, Dst: 127.0.0.1

0100 = Version: 4

.... 0101 = Header Length: 20 bytes (5)

Differentiated Services Field: 0x40 (DSCP: CS2, ECN: Not-ECT)

Total Length: 71

Identification: 0x30b2 (12466)

Flags: 0x00

Fragment offset: 0

Time to live: 244

Protocol: UDP (17)

Header checksum: 0xca8a

User Datagram Protocol, Src Port: 19561, Dst Port: 53

Domain Name System (query)

Transaction ID: 0xd808

Flags: 0x0100 Standard query

Questions: 1

Answer RRs: 0

Authority RRs: 0

Additional RRs: 1

Queries

hoffmeister.be: type ANY, class IN

Name: hoffmeister.be

[Name Length: 14]

[Label Count: 2]

Type: * (A request for all records the

server/cache has available) (255)

Class: IN (0x0001)

Additional records

<Root>: type OPT

Name: <Root>

Type: OPT (41)

UDP payload size: 9000

Higher bits in extended RCODE: 0x00

EDNS0 version: 0

Z: 0x0000

Data length: 0

50

APPENDIX C

Features generated from DNS packets

Once the DNS packets are captured and the relevant fields are exported to a CSV file, features
are inferred from this CSV file. The features and a short description are shown in Table C.1. The
first part of the name is the name as it was given by tshark, whereas the part after the underscore
indicates the type of feature that was generated. These indicators are as follows:

unique
Samples a comma separated list of the
unique values in a collection.

shortest repeat
Determines the shortest repeating subset
of a collection.

min
Determines the minimum numerical value
in a collection.

used
Indicates whether a field is used or set to
NULL.

unique len
Calculates the length of all the unique val-
ues in a collection.

longest repeat
Determines the longest repeating subset of
a collection.

max
Determines the maximum numerical value
in a collection.

longest cons
Calculates the longest consecutive increas-
ing subset of a collection.

Name Description

ip.dsfield.dscp unique Comma separated list of the collection of unique val-
ues of the Differentiated Services Code Point (DSCP)
field.

ip.dsfield.dscp unique len The number of items in the list mentioned above.
ip.flags.df unique Comma separated list of the collection of unique val-

ues of the Don’t Fragment (DF) flag.
ip.flags.df unique len The number of items in the list mentioned above.
ip.flags.mf unique Comma separated list of the collection of unique val-

ues of the More Fragments (MF) flag
ip.flags.mf unique len The number of items in the list mentioned above.
ip.flags.rb unique Comma separated list of the collection of unique val-

ues of the Reserved Bit (RB) field.
ip.flags.rb unique len The number of items in the list mentioned above.
ip.id longest cons The longest consecutive increasing subset of the IP

identifier field.
ip.id longest repeat The longest repeating subset of the IP identifier field.
ip.id max The maximum value of the IP identifier field.
ip.id min The minimum value of the IP identifier field.
ip.id shortest repeat The shortest repeating subset of the IP identifier field.
ip.id unique len The number of items in the list mentioned above.
ip.proto unique Comma separated list of the collection of unique val-

ues of the IP proto field.
ip.proto unique len The number of items in the list mentioned above.

51

Name Description

udp.checksum.status unique The UDP checksum field is verified by the PCAP
parser, which results in a status field. This status field
is collected as a Comma separated list of the collection
of unique values of this field.

udp.checksum.status unique len The number of items in the list mentioned above.
udp.checksum unique len The number of items in the list mentioned above.
udp.checksum used This fields indicates whether the (optional) UDP

checksum field is used.
udp.srcport longest cons The longest consecutive increasing subset of the UDP

source port.
udp.srcport longest repeat The longest repeating subset of the UDP field.
udp.srcport max The maximum value of the UDP source port field.
udp.srcport min The minimum value of the UDP source port field.
udp.srcport shortest repeat The shortest repeating subset of the UDP source port

field.
udp.srcport unique len The number of items in the list mentioned above.
dns.count.add rr max The maximum value of the DNS Additional Resource

Records (Additional RRs) count field.
dns.count.add rr min The minimum value of the DNS Additional Resource

Records (Additional RRs) count field.
dns.count.add rr unique Comma separated list of the collection of unique val-

ues of the DNS Additional Resource Records (Addi-
tional RRs) count field.

dns.count.add rr unique len The number of items in the list mentioned above.
dns.count.answers max The maximum value of the DNS answers count field.
dns.count.answers min The minimum value of the DNS answers count field.
dns.count.answers unique Comma separated list of the collection of unique val-

ues of the DNS answers count field.
dns.count.answers unique len The number of items in the list mentioned above.
dns.count.auth rr max The maximum value of the DNS Authority RRs field.
dns.count.auth rr min The minimum value of the DNS Authority RRs field.
dns.count.auth rr unique Comma separated list of the collection of unique val-

ues of the DNS Authority RRs field.
dns.count.auth rr unique len The number of items in the list mentioned above.
dns.count.queries max The maximum value of the DNS query count field.
dns.count.queries min The minimum value of the DNS query count field.
dns.count.queries unique Comma separated list of the collection of unique val-

ues of the DNS query count field.
dns.count.queries unique len The number of items in the list mentioned above.
dns.flags.checkdisable unique Comma separated list of the collection of unique val-

ues of the DNS “Non-authenticated data” flag field.
dns.flags.checkdisable unique len The number of items in the list mentioned above.
dns.flags.opcode unique Comma separated list of the collection of unique val-

ues of the DNS opcode flag field.
dns.flags.opcode unique len The number of items in the list mentioned above.
dns.flags.recdesired unique Comma separated list of the collection of unique val-

ues of the DNS “Recursion desired” flag field.
dns.flags.recdesired unique len The number of items in the list mentioned above.
dns.flags.response unique Comma separated list of the collection of unique val-

ues of the DNS response flag field.
dns.flags.response unique len The number of items in the list mentioned above.
dns.flags.truncated unique Comma separated list of the collection of unique val-

ues of the DNS truncated flag field.
dns.flags.truncated unique len The number of items in the list mentioned above.

52

Name Description

dns.flags.z unique Comma separated list of the collection of unique val-
ues of the DNS “Z” flag field

dns.flags.z unique len The number of items in the list mentioned above.
dns.id longest cons The longest consecutive increasing subset of the DNS

identifier field.
dns.id longest repeat The longest repeating subset of the DNS identifier

field.
dns.id max The maximum value of the DNS identifier field.
dns.id min The minimum value of the DNS identifier field.
dns.id shortest repeat The shortest repeating subset of the DNS identifier

field.
dns.id unique len The number of items in the list mentioned above.
dns.qry.class unique Comma separated list of the collection of unique val-

ues of the Domain Name System (DNS) query class
field.

dns.qry.class unique len The number of items in the list mentioned above.
dns.qry.type unique Comma separated list of the collection of unique val-

ues of the Domain Name System (DNS) query type
field.

dns.qry.type unique len The number of items in the list mentioned above.
dns.rr.udp payload size longest cons The longest consecutive increasing subset of the UDP

payload size field.
dns.rr.udp payload size longest repeat description
dns.rr.udp payload size max The maximum value of the UDP payload size field.
dns.rr.udp payload size min The minimum value of the UDP payload size field.
dns.rr.udp payload size shortest repeat The shortest repeating subset of the UDP payload

field.
dns.rr.udp payload size unique Comma separated list of the collection of unique val-

ues of the User Datagram Protocol (UDP) payload
size field.

dns.rr.udp payload size unique len The number of items in the list mentioned above.

Table C.1: List of 71 features generated from DNS packet captures. The first part of
the name is the name of the field that was given by tshark, whereas the part after the
underscore indicates what type of data was extracted from the field.

53

Bibliography

[1] History of DDoS Attacks. https://security.radware.com/ddos-knowledge-center/
ddos-chronicles/ddos-attacks-history/. Accessed 08-06-2017. Mar. 2017.

[2] Brian Krebs. Israeli Online Attack Service vDOS Earned $600,000 in Two Years. https:
//krebsonsecurity.com/2016/09/israeli-online-attack-service-vdos-earned-

600000-in-two-years/. Accessed 08-06-2017. Sept. 2014.

[3] Kanishk. What Businesses In India Can Learn From Recent DDoS Attacks. https://blogs.
haltdos.com/2017/02/22/businesses-india-can-learn-recent-ddos-attacks/. Feb.
2017.

[4] Stephen M Specht and Ruby B Lee. “Distributed Denial of Service: Taxonomies of Attacks,
Tools, and Countermeasures”. In: ISCA PDCS. 2004, pp. 543–550.

[5] Laura Feinstein et al. “Statistical approaches to DDoS attack detection and response”. In:
DARPA Information Survivability Conference and Exposition, 2003. Proceedings. Vol. 1.
IEEE. 2003, pp. 303–314.

[6] Keunsoo Lee et al. “DDoS attack detection method using cluster analysis”. In: Expert Sys-
tems with Applications 34.3 (2008), pp. 1659–1665.

[7] Lifang Zi, John Yearwood, and Xin-Wen Wu. “Adaptive clustering with feature ranking for
DDoS attacks detection”. In: Network and System Security (NSS), 2010 4th International
Conference on. IEEE. 2010, pp. 281–286.

[8] Wei Wei et al. “A rank correlation based detection against distributed reflection DoS at-
tacks”. In: IEEE Communications Letters 17.1 (2013), pp. 173–175.

[9] Thijs Rozekrans, Matthijs Mekking, and Javy de Koning. Defending against DNS reflection
amplification attacks. http://rp.delaat.net/2012-2013/p29/report.pdf. Feb. 2013.

[10] Symantec Security Response. Grappling with the ZeroAccess Botnet. https://www.symantec.
com/connect/blogs/grappling-zeroaccess-botnet. Accessed 07-06-2017. July 2013.

[11] Matthew Prince. Deep Inside a DNS Amplification DDoS Attack. https://blog.cloudflare.
com/deep-inside-a-dns-amplification-ddos-attack/. Accessed 07-06-2017. Aug. 2012.

[12] Brian Krebs. Stress-Testing the Booter Services, Financially. http://krebsonsecurity.
com/2015/08/stress-testing-the-booter-services-financially/. Accessed 07-06-
2017. Aug. 2017.

[13] Randal Vaughn and Gadi Evron. “DNS Amplification Attacks”. In: (Mar. 2006).

[14] Alert (TA14-017A) UDP-Based Amplification Attacks. https://www.us-cert.gov/ncas/
alerts/TA14-017A. Accessed 07-06-2017. Nov. 2016.

[15] Roland van Rijswijk-Deij, Anna Sperotto, and Aiko Pras. “DNSSEC and its potential for
DDoS attacks: a comprehensive measurement study”. In: Proceedings of the 2014 Conference
on Internet Measurement Conference. ACM. 2014, pp. 449–460.

[16] Florian Adamsky et al. “P2P File-Sharing in Hell: Exploiting BitTorrent Vulnerabilities to
Launch Distributed Reflective DoS Attacks.” In: 2015.

[17] The Shadowserver Foundation. Open Resolver Scanning Project. https://dnsscan.shadowserver.
org/. Accessed 07-06-2017. June 2017.

[18] Marek Majkowski. Reflections on reflection (attacks). https://blog.cloudflare.com/
reflections-on-reflections/. May 2017.

[19] David Cornell. DNS Amplification Attacks. https://umbrella.cisco.com/blog/blog/
2014/03/17/dns-amplification-attacks/. Accessed 07-06-2017. Mar. 2014.

54

https://security.radware.com/ddos-knowledge-center/ddos-chronicles/ddos-attacks-history/
https://security.radware.com/ddos-knowledge-center/ddos-chronicles/ddos-attacks-history/
https://krebsonsecurity.com/2016/09/israeli-online-attack-service-vdos-earned-600000-in-two-years/
https://krebsonsecurity.com/2016/09/israeli-online-attack-service-vdos-earned-600000-in-two-years/
https://krebsonsecurity.com/2016/09/israeli-online-attack-service-vdos-earned-600000-in-two-years/
https://blogs.haltdos.com/2017/02/22/businesses-india-can-learn-recent-ddos-attacks/
https://blogs.haltdos.com/2017/02/22/businesses-india-can-learn-recent-ddos-attacks/
http://rp.delaat.net/2012-2013/p29/report.pdf
https://www.symantec.com/connect/blogs/grappling-zeroaccess-botnet
https://www.symantec.com/connect/blogs/grappling-zeroaccess-botnet
https://blog.cloudflare.com/deep-inside-a-dns-amplification-ddos-attack/
https://blog.cloudflare.com/deep-inside-a-dns-amplification-ddos-attack/
http://krebsonsecurity.com/2015/08/stress-testing-the-booter-services-financially/
http://krebsonsecurity.com/2015/08/stress-testing-the-booter-services-financially/
https://www.us-cert.gov/ncas/alerts/TA14-017A
https://www.us-cert.gov/ncas/alerts/TA14-017A
https://dnsscan.shadowserver.org/
https://dnsscan.shadowserver.org/
https://blog.cloudflare.com/reflections-on-reflections/
https://blog.cloudflare.com/reflections-on-reflections/
https://umbrella.cisco.com/blog/blog/2014/03/17/dns-amplification-attacks/
https://umbrella.cisco.com/blog/blog/2014/03/17/dns-amplification-attacks/

[20] Alex S. Holehouse. Stanford Machine Learning - 06: Logistic Regression. http://www.

holehouse.org/mlclass/06_Logistic_Regression.html.

[21] Gagarine Yaikhom. Implementing the DBSCAN clustering algorithm. http://yaikhom.

com/2015/09/04/implementing-the-dbscan-clustering-algorithm.html. Accessed
28-6-2017. 2015.

[22] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

[23] Microsoft Azure. Multiclass Neural Network. https://msdn.microsoft.com/en- us/

library/azure/dn906030.aspx. Mar. 2016.

[24] J Engel. “Polytomous logistic regression”. In: Statistica Neerlandica 42.4 (1988), pp. 233–
252.

[25] Microsoft Azure. Multiclass Logistic Regression. https://msdn.microsoft.com/en-us/
library/azure/dn905853.aspx. June 2016.

[26] Microsoft Azure. Multiclass Decision Forest. https://msdn.microsoft.com/en- us/

library/azure/dn906015.aspx. June 2016.

[27] Azure Machine Learning Team. Microsoft Azure Machine Learning: Algorithm Cheat Sheet.
http://download.microsoft.com/download/A/6/1/A613E11E- 8F9C- 424A- B99D-

65344785C288/microsoft-machine-learning-algorithm-cheat-sheet-v6.pdf. Mar.
2017.

[28] MathWorks. Decision Tree and Decision Forest. https://nl.mathworks.com/matlabcentral/
fileexchange/39110-decision-tree-and-decision-forest. May 2014.

[29] Kathleen Nichols et al. Definition of the Differentiated Services Field (DS Field) in the IPv4
and IPv6 Headers. RFC 2474. http://www.rfc-editor.org/rfc/rfc2474.txt. RFC
Editor, Dec. 1998. url: http://www.rfc-editor.org/rfc/rfc2474.txt.

[30] DSCP and Precedence Values. http://www.cisco.com/c/en/us/td/docs/switches/
datacenter/nexus1000/sw/4_0/qos/configuration/guide/nexus1000v_qos/qos_

6dscp_val.pdf. Accessed 21-06-2017. Mar. 2016.

[31] sub sharela sequence of increasing integers. http://pythonfiddle.com/sub-sequence-
of-increasing-integers/. Accessed 20-06-2017.

55

http://www.holehouse.org/mlclass/06_Logistic_Regression.html
http://www.holehouse.org/mlclass/06_Logistic_Regression.html
http://yaikhom.com/2015/09/04/implementing-the-dbscan-clustering-algorithm.html
http://yaikhom.com/2015/09/04/implementing-the-dbscan-clustering-algorithm.html
https://msdn.microsoft.com/en-us/library/azure/dn906030.aspx
https://msdn.microsoft.com/en-us/library/azure/dn906030.aspx
https://msdn.microsoft.com/en-us/library/azure/dn905853.aspx
https://msdn.microsoft.com/en-us/library/azure/dn905853.aspx
https://msdn.microsoft.com/en-us/library/azure/dn906015.aspx
https://msdn.microsoft.com/en-us/library/azure/dn906015.aspx
http://download.microsoft.com/download/A/6/1/A613E11E-8F9C-424A-B99D-65344785C288/microsoft-machine-learning-algorithm-cheat-sheet-v6.pdf
http://download.microsoft.com/download/A/6/1/A613E11E-8F9C-424A-B99D-65344785C288/microsoft-machine-learning-algorithm-cheat-sheet-v6.pdf
https://nl.mathworks.com/matlabcentral/fileexchange/39110-decision-tree-and-decision-forest
https://nl.mathworks.com/matlabcentral/fileexchange/39110-decision-tree-and-decision-forest
http://www.rfc-editor.org/rfc/rfc2474.txt
http://www.rfc-editor.org/rfc/rfc2474.txt
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus1000/sw/4_0/qos/configuration/guide/nexus1000v_qos/qos_6dscp_val.pdf
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus1000/sw/4_0/qos/configuration/guide/nexus1000v_qos/qos_6dscp_val.pdf
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus1000/sw/4_0/qos/configuration/guide/nexus1000v_qos/qos_6dscp_val.pdf
http://pythonfiddle.com/sub-sequence-of-increasing-integers/
http://pythonfiddle.com/sub-sequence-of-increasing-integers/

	Introduction
	Background
	Methodology
	Results
	Discussion
	Conclusion
	Future work
	Scripts
	Lg packets in Fox-IT dataset
	Features generated from Lg packets

