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Abstract

Segment routing makes use of the source packet routing paradigm to allow for
arbitrary forwarding paths. This can be used in container networks to build overlay
networks with traffic engineering capabilities, and to deploy network functions such
as load balancers. It further adds the ability to add metadata on a per-packet basis,
which can be used to shape container policies. We show a practical implementation
based on the IPv6 data plane based on the userspace functionality available on Linux,
including eBPF.
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1 Introduction

Segment routing is a set of open standards built upon the source routing paradigm, which
allows nodes to select a forwarding path of their choosing[11][24]. Nodes can constrain
paths to specific segments, between which the least cost path is then used. This allows a
node to steer packet flows through any topological path or network function chain while
enabling fast reroute in case of failure. The only required state is stored at the network
edge, moving complexity away from the network core.

The standard further aims to simplify the network by doing away with unnecessary
protocols where possible. This inherent simplicity and flexibility makes it a good
candidate for a modern and scalable approach to software defined networking[7]. Despite
the standard having been in development for a number of years already, there is not a
large body of research or information on how to effectively utilize segment routing with
regard to end-to-end host connectivity.

Container networking, which involves interconnecting containers on multiple hosts and
containers to the outside world, is a good candidate for experimenting with segment
routing in practice. Typical container network deployments use features such as overlay
networks for reachability and multi-tenancy, network functions such as firewalling and
load balancing, and could benefit from traffic engineering for optimal network capacity
usage. Because container platforms are primarily based on Linux it is useful to investigate
in which ways a Linux based container platform can leverage segment routing to perform
these tasks.

Container networks can span over multiple network or administrative domains, for
example when spanning multiple geographical sites. Segment routing is not limited to a
single domain or data center, because transit domains or routers do not need to directly
support segment routing as long as they are capable of routing IPv6[22]. The segments
traversed by the packet can remain visible end-to-end which allows use of this data to
make informed policy decisions.

This project aims to research and document the current possibilities, limitations, and
usability of segment routing by creating a proof of concept implementation of a container
network based on segment routing on Linux. In order to gain insight into segment
routing and how segment routing can be used to build container-to-container networks
the following research question needs to be answered:

1. What are the possibilities for container-level integration of segment routing based
on current standards, hardware, and software?

Based on the available functionality provided by segment routing, the following sub-
questions arise regarding the requirements of container networks and the underlying
topology:

2. What is a practical method for applying segment routing policies in container
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networks from the container host?
3. What are the infrastructure and application requirements to use segment routing

effectively from container to container?

2 Background

This section provides the necessary background information to understand the basic oper-
ation of segment routing. It also introduces container networks and related terminology,
the Linux Extended Berkeley Packet Filter interface, and the Vector Packet Processing
software router.

2.1 Segment routing

Segment routing comes in two data plane flavors with forwarding based on MPLS[12]
(often abbreviated as SR), and directly on top of IPv6 using the segment routing header[22]
(SRv6). It is explicitly based on current, open standards and does not introduce any new
protocols. Instead it builds on existing routing protocols such as BGP, IS-IS, and OSPF,
on path computation protocols such as PCEP[27]. In fact, it has as design goal to make
existing protocols such as RSVP-TE[3] largely unnecessary[9][12].

A segment routing domain consists of a topology defined by its segments and their
identifiers (SIDs). When addressed, each segment effectively expresses the next action
a packet will take in the network, e.g. whether it is to forward a packet using the least
cost path, on a specific interface, or to deliver the packet to an application[13]. These
identifiers are expressed as MPLS labels or IPv6 addresses, depending on the underlying
data plane.

The primary segment types are the node, prefix, and adjacency segments. The node
segment identifies a specific device, e.g. its loopback interface. A prefix segment specifies
the reachability of a protocol specific (e.g. IP) prefix via that segment, using the least
cost path as per usual IGP. An adjacency segment identifies the interface(s) towards a
specific neighbor, without further least cost path considerations.

Segment routing on the IPv6 data plane is implemented by adding a segment routing
header, shown in figure 1, on a per-packet basis. The segment list contains a list of all
the segments that will be traversed, ordered from final destination to initial segment. To
route a packet over a segment routed domain the destination address of the packet is
set to the next desired segment, which directly addresses a specific SRv6-capable device.
When a router receives a packet not explicitly destined to itself the packet is routed
using typical best path first algorithms, meaning that intermediate routers do not need
to inspect the routing header or even be SRv6-capable at all.

The segment routing header can optionally include additional data, which is passed
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Next Header Hdr Ext Len Routing Type Segments Left
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Routing header

Last Entry Flags Tag

Segment 0
(128 bits IPv6 address)

...

Segment n
(128 bits IPv6 address)


Segment list

Type-Length-Value objects
(variable)

}
Optional

Figure 1: The IPv6 segment routing header (SRH) is a routing header
with type 4.

along to the destination node. This data is encoded as type-length-value objects with
a maximum length of 256 bytes. One use of this extension mechanism is to sign the
segment list by adding an HMAC signature, useful for allowing routers to authenticate
the SRH when routing between multiple domains.

The MPLS data plane is implemented in a conceptually similar manner, but has some
important technical differences. One major difference is that segment identifiers are
expressed as MPLS labels. Because MPLS labels are locally managed within an adminis-
trative domain using segment routing between MPLS domains may require coordination
or label translation[12]. In contrast to the IPv6 data plane, the segment path is lost
when a next segment is activated as the label is popped from the stack. There is also no
mechanism to include additional metadata in packets.

2.1.1 Network programming with segment routing

Network programmability is achieved in segment routing by attaching specific network
functions to SIDs. In the case of IPv6 such a SID typically follows a locator/function
style, where the left-most L address bits specify the locator and the right most F bits
the function. Note that these SIDs do not necessarily need to be originated in an IGP
or be routable at all. A number of standard behaviors are defined in [13] and the most
relevant functions are summarized in this section.

A router inspects the segment routing header only when a packet is addressed to itself
based on the destination address of the packet. If the destination address matches an
entry in its local SID table the function associated with that SID is executed for the
packet. These functions are called endpoint functions. Generally this means the segments
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left field is decremented and the address of the subsequent segment is placed in the
destination address field, followed by e.g. forwarding, encapsulation, or decapsulation, or
a combination of these actions. In practice the behavior of these functions is entirely up
to the implementer. Functions are chained together by their adjacency in the segment
list.

A number of transit behaviors are proposed, typically used when traffic enters (a part
of) the network. Because the destination address will not match a local address when
processing the packet on a transit router, the segment routing header is never acted upon.
It is however possible to insert or extend the segment list by using the T.Insert transit
behavior, or optionally by encapsulating the entire packet with T.Encaps, or the frame
with T.Encaps.L2, which can be used to build virtual private networks.

When a packet is addressed to a specific device via an endpoint function, the segment
routing header will be acted upon. The most basic endpoint function is the End function,
which does nothing but update the destination address to the next segment. Traffic
engineering can be accomplished by specifying specific links using the adjacency SID,
effectively implementing a layer 3 cross-connect (End.X). Virtual private networks can
be built with support for decapsulation of the outer IPv6 header on layer 3 (End.DX4,
End.DX6), or even on layer 2 (End.DX2).

Because End and End.X functions are directly tied to the topology they are best expressed
as auxiliary information in existing interior gateway protocols, such as IS-IS[23] or
OSPF[25]. Signaling of functions over multiple domains is proposed using BPG-LS[21].

2.2 Container networks

Container networks consist of container hosts with numerous containers, potentially
spanning multiple data centers and administrative domains. The container hosts run
a container platform such as Docker[8] or LXC[19], and either the built-in networking
solution that comes with the platform or an external integration such as Weave[28],
Cilium[6], et cetera. Three distinct types of end-to-end connectivity exist within such a
network, namely traffic between local containers, between containers on different hosts,
and traffic between the containers and external domains.

The containers may use user-defined addressing schemes that are not directly routable on
the underlying network, e.g. some container platforms even allow virtual layer 2 domains
to be created over multiple hosts. To ensure container reachability these container
platforms deploy overlay networks by creating tunnels between the various container
hosts. Overlays can also be used to create isolated networks for sets of containers,
commonly used in multi-tenant container networks.
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2.3 Extended Berkeley Packet Filter

The Berkeley Packet Filter (BPF)[29] interface provides a fast, kernel-based method
for filtering and manipulating network packets. BPF programs are built using a simple
bytecode language, for which a frontend for LLVM exists to translate C code to BPF
objects[26]. Optional just in time compilation in-kernel can be enabled for increased
performance, and there are even Smart NICs on the market for which the bytecode can
be translated to NIC specific code[18]. The eBPF interface extends the capabilities of
BPF programs by adding the call instruction capable of calling a predefined set of kernel
helper functions[5], for example to read and write packet data from a socket buffer, or to
redirect delivery to a different network interface.

In order to ensure stable kernel operation, the functionality of eBPF programs is severely
limited. Before the program is accepted by the kernel a validator is run to check if
the program terminates in a reasonable time. To make this validation possible, the
total instruction count of the program is limited, the program can only jump forward
(e.g. allowing only unrolled loops), and can only call the helper functions with pre-
validated parameters. Furthermore, the stack size is very limited and out-of-bounds reads
and writes are prevented by rejecting access to unvalidated offsets, i.e. without proper
boundary checks.

eBPF programs can be inserted in the network pipeline in multiple ways. They can be
attached directly to all interface ingress or egress traffic (tc qdisc clsact), via routes (ip
route), and to tunnel interfaces (ip tunnel). Which kernel helpers are available is limited
depending on the context the program is placed in. For example, packet modification is
not allowed in IP tunneling use cases.

For performance reasons eBPF programs are often compiled with a number of fixed
parameters instead of using dynamic runtime configuration. However, userspace applica-
tions can communicate with eBPF programs using so called maps of various types: arrays,
hash maps, tries, et cetera. Map entries can be added and removed via the bpf system
call on the map’s file descriptor. These maps can be exposed via a special filesystem
called bpffs. This allows eBPF programs to still be dynamically influenced by external
applications.

2.4 Vector Packet Processing router

The Fast Data Project1, part of the Linux Foundation, is a set of open source projects
that make use of the Data Plane Development Kit to implement various high-performance
applications, such as the Vector Packet Processing software router. This software router
was initially developed by Cisco and is one of the first complete SRv6-capable routing
implementations.

1https://www.fd.io/

6

https://www.fd.io/


The VPP router also offers great debugging facilities for its packet processing pipeline,
which makes testing the interoperability of the segment routing header much easier. For ex-
ample, a packet trace can be created by executing vppctl trace add af-packet-input
3 on a VPP host, meaning the next 3 packets will be traced. After sending some traffic
through the network the command vppctl show trace can be used to see a detailed
list of actions executed on that packet, including helpful diagnostics when e.g. the SRH
is malformed.

3 Related work

A number of technical workshops and use cases have been presented by companies such
as Cisco, Bell Canada, Comcast, and others on the official segment routing site.2 This
work has provided valuable insights into the potential applications of segment routing
and reveals a number of interesting conceptual approaches, for example how to build
layer 3 VPNs and on replacing stateful multicast from the network core with unicast
to the network edge with a ‘spray’ segment identifier, which lets the network edge then
deliver packets to end customers via multicast. This highlights the ability the develop
custom behaviors for segment identifiers.

Ahmed AbdelSalam et al. presented their model on deploying virtual network functions
in SRv6-based topologies[1] at NetSoft 2017. While the paper had not been made
available in time to be included in this research, a preliminary reading shows works
focuses on the architectural requirements for deploying and chaining network functions,
including supporting network functions that are not SRv6-aware. For their work they
have implemented a competing SRv6 implementation for the Linux kernel called srext.

4 Implementation

Various technologies exist on Linux-based platforms which can be used to implement
segment routing in container and overlay networks. With these technologies container
platforms can make policy decisions on a per-container, per-tenant basis. The goal of
this project is to create the proof of concept tools that can be used to evaluate segment
routing in container networking scenarios. The tool to develop is a tool that can create
arbitrary, virtual SRv6-capable topologies to be used as IPv6-only underlay. This allows
us to attach virtual machines running a container platform to this topology. The virtual
topology can then be used to experiment with segment routing, and to trace and verify
the implementation of the segment routing policies.

The next step is to develop a program that can apply policies on traffic generated by
the containers. The policy is based on a mapping between a tenant and container to a

2http://www.segment-routing.net/
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list of segments that need to be applied. A program to achieve inverse on ingress also
needs to be developed, i.e. mapping a segment list to a tenant/container. Based on these
programs a simple overlay with public and with locally managed container addresses will
be evaluated. This work is then expanded to a multi-tenant overlay network.

Once the proof of concept is able to apply and verify segment routing policies, network
functions can be added to the setup. The goal is to experiment with how these functions
can be implemented on a Linux based system and what their capabilities are in the
context of segment routing.

4.1 Overlays and encapsulation

Overlay networks are an important aspect of container networks to ensure reachability
between containers hosted on different machines, in a manner transparent to the container
itself. Where direct routing is not possible these overlays are typically achieved using
encapsulation to route traffic over the underlay. Some examples of common protocols
in use today are GRE[15] (layer 3 encapsulation), VXLAN[20], and Geneve[14] (layer 2
encapsulation), although many other variants exist.

In principle IPv6 traffic needs no further encapsulation with SRv6. However, IPv6-in-IPv6
encapsulation is typically used to avoid modifying the original packet when adding the
segment routing header at the network ingress point. The segment routing specification
itself does not currently state whether such encapsulation is strictly required. Unless the
network employs an IPv4/IPv6 translation technology, transporting IPv4 or Ethernet
traffic over an IPv6-only network always requires such encapsulation, especially when the
segment routing header is to be used.

Encapsulation may also be required for practical reasons, for example if source address
filtering is used in the underlay, e.g. for traffic being sent over the Internet through
domains which implement BCP 38/RFC 2827[10]. In this case IPv6-in-IPv6 encapsulation
ensures that the source and destination addresses match their origin in the underlay.

SRv6 predefines all the required building blocks for implementing layer 2 and 3 overlays
in the form of segment identifiers with cross-connect behaviors such as End.DX2 (layer
2), End.DX4 (IPv4), and End.DX6 (IPv6). Cross-connects for IPv6 are necessary if
the destination address of the targeted container is itself ‘unroutable’ on the underlay,
therefore requiring a single extra segment indicating the location of the container host.
In the case of traffic encapsulated with IPv6 the segment routing header may not even be
required, because a segment routing header with a single segment identifier can simply
be encoded as just the destination addresses of the outer IPv6 header. The forwarding
implementation after decapsulation takes care of delivery from that point on.

Direct container addressing is slightly complicated by the inclusion of non-IPv6 support,
in which case there is by default no ‘natural’ IPv6 address related the container as
source or final segment. In this case, to simplify application design the destination IPv4
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address can be converted to the IPv4-compatible form, i.e. ::w.x.y.z, potentially with
a prefix originating at container host. A more general approach would be to assign an
IPv6 address per container regardless of whether IPv6 connectivity is used so that the
container can be addressed in a manner that is agnostic to the protocol being transported,
for example similar to IPv6 autoconfiguration by embedding the EUI-64 in the address.

Encapsulation adds additional limitations to the maximum transferable unit of packets
traversing the overlay. For example, GRE is built on top of IP, while VXLAN and Geneve
are built on top of UDP. Each of these protocols consist of a fixed header, followed by
the layer 2 frame header (if applicable) and the original layer 3 packet. GRE is the
smallest with a minimal header being 4 bytes, but also allows optional features such
as checksumming, keying, and sequence numbers, enlarging the header. VXLAN and
Geneve both include an 8 byte UDP header and 8 byte protocol header. Like with SRv6,
Geneve allows arbitrary extension data to be added on a per-packet basis.

The IP-in-IP encapsulation suggested by SRv6 has a minimal amount of overhead, since
with encapsulation in any case two IP headers always need to be included. However, if
the underlay would otherwise be based on IPv4 the encapsulation overhead can still be
less in such a network than just the size of a single IPv6 header. The additional overhead
of the SRH is 8 + 16 ∗ n bytes where n is the number of segments, plus the size of any
additional metadata.

4.2 Multi-tenancy

A feature that is often implemented in container networks is multi-tenant overlays. These
private overlays isolate different users of the underlay from each other by encapsulating or
otherwise separating traffic. The packets will including a marking that allows a receiving
node to differentiate between tenants. The most idiomatic way of implementing private
overlays in SRv6 is to assign a unique segment identifier per tenant on each container
host. This segment identifier then acts as a cross-connect with a specific (i.e. per tenant)
routing table lookup to the containers on that hosts.

Combined with a location based addressing scheme for the containers, with prefixes that
are derived from a host-specific prefix this approach requires very little configuration.
The tenants can select arbitrary prefixes for their container addressing, although they
must have a 1:1 mapping to addressing of the container host. These addresses can be
mapped on the underlay to a tenant SID based on the host prefix as locator and the
remaining bits can be used to encode the tenant identifier. An example is shown in
section 5.4.

If the overlay network itself cannot be organized in this manner, for example because
containers must be mobile or a legacy/non-hierarchical addressing scheme must be used,
techniques from existing overlay technologies can be adopted and implemented in SRv6,
for example exchanging of the address to location mapping using MP-BGP, discussed in
section 6.1. In such cases the tenant SID of the host running the targeted container must
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be determined by a lookup based on the destination address of the container in relation
to that tenant.

Isolation, like other multi-tenancy approaches, depends on the fact that the container
itself cannot influence the tenant identifier or inject its own segment routing header.
The same applies to ingress traffic coming from other network domains. The container
platform must validate or reject the presence of the segment routing header in packets
sent by the container to prevent this isolation from being broken.

4.3 Network functions

One of the major attractions of segment routing is the ability the steer traffic through
network functions, so that functionality can be delegated to the network and need not
be concentrated at the container host. In this section we describe some of the scenarios
in which application controlled network functions could be useful in container networks.
While investigating the potential applications of network functions to container networks,
a number of patterns emerged.

The first pattern is a routing pattern. Traffic is routed through such a function to
determine intermediate or penultimate segments that need to be traversed in order to
successfully or optimally reach the final destination, useful when the sender does not
want to maintain such routing state or does not have access to it. Examples of this would
be container mobility, virtual/VPN routers (layer 2 or 3), service discovery, and load
balancing. In this case the sending container host is aware that applying such a function
is necessary to reach the destination address.

The next pattern does not involve packet or segment list modification, but instead has
side-effects related to the traffic passing through. This primarily concerns monitoring
applications, such as intrusion detection, network monitoring, and application monitoring.
The monitoring itself does not necessarily need to take place in the function itself, for
example Cisco has developed a so called spray behavior which can duplicate the packet
to another destination.

The final example is a selective forwarding function. Examples of this are (stateless)
firewalls, and dynamic DoS mitigation. One implementation of this was introduced in
[16], which aims to prevent resource exhaustion attacks by handling TCP SYN packets
for the protected service.

For this project we investigated the necessary steps to build and deploy these network
functions. We implemented an example routing network function, described in section
5.5.
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4.4 Ingress/egress application design

The design proposed in the section will be used to implement per-container policies
making use of the capabilities of the segment routing header to build the (multi-tenant)
overlays introduced in the previous sections, including the ability to steer traffic through
network functions. Figure 2 shows an overview of the components in this design for a
single container host. A container host has a single interface to a network that connects
it to the other containers. Packets that arrive on this interface will be sent to the ingress
policy function that validates the SRH and based on the segment list routes the packet
to a container, delivers it locally, or drops the packet. Similarly, traffic originated from
each container interface is sent through an egress policy function that applies a policy by
inserting the SRH with the required segments.

Net eth0

Ingress
Validate/enforce policy

Egress
Apply policy

veth Container

Figure 2: Diagram of the connectivity between components

For traffic coming in from the network we need to be able to map the final segments to a
container. If there is only one segment remaining a container is being addressed directly.
In overlay scenarios two segments need to be processed. In this case the penultimate
segment signifies which overlay network is being addressed and the final segment addresses
the container in that overlay. The list of remaining segments is used to look up the values
described in table 1, which are then used by the ingress policy function to deliver the
packet to the container. These behaviors can be mixed per container, for example if a
container both has a publicly reachable IPv6 address and also participates in an overlay
network.

Table 1: Information stored per ingress container

Field Type Description
ifindex uint Container interface
mac byte[6] Destination MAC address

The ingress policy is agnostic to prefix sizes of addresses used on the network since the
full addresses are always used in the lookup process. There is no explicit need to know
the address prefix of the host because if traffic is not addressed to a container on the host
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the lookup process will simply fail. Additional checks may include requiring additional
segments to be present in arbitrary positions within the segment list, or the presence of
certain extension data.

Table 2: Information stored per outgoing address prefix

Field Type Description
is_overlay bool Indicates if overlay segment is needed
overlay_pfx byte[] Address prefix on the underlay
segments sid[] Policy segments to apply

Outgoing traffic requires some additional configuration such as the interface index of the
interface facing the network and the MAC address of the gateway router. The egress
function applies a policy based on the destination address of the packet, for example to
route the traffic over an overlay or to a public address. Effectively, this is used to map
container IP addresses to other container hosts. The data structure used to store this
information is shown in table 2. For the overlays, we assume a location-based addressing
scheme as described in section 4.2 is used. For per-container policies we can map a
unique container identifier such as its interface index to the container’s tenant ID and
per-container segments shown in table 3.

Table 3: Information stored per egress container

Field Type Description
ifindex uint Container interface
tenant uint Tenant ID
segments sid[] Policy segments to apply

As a simplification of the design, we will assume there is a single output interface on the
container host with a fixed upstream gateway. Features such as ECMP and first-hop
routing are left as future work. We further assume that in most cases traffic between
local containers is a special case which can be handled by e.g. a shared bridge, although
the inclusion of mandatory network functions means a packet will be forwarded to the
network unconditionally. Exploring mechanisms for obtaining or exchanging dynamic
policies is considered out of scope for the purpose of this proof of concept.

5 Results

This section describes the findings that were made during experimentation. The avail-
ability of hardware and software support for SRv6 is covered and a number of methods
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for implementing dynamic segment routing policies on Linux based on the experimental
design discussed in the previous section are described.

5.1 Vendor support for segment routing

As shown in table 4, vendor support for segment routing is still in its early stages despite
multiple vendors and companies being listed as having contributed to the technical
discussions and standards. The dates listed are based on an estimated public availability
of devices with support for segment routing, based on product change logs and published
articles. The MPLS data plane variant has decent support, likely because it has been
in development for much longer and because it mostly requires changes to the software
stack related to label management and the IGP daemons. In the case of a MPLS data
plane basic segment routing functionality can in the worst case be ‘emulated’ to some
degree by manually and consistently assigning labels in a network.

Table 4: Vendors with hardware and software support for the required
extensions and technologies to make use of segment routing

Vendor MPLS IPv6
Cisco 2014 2017-05
Ericsson 2015-02 -
Juniper 2016-08 -
Arista 2016 -

At the moment the Cisco NCS 5500 is the first and only device available that supports
handling of the IPv6 SRH in hardware, though support for the ASR 9000 and ASR 1000
is also planned. Very little information has been published by other vendors that suggests
they will release SRv6-capable hardware soon.

5.1.1 Programmable switches

Switches with a programmable data plane can in some cases also make use of segment
routing. For example, Bell Canada has an implementation based on Barefoot Networks
P4-capable switches.3 Although the code has not yet been made publicly available, Bell
Canada claims to have created a working implementation in about one month. A previous
study[4] has been successful at parsing up to two IPv6 extension headers with P4 at rates
up to 100Gbps, suggesting real world deployments with P4-capable devices are possible.

In contrast, OpenFlow based switches are not very suitable for working with SRv6.
3http://www.segment-routing.net/images/20170517-bell-barefoot-cisco-P4%20Workshop%202017%

20v2.pdf
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Because of a more rigid matching and action pipeline, adding the SRH is not possible.
However, support for eBPF matching in OpenFlow proposed in [17] could potentially
work around these limitations. Some OpenFlow switches, notably OpenvSwitch, have a
maximum MPLS label stack depth of 3 labels, meaning supporting MPLS data planes
may be possible but with limitations.

5.2 Virtual SRv6 topologies

Virtual topologies aid in the development and testing of the host-to-host behavior of
SRv6. While segment routing is topology independent, features such as traffic engineering
benefit from having multiple paths available in the network.

The source code listed in appendix A includes a script to start a user-defined virtual SRv6
topology. This script sets up LXC containers running a VPP router, interconnects the
routers as defined, and finally adds static routes to every node in the network. Because
SRv6 does not depend on any address prefix size, a common prefix size of 64 bits was
chosen. Each router will have an End function SID where the right-most bits are all
zero, which can be used to route traffic via that router. To select specific egress links, all
routers have End.X function SIDs with an address in the form of fd0x::1:y where ‘x’ is
the ID of the router and ‘y’ the ID of the adjacent router.

For every point-to-point connection a virtual Ethernet interface pair (veth) is created
between the VPP container and the host. Routers are interconnected by placing the
host end veth interfaces in a bridge, creating one bridge per link. While it is technically
possible to create point-to-point veth pairs directly between containers instead of putting
the interfaces in a bridge, LXC has no method of defining such a pair in its configuration.
An additional benefit of bridges is that monitoring from the host is made easier and that
arbitrary external interfaces can be placed in the bridge, for example to connect VMs or
network functions to the topology.

A
fd0a::/64

1

fd01::/64

3

fd03::/64

4
fd04::/64

2
fd02::/64

B
fd0b::/64

NF

fdcc::/64

Figure 3: A simple example segment routing domain with 4 routers, 2
container hosts, and network functions

A simple topology used for experimentation is shown in figure 3. The topology consists of
four VPP-based software routers. There are two container hosts, A and B, implemented
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as Ubuntu VMs running a number of LXC-based containers. Because there is currently
no working routing protocol support in VPP the routes in the topology are statically
defined by the script.

The virtual characteristics of the links can be changed by using the tc qdisc netem
command, e.g. this topology includes two paths from A to B with unequal costs because
of the simulated difference in latency characteristics. A basic example of using traffic
engineering in this topology is varying the path from A to B from the primary path
1 − 3 − 2 to 1 − 4 − 2. This can be done by adding a SRH on egress from A that contains
an End address of node 4 and the address of B as final segment.

5.3 Linux support for segment routing

Linux kernel and iproute2 version 4.10 released on February 19th, 2017 added basic
support for SRv6, discussed in more detail in the next subsection. These versions are also
required for supporting all of the eBPF features used during this experiment. Besides
direct support for segment routing, the Linux kernel also offers userspace creation and
processing of packets which can be used to implement segment routing.

5.3.1 Linux kernel behavior

Linux has the ability to add the segment routing header on egress. A fixed segment list
can be added via a regular routing table entry, meaning both host-originated and transit
egress traffic is supported. These routing entries support both adding the SRH ‘inline’
and by adding an outer IPv6 header with SRH. It is also possible for an application to
attach a segment routing policy to a socket via setsockopt with the IPV6_RTHDR option.

ip -6 route add 2001: db8 :1:/64
encap seg6 mode inline
segs 2001: db8 :1::539 ,2001: db8:beef ::1 dev eth0

ip -6 route add 2001: db8 :1::539/128
via fe80 ::8 bd:4 dev eth0

Figure 4: An ip route example that adds segments to a route

Figure 4 shows an example command that sets up a route that adds the SRH inline
(i.e. not using IPv6-in-IPv6 encapsulation) with two segments. Note that the first segment
– which will replace the initial destination address – must have a (more specific) forwarding
entry because it happens to fall within the route that is being encapsulated. The original
destination address will automatically be added as final segment, meaning packets using
this route will have a segment list with 3 entries.
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In the current Linux implementation the delivery of packets with a segment routing
header is not fully correct. The first issue is that the behavior specified in section 4.4 of
the IPv6 standard (RFC 2460) is not followed:

If Segments Left is zero, the node must ignore the routing header and proceed
to process the next header in the packet.

While for security reasons it may be sensible to not process the instructions in the segment
routing header when it is not explicitly enabled, the Linux implementation currently
drops all packets addressed to itself with a SRH, even if the packet contains no further
routing instructions, unless it is told not to.

Supporting the segment routing header at all therefore requires explicitly enabling segment
routing via the per-interface seg6_enabled kernel option, including on the container side
interface. This enables both the ability to deliver packets with zero segments left, but
also processing of the segment routing header when there are still segments left.

With seg6 enabled the behavior in the Linux kernel is fixed: it is not possible to attach
specific behaviors to user defined segment identifiers or to disable endpoint functionality.
If segments left is zero and the payload is another IPv6 payload, the packet is always
decapsulated and reprocessed by the kernel. Otherwise the packet is delivered to the host
via the normal path. In the case that segments left is non-zero, the kernel will always
attempt to activate the next segment and forward to this address.

Another interesting behavior surfaced when we attempted a layer 2 optimization. The
idea was to ‘ignore’ layer 2 addressing in order to reduce the amount of state required by
the packet forwarding program and always use a broadcast MAC address, since all the
container interfaces are effectively point-to-point links. This approach works when no
segment routing header is present, but the Linux IPv6 routing header handling function
has an explicit check that differentiates between traffic directed at the host (i.e. matching
interface MAC, or PACKET_HOST) versus traffic directed at an IPv6 multicast address
or non-matching MAC addresses, e.g. PACKET_BROADCAST and PACKET_OTHERHOST. The
latter behavior is tied to the link layer address and not the active segment identifier,
again unexpected compared to behavior proposed in the specification.

The only extension supported by this implementation is the HMAC extension, with
support for both signing and verification with static keys. The Linux kernel implemen-
tation can be set to only accept authenticated headers by enabling the per-interface
seg6_required_hmac option.

According to the authors of the seg6 code using the segment routing header may also
result in performance issues,4 because of packet checksum mismatches due to SRv6’s
modification of the destination address. This should also be taken into consideration
when using packet sniffers, as packets that contain protocols with a checksum that include
the destination address but that do not yet have the final segment active may be marked

4http://www.segment-routing.org/index.php/Implementation/Issues
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as having an incorrect checksum. IPv6-in-IPv6 encapsulation works around this issue
because in that case the fields of the inner IPv6 header are used for checksum calculation
instead.

5.3.2 eBPF

An initial implementation of the design proposed in section 4.4 was attempted using
eBPF. As described in section 2.3, the eBPF interface allows applications to supply the
kernel with packet filtering and manipulation programs. Programs can be attached to
the ingress or egress point of an interface using the tc command. Due to the way the
virtual Ethernet interfaces work traffic coming from the container to the host-end of the
veth pair is also considered ingress from the perspective of the host.

The ingress eBPF program first verifies that the packet is indeed an IPv6 packet and not
destined to a link-local address. Such traffic is simply passed along to the host. The next
step is to build a key that will be used to look up whether the destination address is a
known container. If the segment routing header is present and there is one segment left,
the traffic is assumed to be targeted at an overlay. If there is no segment routing header
or if there are no additional segments left, the traffic is assumed to be directly addressing
a container instead. The key is set to (segment[n], segment[n - 1]) for overlay traffic, or
to (destination5, ::) otherwise. This key will be looked up in a hash map which maps
the key to the container’s interface and its MAC address, to which the packet will then
be forwarded using bpf_redirect. The values in this map are provided by an external
script, described below.

Applying policies to pure IPv6 ingress traffic requires only minimal packet modification.
In the case of overlay traffic, the last segment is activated by updating the destination
address and setting the segments left field to zero. The destination MAC address must
always be updated, otherwise the frame will not be accepted by the network stack on the
container side. However, encapsulated traffic requires more work because the outer IPv6
header and possible IPv6 extension headers must be removed as well.

To handle packet egress the eBPF program first looks up the sending interface index to
determine its tenant ID and optional per-container segments. Next it looks up a prefix
of the destination address to determine whether the address belongs to a known overlay.
The prefix size for this lookup currently has a fixed size of 64 bits, but since kernel 4.11
an implementation of a longest prefix match trie can be used to support arbitrary prefix
sizes.

If the destination prefix points to an overlay, the underlay address is determined by
combining the resulting underlay prefix address, a fixed number of bits indicating this is
a tenant SID, and the tentant ID. If there are no segments to be added as a result of this
process, the packet is forwarded as-is. Otherwise room for the segment routing header

5Which is equivalent to segment[n]
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must be added, the segments must be copied to the segment list, and the destination IP
address must be updated to point to the first segment.

tc qdisc add dev eth0 clsact
tc filter add dev eth0 ingress prio 1 handle 1

bpf da obj ingress .o sec do_ingress
tc qdisc add dev veth3CBDG1 clsact
tc filter add dev veth3CBDG1 ingress prio 1 handle 1

bpf da obj egress .o sec do_egress

Figure 5: Commands to attach eBPF programs to interface ingress

Figure 5 shows the commands used to attach eBPF programs to an interface, by creating
a tc clsact (classifier/action) hook and attaching the object to it. The da flag specifies
that direct packet access is enabled.6 In this mode the memory accesses of the packet
data are automatically translated to the bytecode instructions that fetch this data from
the socket buffer, instead of the application needing to manage data on the stack using
bpf_skb_load_bytes and bpf_skb_store_bytes calls, allowing code to be written in
a more ‘natural’ manner. This works under the condition that the kernel verifier can
deduce that the access is within bounds of the socket buffer based on the presence of
proper size checks in the code.

The eBPF programs use shared data structures called maps to communicate state with
external applications. When using tc these maps are accessible over a special bpffs
filesystem which can be mounted using mount bpffs /sys/fs/bpf -t bpf. The map
will be located in /sys/fs/bpf/tc/globals/$mapname. A tool called bpf-map can be
used to inspect these maps from the command line and we upstreamed a patch to modify
these maps from e.g. a script7, allowing us to dynamically modify container policies.

5.3.2.1 eBPF limitations

After experimenting with encapsulation it turned out that for the currently available
Linux kernel version there is insufficient functionality exposed for removing or injecting
IPv6 extension headers. Because of this, it is also not possible to decapsulate the outer
IPv6 header in an IPv4-in-IPv6 scenario if the IPv6 packet has extension headers. The
development team working on eBPF features in the Linux kernel acknowledged the
lack of control over layer 3 extension headers and were also interested in adding such
functionality.8

One of the potential functions is bpf_skb_change_head. This function adds some
headroom at the start of the kernel socket buffer, but is intended to add layer 2 headers

6https://lwn.net/Articles/686677/
7https://github.com/cilium/bpf-map/pull/7
8https://github.com/cilium/cilium/issues/994
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to packets for e.g. redirection. The socket buffer is set up such that the layer 2 and layer
3 headers are stored in separate segments, so this cannot be used to simply add a layer 2
header, copy the IPv6 header to the start of the packet, and then create a new segment
routing header in the remaining headroom. It is also not possible to create an MPLS
encapsulation this way because the socket buffer structure explicitly stores the Ethernet
protocol type and will check the link layer header before forwarding the frame.

The second potential function is bpf_skb_change_tail, which can grow or trim the
socket buffer size. This function has a performance penalty because it linearizes the entire
socket buffer, preventing generic segmentation offloading from being used. Furthermore,
it is also difficult to use due to the restrictive nature of BPF programs: the extremely
limited stack size prevents copying full packet data to the stack, and there are no helper
functions to directly move data around in the packet.

A further limitation is that checking of the HMAC extension is not possible because there
is no support for cryptographic operations in eBPF. In general, verifying the presence of
segment identifiers or extensions at non-fixed offsets is difficult to implement because
of the difficulty of implementing dynamically sized loops in eBPF. Because of all the
aforementioned limitations our design could not be fully implemented using just eBPF.

5.3.3 Userspace network handling

As the eBPF implementation currently does not meet all the requirements we set out
with, an alternative approach was chosen which is based on Linux userspace packet
handling. The design of the userspace application follows the same model as the eBPF
design and can be used as a reference for the functionality that would be required in
eBPF. The dynamic maps used in eBPF are replaced with static configuration.

There are several options for implementing both ingress and egress packet handling in
userspace Linux. These datapaths may be slower than an eBPF-based approach, because
every packet needs to be delivered to and processed by userspace resulting in extra
copying and context switches, although optimizations can be applied such as sharing a
ring buffers with the kernel.

One option is using tun and tap devices which enables a userspace program to receive
layer 3 packets or layer 2 frames, respectively. Once received by the application, these
datagrams can then be processed, or modified and sent out to an application-controlled
interface using raw sockets. Ingress and egress traffic can be redirected to this interface
using iptables in combination with fwmark by marking and redirecting traffic being
forwarded from the container to the tapping interface, or directly using forwarding ip rule
with an in-interface rule. One caveat of this approach is that egress forwarding cannot be
done on a per-container basis because veth interfaces do not support forwarding. Instead
they must be placed in a bridge from which traffic can then be forwarded. It is also not
possible to replace the veth interface directly with a tun/tap interface because these
interfaces cannot bridge Linux network namespaces.
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Another option is to write an application based on the PF_PACKET packet sniffing API,
which makes a copy of the packet and sends it to the application before kernel handling
takes place. This approach will see both ingress and egress traffic, which must be filtered
by matching the packet type in the application. The copying behavior means regular
forwarding needs to be disabled when otherwise applicable routes are in place, otherwise
packet will be forwarded unmodified by the kernel as well.

Similar to the eBPF programs these approaches are not transparent on layer 2, because
forwarding the traffic over a raw socket requires filling in the link-layer headers. The
destination MAC address must match the MAC address of the interface the traffic is
being forwarded to, or the kernel will not handle the traffic. To some degree this can be
bypassed when using point-to-point interfaces by using the broadcast MAC, if the traffic
is not to be handled by the Linux kernel or if it does not have a segment routing header.

5.4 Overlays

The tools developed for this project based on the design proposed in 4.4 were used to
implement the overlay scenarios described in sections 4.1 and 4.2. Ingress packet handling
for overlay networks was implemented using both eBPF and in userspace. Because of
technical limitations of eBPF described earlier ingress IPv4 decapsulation and egress
functionality could not be fully implemented using eBPF.

41

A

fd0a::ff:1fdee:a::41/64
10.0.4.41/24

fd0a::/64

42

B

fd0b::ff:1 fdee:b::42/64
10.0.5.42/24

fd0b::/64

Underlay

Figure 6: An example multi-tenant overlay network

An example multi-tenant overlay with two container hosts is shown in figure 6, based
on the underlay in figure 3. For sake of brevity a single container from a single tenant
is shown on each host. First a template was chosen for the overlay segment identifiers,
in this case fd0X::ff:Y where X identifies the host and Y is a unique identifier for
the tenant. The illustrated path represents container 41 belonging to tenant 1 at host
A sending a packet to container 42 at host B. At container host A the segment list
(fd0b::ff:1, fdee:b::42) will be inserted in traversal order. The underlay then routes traffic
to container host B. At host B this segment list is used to map the traffic to the correct
container. This overlay network also supports transporting IPv4 over the IPv6-only
underlay. In this case host A encapsulates the IPv4 traffic with an outer IPv6 header
and includes segment list (fd0b::ff:1, ::10.0.5.2).
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5.5 Routing network function

As demonstration of deploying a network function in a container network a function
was developed that can perform routing of opaque addresses. This scenario features an
overlay network with addresses that are not directly routable, for which the container
host has to add the routing network function SID to make successful packet delivery
possible. When receiving a packet this network function resolves the actual destination
host – based on the final segment – to where the container resides. It is able to route
the packet to the final destination by adding segments to the segment list. The network
function itself is backed by a simple mapping of addresses to container host SIDs.

NF

17

A

fdff::17

fd0a::/64

18

B

fdff::18

fd0b::/64

Underlay

fdcc::1

fd0b::1fd0a::1

Figure 7: An example routing network function

A concrete example is shown in figure 7. In this scenario prefix fdff::/64 was chosen for
opaque container addressing. When container 17 sends traffic to container 18 using its
opaque address, the container platform will match this prefix and include the segment
identifier of the routing network function so that the initial segment list becomes (fdcc::1,
fdff::18), causing the traffic to be routed through the network function first. When the
network function receives the packet, it will look up the location of the final segment and
see that it can be reached at host B via fd0b::1. It updates the segment list to (fdcc::1,
fd0b::1, fdff::18) and sends the packet back out again. Once the packet arrives at host B
the container platform is able to deliver it to the container.

The implementation makes use of the same packet processing facilities as the userspace
overlay applications. However, when deploying network functions on Linux care must be
taken to avoid interacting with the Linux seg6 implementation. For example, regular
forwarding to a tun/tap interface will not work because the packets including a segment
routing header addressed to one of the network interfaces causes the seg6 processing to
either act on the segment routing header or if it is disabled to reject the packet. Therefore
the implementation is currently limited to the PF_PACKET packet sniffing API. Another
workaround would be to only let Linux handle layer 2 forwarding, such that the interface
is not configured with an IP address. This would require implementing IPv6 neighbor
discovery in userspace so that the neighboring router can reach the network function.
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6 Discussion

In this section we describe some of the potential limitations and developments of segment
routing to container networks. The design and implementation of segment routing and
SRv6 are still a work in progress, as both the standards themselves and the implementa-
tions have not been finalized yet.

6.1 Container control plane

While the proof of concept uses static configuration, container platforms typically imple-
ment a control plane to dynamically grow and shrink the container cluster. Container
platforms that support clustering will already have well established communication
protocols used to establish their clusters, e.g. based on shared key-value stores or direct
information exchange.

In order to establish an overlay between hosts in the cluster, the hosts must exchange a
set of parameters for that overlay. This includes an identifier for the overlay such as a
tenant identifier, the segment identifier that must be used to route traffic to that host,
and the addresses of the containers that are reachable on this overlay. Container address
information should preferably be in an aggregated form for sake of efficiency.

A container network with complex addressing, such as containers with arbitrary layer
2 addresses spread throughout the network, can adapt existing approaches to support
segment routing. For example, an existing approach which is used in VXLAN which
uses MP-BGP can also be adopted to SRv6. In this case the exchange of Virtual Tunnel
Endpoints used by VXLAN can be substituted with the exchange of overlay segment
identifiers, which is a conceptually similar approach.

Traffic engineering can be part of the control plane as well, for example by exchanging
traffic profiles between container hosts. Protocols to do path computation between end-
hosts directly have not been proposed, instead existing approaches rely on a centralized
path computation element based on PCEP. Alternatively, traffic engineering could be
left open to be implemented by the core network itself. Here adequate marking of traffic
may play an important role.

6.2 Further developments based on SRv6

It can be useful for hops in the network – such as routers or network functions – to add
or replace segments in the segment routing header, for example to enforce security or
routing policies. Truncation of the segment list at the network boundary could also be
used to hide implementation details of the network, or simply to reduce the segment list
overhead. The current specification prohibits direct modification of the segment list if the
destination address is not within the domain of the modifying party, and whether such
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modification would be acceptable is an open point of discussion in the segment routing
community.

Source routing based policies are inherently unidirectional. This is not necessarily an
issue, but does prove to be a limitation where ingress traffic to a container may not
have been passed through a (security) network function such as a firewall. Coupled
with potential fail-open behavior, e.g. when new ingress paths become available or if
the ingress point otherwise no longer applies an ingress policy, use of security functions
need to be carefully designed to avoid unintended exposure, for example by enforcing
the presence of security related SIDs when a packet is received by the container host.
The ability for an end-host to request a path from an ingress point to that host is not
currently described in the specification.

The addressing scheme proposed in section 4.2 which includes a predictable tenant SID
as destination address can prove to be useful in allowing the underlying network to make
(QoS) policy or traffic engineering decisions on a per-tenant basis, without having to be
aware of the tenant’s container addressing scheme. This is another potential reason to
unconditionally use IPv6-in-IPv6 encapsulation, despite it not being strictly required, so
that both outer source and destination addresses can fit in this scheme.

6.3 Improvements in eBPF

Support in eBPF for adding and removing arbitrary layer 3 extension headers was added
July 3rd, 20179 to be introduced in Linux 4.13. The function bpf_skb_adjust_room
adds the ability to add or remove a number of bytes directly after the IPv4 or IPv6
header. This missing function would allow us to implement adding and removing the
segment routing header using eBPF. However, this function does not help if the SRH
is (to be) placed at any position other than directly after the IPv6 header. Adding or
removing segments to an existing segment routing header is also made difficult by this
design, making it less useful for implementing network functions.

6.4 Security implications

The SRv6 concept shares similarities with the earlier ill-fated IPv6 routing header type
zero (RH0), which was deprecated for its potential use in (reflected) denial of service
attacks[2]. SRv6 attempts to solve these issues in multiple ways. Since container networks
are in most cases exposed to external networks, the security of the container network
against outside influence should be taking into consideration.

SRv6 can only have an impact on a network if the destination address of the packet is
within that domain, as otherwise (by design) the routing header is never acted upon. At
the network ingress points a security policy needs to be applied. For example, a source

9https://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next.git/commit/?id=2be7e21
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based ACL may be implemented (keeping in mind the potential for IP spoofing attacks)
and the HMAC-based authentication of the SRH can be enforced. In any case, segment
identifiers related to overlays must be protected from unauthorized access.

Contrary to the initial design of RH0 with SRv6 not all hosts need to support arbitrary
routing to be enabled by default. Instead support for source routing is enabled by explicitly
assigning behaviors to segment identifiers. Note that the Linux kernel implementation
does not follow this model: enabling seg6 on an interface – required in order not to drop
traffic with the segment routing header at all – enables endpoint functionality described
in section 5.3.1 on its local IPv6 addresses.

The segment routing standard does not offer any new transport encryption or authenti-
cation options with regards to protecting the other headers or payload of the packet. It
is expected that end-to-end authentication and confidentially will be based on existing
protocols such as TLS. The IPSec support built into IPv6 can also be used to provide
end-to-end security, although because of the manipulation of the destination address field
the authentication header may not appear to be valid while in flight.

7 Future work

The documentation of the Linux segment routing implementation states that a method
that will allow applications to handle endpoint function behavior via a Netlink interface
is planned. There is no further documentation or roadmap available as of yet. However,
since such a method will likely be the intended way of using SRv6 on Linux it would be
interesting to research the general design and application of this interface.

With SRv6 it is possible that the segment list remain present in the packet up to
and including at the final destination. Because segment routing does not rely on path
reservations, it might be interesting to use this segment list in reverse order for symmetric
path signaling. Furthermore, the SRH has a flag that enables OAM messaging. This can
be used for out-of-band path signaling as well, e.g. by including an extension with path
parameters.

Based on the soon to be released functionality the eBPF-based approach to segment
routing can be finalized. It would be interesting to test the performance of this implemen-
tation against e.g. the Linux kernel implementation and against the DPDK-based VPP. It
would also be interesting to compare the performance of interpreted eBPF, JIT-compiled
eBPF, and eBPF using the eXpress Data Path optimization.

8 Conclusion

In this paper we have shown that while segment routing in IPv6 is still in its (relatively)
early development stages, it is possible to build experimental setups and evaluate its
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behavior in practice. The concepts and functionality offered by SRv6 integrate well with
real-world use cases that benefit from software defined networking, such as container
networks.

Building virtual overlays between container hosts and routing of services through network
functions is easily achievable, even if the underlay network infrastructure does not itself
actively participate in segment routing. Because the behavioral instructions are encoded
into the packet, a noticeable reduction in the maximum transferable unit size should
be taken into consideration when designing such a network and related applications,
although such overhead is comparable to existing encapsulation mechanisms.

Host-driven SDN goals do not need to conflict with traffic engineering policies in effect
on the network. A host in a segment routing domain can either apply traffic engineering
policies directly, point the packet at a policy function, or allow ingress core routers to
extend the segment list for traffic engineering. It is also possible to mix SRv6 with
segment routing based on MPLS.

While the Linux kernel implementation cannot be used directly as building block for
using SRv6 in container networks, the kernel offers adequate interfaces to allow userspace
applications to experiment with new extensions to IPv6. When processing the seg-
ment routing header in userspace the in-kernel implementation can get in the way, but
workarounds are available. The development of new interfaces such as eBPF greatly
simplifies experimental network handling in a performant way, but is severely limited by
the API exposed to these programs.

A Source code

All source code produced during this experimentation has been made publicly available
under the GNU General Public License. For ecological reasons it is not included in this
document, but instead can be found at https://bitbucket.org/uva-sne/segcon6/.

This source code includes the following:

• A script to create virtual topologies
• eBPF programs for ingress and egress (untested)
• Userspace tools based on tun/tap and PF_PACKET
• A network function template and routing example
• Linux kernel tracing scripts for eBPF and for the IPv6/seg6 network stack
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