
MSc System and Network Engineering
Research Project 1

Pentest Accountability By Analyzing Network
Traffic & Network Traffic Metadata

Henk H.P.M. Doorn van, BSc
Henk.vanDoorn@os3.nl

Marko M.B. Spithoff, BSc
Marko.Spithoff@os3.nl

February 11, 2018

Supervisors:
A. Stavroulakis
L. Petrov

Assessor:
Prof. Dr. C.T.A.M. de Laat

Universiteit van Amsterdam

Abstract

The purpose of this study is to determine if accountability during a penetra-
tion test can be achieved by capturing network traffic. With current methods
it is difficult to prove or disprove what actions have been executed during a
penetration test. An isolated test environment was created to determine the
feasibility of achieving accountability by capturing traffic. In this environment
we researched the feasibility of capturing all network traffic and capturing net-
work metadata during a penetration test. The results showed that capturing all
network traffic is feasible apart from the libpcap, which poses severe limitations
on the scalability of this method and requires capable hardware. In comparison,
capturing only network metadata requires a fraction of the resources. In this
we research we will show that both methods are feasible to provide account-
ability, but must be tailored specifically to the infrastructure that has to be
tested. capturing network metadata could provide a feasible method to create
accountability and only requiring little hardware recourses, but it is needed to
have knowledge beforehand about what data has to be captured and stored. A
capture of all network traffic requires powerful hardware and scales badly due to
the limitation imposed by libpcap, but requires no knowledge beforehand about
the data to be stored and captured to create accountability.

Key Words— Penetration Testing, Accountability, Network Data, Network
Metadata, Standardized

1

Contents

1 Introduction 5

2 Related Work 5
2.1 Taxonomy of a Pentest . 6

3 Methods 9
3.1 Experiment Setup . 9
3.2 Full Network Traffic Capture . 10
3.3 Metadata Network Traffic Capture . 12

3.3.1 Network Metadata . 14
3.3.2 Detecting Centralized NMAP TCP Port Scans Based on TCP

Metadata . 18
3.3.3 Detecting TCP (Reverse) Shell Sessions Based On TCP Metadata 19

4 Results 20
4.1 Network Metadata . 20

4.1.1 Experiments 1 & 2 . 20
4.1.2 Experiment 3 . 23
4.1.3 Experiment 4 . 23

4.2 Full Capture . 25
4.2.1 Tcpdump . 26
4.2.2 Tshark . 26
4.2.3 Mongoimport . 26
4.2.4 Usability in accountability . 27

5 Discussion 28

6 Conclusion 29
6.1 Metadata . 29
6.2 Full Capture . 29
6.3 Comparison Of Experiments . 29
6.4 Method Comparison . 31

7 Future Work 33

8 Appendix 37

2

List of Figures

1 Experiment Setup . 9
2 Setup to research feasibility to capture complete traffic stream 10
3 General Block Structure of a PCAP file [29] 11
4 PCAP header structure [29] . 12
5 Experiment Metadata Analyzer-1 . 13
6 Experiment Metadata Analyzer-2 . 14
7 Seven Layer OSI Model [10] . 15
8 Ethernet Packet Header [9] . 16
9 IPV4 Packet Header [25] . 16
10 IPV6 Packet Header [15] . 17
11 TCP-Header [26] . 17
12 UDP-Header [24] . 18
13 Metadata To Log . 18
14 Results Of Disk Performance During Experiment 21
15 Results Memory Usage During Experiment 1 21
16 Results Network Performance During Experiments 22
17 Nmap Detection Pattern . 23
18 TCP Shell Detection Pattern . 24
19 TCP Shell End Pattern . 24
20 Memory usage in percentage . 25
21 Disk usage during Tshark pcap to json conversion 26
22 Example data from a captured packet 27
23 Comparison Of Disk Performance Between Full & Metadata Capture . 30
24 Comparison Of Memory Performance Between Full & Metadata Capture 31
25 Graph CPU Performance Per CPU During Metadata Experiment 1 . 39
26 Graph CPU Performance Per CPU During Metadata Experiment 2 . 41
27 Graph CPU Performance Per CPU During Mongoimport 44
28 Full Capture Experiment: Performance Statistics Per CPU Measured

At 1 Minute Intervals For The Duration Of 12 Hours 46

List of Tables

1 Mongo DB Statistics At The End Of The Experiments 22
2 Nmap Calculated Statistics After 100 Default Portscans 23
3 Metadata Experiment 1: Performance Statistics Per CPU Measured

At 1 Minute Intervals For The Duration Of 12 Hours 40
4 Metadata Experiment 2: Performance Statistics Per CPU Measured

At 1 Minute Intervals For The Duration Of 12 Hours 42
5 Metadata Experiment 1: Disk Performance Statistics Measured At 1

Minute Intervals For The Duration Of 12 Hours 42
6 Metadata Experiment 2: Disk Performance Statistics Measured At 1

Minute Intervals For The Duration Of 12 Hours 42
7 Metadata Experiment 1: Network Performance Statistics Measured At

1 Minute Intervals For The Duration Of 12 Hours 42
8 Metadata Experiment 2: Network Performance Statistics Measured At

1 Minute Intervals For The Duration Of 12 Hours 42
9 Metadata Experiment 1: Memory Usage Statistics Measured At 1

Minute Intervals Displayed At 1 Hour Intervals For The Duration Of
12 Hours . 43

3

10 Metadata Experiment 2: Memory Usage Statistics Measured At 1
Minute Intervals Displayed At 1 Hour Intervals For The Duration Of
12 Hours . 43

11 Full Capture Experiment: Performance Statistics Per CPU Measured
At 1 Minute Intervals During Mongo Import 45

12 TCP Dump Utilization: Performance Statistics Per CPU Measured At
1 Minute Intervals For The Duration Of 12 Hours 45

13 Full Capture Experiment: MongoDB Storage Space Used 45
14 Full Capture Experiment: Storage Space Used Per Capture File 45
15 Full Capture Experiment: Memory Performance Statistics Measured

At 1 Minute Intervals For The Duration Of 12 Hours 47
16 Full capture: Disk Performance Statistics Measured At 1 Minute In-

tervals For The Duration Of 12 Hours 47

4

1 Introduction

Penetration testing or security auditing, hereafter to be referred to as pentest or
pentesting is a common procedure for firms assessing their IT-infrastructure. These
firms often contact other specialized firms or individuals to execute pentests to assess
their IT-infrastructure. Activities during the pentest are usually well logged and
documented. Nonetheless, this is often insufficient for accountability of actions during
a pentest. Pentesting firms could be questioned months after the execution of a
pentest regarding specific and detailed events, which occurred during a pentest.

The logs and documents are often insufficient to prove or disprove actions done
while executing a pentest. Although they give an indication of what happened during
the execution of a pentest, they cannot definitively prove or disprove what action(s)
have taken place. This could result in situations where firms performing pentests
cannot prove for what they are accountable for.

This paper aims to propose and evaluate possible methods of creating account-
ability of actions by capturing pentest traffic on the network.

2 Related Work

There is little to no related work into the research of pentest accountability. We
will therefore, look into the related work done in Cyber Attacks. The related work
in this section is based on the execution and prevention of Cyber Attacks. After
having looked into the related work of Cyber Attacks we will create usable methods
to provide pentest accountability based on the methods proposed in the related work.

Bishop [8] wrote a short article about pentesting. The author defines part of the
taxonomy of pentesting. The relation to this paper is that we use the definitions to
determine possible actions during a pentest.

Hutchins et al. [18] wrote a paper about Intelligence-Driven Computer Network
Defense. In this paper they wrote about indicators as the fundamental element of
Intelligence-Driven Computer Network Defense. In this paper an Intrusion Kill Chain
for the defense of computer infrastructures was proposed and the Intrusion Kill Chain
was tested in a case study. Their conclusion was that the Kill Chain provided a
structured way, which can be used to provide a structured way to try and protect
computer infrastructures from malicious attacks.

McLaughlin et al. [23] wrote a paper about Multi-vendor Penetration Testing in
the Advanced Metering Infrastructure. In this paper they proposed a new approach
for penetration testing of multivendor devices. The approach proposed by [23] is
based on archetypal and concrete attack trees also proposed in the same paper. As a
result they showed that they were able to successfully perform penetration tests on a
broad range of multivendor devices in the advanced metering infrastructure based on
the proposed methods.

Worrall [30] wrote a paper about the real time sonification and visualization of
network metadata. In this paper he describes how network traffic can be converted
to metadata by making use of sonification and visualization to provide realtime audio
and videostreaming of metadata.

Ahlers et al. [2] wrote a paper about Replicable Security Monitoring: Visualizing
Time-Variant Graphs of Network Metadata. In this paper Ahlers et al. proposed a
system which introduces the possibility to visualize network metadata based on Data
dynamics, semantics and history based on the IF-MAP specifications. As a result
they were able to visualize the current and past states of the metadata in graphs

5

given the limitations that data is offered via IF-MAP and all data has to be retrieved
from the MAP server.

Lee and Lee [20] look into Scalable Internet Traffic Measurement by capturing
traffic using libpcap and storing these to HDFS. MapReduce is used to analyse the
given libpcap files. The paper tries to analyze if it is feasible to characterize Internet
traffic given the scalable requirements. The research implements the well known
Hadoop distributed file-system.

Feamster [16] researches a new concept of outsourcing home and small enterprise
network security by making use of network metadata. They harness two trends:
(1) programmable switches and (2) the capability to monitor distributed networks.
The main goal of this paper is combating spam and botnets. The paper debates the
ethical considerations of collection data on a large scale and discusses possible privacy
concerns.

Jung et al. [19] wrote a paper about Fast Portscan Detection Using Sequential
Hypothesis Testing, which delves into quick and accurate detection of port-scans.
Based on their findings they developed the Threshold Random Walk, which is a
detection algorithm able to identify malicious remote hosts.

Yasinsac and Leckie [31] research the possibilities of detecting malicious traffic
by analyzing metadata from captured traffic. Metadata does not contain the actual
payload information and therefore the paper proposed a model where Intrusion can
be detected even when the payload is encrypted by inspecting the metadata.

Barford and Plonka [5] wrote a paper about gathering and analyzing network flow
data to detect traffic anomalies. They defined three anomaly groups and identified
differences and similarities between these groups.

Tuck et al. [28] wrote a paper about Deterministic Memory-Efficient String Match-
ing Algorithms for Intrusion Detection. The research delves into the possibilities of
detecting intrusions by efficiently match strings. This results in a comparison of
different algorithms and their performance.

2.1 Taxonomy of a Pentest

Hutchins et al. [18] defined an Intrusion Kill Chain based on the U.S. military
targeting doctrine consisting of the following steps:

1. Find

2. Fix

3. Track

4. Target

5. Engage

6. Assess

According to Hutchins et al. [18] when creating a targeting doctrine for a computer
network attack (CNA) or computer network espionage (CNE) it is closely related to
military targeting doctrines. For this reason Hutchins et al. decided to create a
Intrusion Kill Chain hereafter to be referred to as a Cyber Kill Chain based on the
the U.S. military targeting doctrine from 2006. As stated by Hutchins et al. the
intention of a Cyber Kill Chain is to gain a, for the attacker desired effect by making
use of lateral movement or by tampering with the confidentiality, availability or the
integrity of an information system.

6

We consider a pentest to be an organized and structured procedure. The goal of a
pentest is to assess the possibilities to laterally move within a computer-infrastructure.
Other goals are to tamper with the confidentiality, availability or the integrity of an
information system [8]. A pentest is therefore, closely related to a CNA or CNE. The
taxonomy of a pentest will be based on the Cyber Kill Chain defined by Hutchins
et al., which consists of the following steps: ”

1. Reconnaissance- Research, identification and selection of targets, often repre-
sented as crawling Internet websites such as conference proceedings and mailing
lists for email addresses, social relationships, or information on specific tech-
nologies.

2. Weaponization - Coupling a remote access trojan with an exploit into a deliv-
erable payload, typically by means of an automated tool (weaponizer). Increas-
ingly, client application data files such as Adobe Portable Document Format
(PDF) or Microsoft Office documents serve as the weaponized deliverable.

3. Delivery - Transmission of the weapon to the targeted environment. The three
most prevalent delivery vectors for weaponized payloads by Advanced Persistant
Threat (APT) actors, as observed by the Lockheed Martin Computer Incident
Response Team (LM-CIRT) for the years 2004-2010, are email attachments,
websites, and USB removable media.

4. Exploitation - After the weapon is delivered to victim host, exploitation trig-
gers intruders’ code. Most often, exploitation targets an application or operating
system vulnerability, but it could also more simply exploit the users themselves
or leverage an operating system feature that auto-executes code.

5. Installation - Installation of a remote access trojan or backdoor on the victim
system allows the adversary to maintain persistence inside the environment.

6. Command and Control (C2) - Typically, compromised hosts must beacon
outbound to an Internet controller server to establish a C2 channel. APT mal-
ware especially requires manual interaction rather than conduct activity au-
tomatically. Once the C2 channel establishes, intruders have “hands on the
keyboard” access inside the target environment.

7. Actions on Objectives – Only now, after progressing through the first six
phases, can intruders take actions to achieve their original objectives. Typically,
this objective is data exfiltration which involves collecting, encrypting and ex-
tracting information from the victim environment; violations of data integrity
or availability are potential objectives as well. Alternatively, the intruders may
only desire access to the initial victim box for use as a hop point to compromise
additional systems and move laterally inside the network.” [18]

To efficiently execute a pentest, the steps of the Cyber Kill Chain have to be
performed on the different layers of Cyber Space. According to the Joint Publication
3-12 (R) of the United States Department of Defense in Cyberspace three layers exist:

1. Physical Network Layer

2. Logical Network Layer

3. Cyber-Persona Layer

7

The physical layer consist of hardware that is used to build up a computer in-
frastructure or to cross geographical boundaries. A list could consist of the following
hardware:

• Wired

• Wireless

• Optical

• Satellite

The logical network layer consists of elements allows for communication between
systems. The Cyber-Persona Layer consists of the natural persons who use the physi-
cal or logical network layers. For example a user that is on Facebook is an element of
the Cyber-Persona Layer. Clark extended on this model by adding the information
layer. The information layer consists of the data that traverses the Logical Network
Layer [14]. When performing a pentest all of the steps defined by the Cyber Kill
Chain should be divided across the layers defined by the U.S. Department of Defense
and by Clark whom tailored this to the needs of the pentest.

8

3 Methods

In order to research accountability in pentesting we have created a controlled
experimental setup. In this setup we are able to run pentests and capture network
traffic with 802.3 network loggers. The setup is an isolated network which enables us
to store data traffic without any legal infringements or infringe upon other systems.

The experimental setup as explained in the next section, is used in two methods.
Full network traffic capture and metadata network traffic capture. Since both methods
use an duplicate of the experimental setup we are able to compare results from both
methods.

3.1 Experiment Setup

The experiment is set up as depicted in figure 1.

Figure 1: Experiment Setup

As depicted in figure 1 we have a controlled environment with two 802.3 loggers;
one for full network captures and one for metadata network captures. We make use
of both of the 802.3 loggers at the same time to be able to perform both experiments
simultaneously. All of the traffic from the Pentest Stations to the Pentest Targets
will be port mirrored to both the 802.3 loggers.

9

3.2 Full Network Traffic Capture

According to Lee and Lee capturing traffic requires a scalable infrastructure to
cope with the large amount of data transmitted during a pentest[20]. Furthermore
they state that it is likely that the amount of data during a pentest will increase
overtime.

The amount of traffic, which will be captured requires a scalable infrastructure.
In principle the amount of data will only grow, which brings challenges to storage
and analyses. Apart from storage traditional relational database are unlike to be
capable to scale and handle the dynamic tables needed for storing network traffic [4].
Therefore MongoDB was chosen, since according to Buck et al. [11] MongoDB is a
scalable database capable of handling non-relational data [11].

Figure 2 depicts the setup for researching the feasibility of capturing the complete
network stream. An analyst can either query MongoDB directly or use tools like
MapReduce and Pig to verify accountability.

Figure 2: Setup to research feasibility to capture complete traffic stream

10

As depicted in figure 1 the switch is configured with a span/mirror port forwarded
to 802.3 logger. The 802.3 logger writes the data to a pcap file. The pcap files are
rotated every minute, resulting in the creation of a new pcap file every minute. The
pcap file is converted, at one-minute intervals, to a json file. The json format is
necessary for storage in MongoDB.

According to Huang et al. [17] MongoDB is capable of coping with the storing the
generated data and is a scalable solution, if more capacity is required analysis can be
done directly on the information stored in MongoDB. Initial capturing will be done
with tcpdump 4.9.0 using libpcap 1.5.3 on Centos-release 7-4.1708. Pcap files are
binary blobs, which cannot be imported by Mongodb or any other database directly.
Mongodb requires newline delimited JSON format files. Tshark 2.4.4 will be used to
convert PCAP to JSON.

To avoid file conflicts Tcpdump is configured to rotate the pcap file every minute,
meaning that every minute a new pcap file was created. Due to the sequential nature
of the pcap format conversion to json can only utilize one CPU thread [4]. A bash
script will be used to check what the oldest pcap file is and if tcpdump completed
writing network traffic to the file. If tcpdump is not writing to the file (e.g writing to
a newer pcap) then tshark will convert the pcap to json and remove the pcap when
conversion has been completed.

As mentioned in this section, pcap files have to be read sequentially from start
to finish preventing multi-threading. This is due to the fact that pcap uses record
pointers instead of delimiters or indexes [4]. This research will look into the restriction
of this mechanism when capturing high-bandwidth traffic. The block structure is
depicted in figure 3. The block type specifies the following section header.

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Block Type |

+-+

| Block Total Length |

+-+

/ Block Body /

/ /* variable length, aligned to 32 bits */ /

+-+

| Block Total Length |

+-+

Figure 3: General Block Structure of a PCAP file [29]

PCAP files can consist of many blocks describing different kind of packets and
traffic. Regarding this research the general flexible structure is important to under-
stand the possible issues when reading PCAP files. The PCAP headers do not specify
their length, which means that they have to be read sequentially thus preventing mul-
tithreading. An example of the PCAP header structure is depicted in figure 4.

11

Section Header

|

+- Interface Description

| +- Simple Packet

| +- Enhanced Packet

| +- Interface Statistics

|

+- Name Resolution

Figure 4: PCAP header structure [29]

Pcap to JSON conversion
When running tcpdump a script was used to convert pcap to json files which can

be inserted into mongodb. The script prevents file read conflicts by checking if the
pcap file is in use by tcpdump. If the pcap file is in use then the script retries after
10 seconds.

Importing to MongoDB
After converting to JSON the information is inserted into MongoDB using Mon-

goimport. This tool supports multithreading, the wiredtiger storage engine com-
presses the data to preserve storage. While importing the data into MongoDB the
system will be monitored to check the CPU, memory and disk performance to assess
possible bottlenecks.

Performance
Iperf will be used as a tool to determine the performance of the setup. Although

not representative for simulating pentesting traffic, it gives a baseline indicator of
performance and possible bottlenecks. The setup is depicted in figure 1 where one
pentest station will be an iperf server and one a iperf client. The traffic is mirrored
to the 802.3 network logger to be stored in MongoDB as mentioned earlier in section
3.2 During the experiment the CPU, memory and disk load will be monitored using
python scripts. To measure the time it takes to convert to json, a python script will
be called every 60 seconds, which measures the number of pcap file in the directory.
This is an effective way to measure if conversion is lagging behind the network capture
since the pcap file(s) are sequentially converted starting with the oldest pcap file. If
conversion speed is lower than the amount of captured data then the number of pcap
files will be greater than 2 during an active capture since pcap files are rotated by
tcpdump and only converted when not written to.

3.3 Metadata Network Traffic Capture

For the metadata network traffic capture we make use of a Python script with the
Scapy library. We will perform pentests on a subnet that is created and controlled
for this research as depicted in figure 1, while performing live captures of network
traffic and network metadata using the Python Scapy script during the pentests. The
metadata that will be captured is explained in section 3.3.1.

Because we expect that we will see and have to inspect large amounts of net-
work traffic, we believe that hardware restraints such as a limited amount of memory
(RAM) will make pattern recognition in metadata, during live captures, quite chal-
lenging. Therefore, for the experiments we will look into the feasibility of recognizing
pentest patterns based on metadata during the live capture and writing only the

12

detected patterns into a MongoDB database as depicted in figure 5. Because we
expect that the hardware will have difficulty logging and analyzing everything simul-
taneously, we will also propose an experiment, which first writes all the captured
metadata to a MongoDB database, which then will be processed by an 802.3 data
analyzer as depicted in figure 6.

Figure 5: Experiment Metadata Analyzer-1

13

Figure 6: Experiment Metadata Analyzer-2

3.3.1 Network Metadata

To capture the possible relevant network metadata for our experiments, we first
have to define the possible relevant network metadata. To define the possible relevant
network metadata we refer to the Open System Interconnection Reference Model
commonly known as the OSI model. As written by Briscoe [10], the OSI model
consists of seven layers:

14

7: Application

6: Presentation

5: Session

4: Transport

3: Network

2: Data Link

1: Physical

Figure 7: Seven Layer OSI Model [10]

According to Briscoe the layers one till five as depicted in figure 7 are used to
transport the data to its destination, or present it to the user depending on the
direction the stack is traversed [10]. Layer six is used to pack the data for transport
or unpack the data to present it to the application layer. The application layer is
used to present the data to the the user.

One of the most commonly used descriptions for metadata is that it is ”Data About
Data” [21], but as described by Lubas et al. there is a variety of ways to describe
metadata. For this paper we will refer to the most commonly known description
for metadata as ”Data About Data”. If we look at the OSI reference model again as
depicted in figure 7 we know that the layers one till five are used to transport the data
to its destination. This means that the layers one till five will create data about the
data that is traversed via the stack. Because the layers one till five are most likely to
create metadata we will focus our research into these five layers. When inspecting the
OSI model as depicted in figure 7 we expect that we will be able to obtain metadata
from the different layers as explained below:

• Physical Layer, The method used to access the physical network

• Data Link Layer, The access strategy used for the network and MAC Address
identifiers

• Network Layer, The IP addresses used to communicate between networks

• Transport Layer, The transport layer protocol that is being used

• Session Layer, Session information used by different protocols

15

Because we know, which layers are most likely to create metadata. We examined,
which metadata could be retrieved from the different packet headers used within the
802.3 protocol.

+-+

| 48 bits Destination Mac Address |

+-+

| 48 bits Source Mac Address |

+-+

| Length (16 bits) | |

|+-+-+-+-+-+-+-+-+-+-+ |

| Payload & Padding (46-1500 bytes) |

+-+

| 32 bits CRC |

+-+

Figure 8: Ethernet Packet Header [9]

When examining the Ethernet Packet Header as depicted in figure 8. It can be
seen that an Ethernet Packet Header contain a Destination Address and a Source
Address. In the ethernet layer this means that it will contain the ethernet source
and destination address, or so called Mac Addresses. To achieve accountability it is
important to know how the packets flow between endpoints. Because of the DHCP
protocol the chance exists that a system will have a different IP Address after the
pentest than that it had during the pentest. The Mac Address however is less likely
to be changed, which makes a mac address ideal to achieve accountability of, which
systems have been targeted during the execution of a pentest. In addition to the
chance of dynamically assigned IP addresses the chance exists that a system or device
is behind a NAT of a corporate infrastructure. This means that the traffic can only
be traced to a publicly available IP Address and not to the targeted endpoint.

Figure 9: IPV4 Packet Header [25]

16

Figure 10: IPV6 Packet Header [15]

When examining the IPV4 header depicted in figure 9 and the IPV6 header de-
picted in figure 10 we can deduct that the IPV4 and IPV6 protocols make use of
different IP headers. Because we want to achieve accountability for the IPV4 and
IPV6 protocol we will extract the metadata from the IPV4 and IPV6 header, which
they have in common. This means that we will use the IP Version number to deter-
mine if it is IPv4 or IPV6 traffic and the source and destination address to determine
the IPV4 or IPV6 source and destination address.

Figure 11: TCP-Header [26]

17

Figure 12: UDP-Header [24]

When examining the TCP Header depicted in figure 11 and the UDP Header
depicted in figure 12 we can see that the UDP header requires less information than
the TCP Header. This is due to the the difference between the two protocols. The
TCP protocol is a statefull protocol [26] and therefore, needs more information about
the connection than the stateless UDP protocol needs [24]. Because the the TCP
protocol requires more information about the connection than the UDP protocol
needs the TCP protocol creates additional metadata on the data that is actually
being transmitted. As a result we can obtain more metadata from the TCP protocol
than from the UDP protocol. Therefore from the TCP protocol we will log the Source
Port, Destination Port, Sequence Number, TCP Flags and the Window Size. From
the UDP Protocol we will only log the Source and Destination port.

When we combine all of the headers and the data that we will log we will get the
following structure for the the metadata that we will log as depicted in figure 13

+-++-+-+-+-+-+-+-+-+-+-+

| Destination Mac Address, Source Mac Address | Data Link Layer |

+-++-+-+-+-+-+-+-+-+-+-+

| IP Version, Destination IP Address, Source IP Address | Network Layer |

+-++-+-+-+-+-+-+-+-+-+-+

| TCP Source Port, TCP Destination Port, TCP Sequence Number, | Transport Layer |

| TCP Flags, TCP Window Size | |

+-++-+-+-+-+-+-+-+-+-+-+

| UDP Source Port, UDP Destination Port | Transport Layer |

+-++-+-+-+-+-+-+-+-+-+-+

Figure 13: Metadata To Log

3.3.2 Detecting Centralized NMAP TCP Port Scans Based on TCP Meta-
data

To be able to achieve accountability of actions during the execution of a pentest
one must be able to recognize the actions done during the execution of a pentest. As
explained in section 2.1 the first step of the Cyber Killchain is the Reconnaissance
phase. During the Reconnaissance phase a commonly used method is port scanning
to identify possible interesting or vulnerable protocols on an computer infrastructure.
Because NMAP is widely adopted as the de facto standard for portscanners we will
look into the detection possibilities of the NMAP port scanner on TCP Metadata level.
We consider NMAP as the de facto standard because of its integration with Kali Linux
and as a commonly used tool by Red Teams [6]. As explained by Bennieston an NMAP

18

port scan is most commonly done by one of two type of scans the TCP connect scan or
the TCP syn scan commonly referred to as the (Syn) Stealth Scan [7]. Based on the
work of Jung et al. [19] in, which they have created an port scan detection algorithm
called the Threshold Random Walk. We want to create a detection method based on
TCP metadata and specifically the TCP flags. For this we will create an experiment
using a python script, which will inspect TCP flags and raise an alarm at A during
the experiment to determine threshold, for packets that have the characteristics of A
NMAP port scan.

After having created a method to detect Nmap port scans we will test this method
by performing 100 Nmap port scans with default settings to determine how accurate
the method created by us is in detecting Nmap port scans.

3.3.3 Detecting TCP (Reverse) Shell Sessions Based On TCP Metadata

Because most of the information about an exploit is found in the higher layers of
the OSI model, it is difficult to achieve accountability of actions during the execution
of an exploit in a pentest procedure based on Metadata. We will look into the pos-
sibilities of detecting the Command and Control sessions, which will most likely be
created after the execution of an exploit of a system as described by Hutchins et al.
[18] in step 6 of the Cyber Killchain ”Command and Control”. To detect possible
TCP (Reverse) Shells we will examine the TCP metadata to detect patterns in he
TCP (Reverse) Shell connections. We expect, that as described in section 3.3.2, by
making use of the TCP Flags and pre determined thresholds, we will be able to detect
TCP (Reverse) Shells.

After having created a method to detect TCP (Reverse) Shells we will test this
method by making use of a Python script for a TCP Shell Server and a TCP Shell
Client. We will set the client and the server in a loop, which will first build up and
then terminate 100 TCP Reverse Shells concurrently. To determine how accurate our
method is in detecting TCP (Reverse) Shells it has to detect a percentage of the 100
sessions build up with the python scripts.

19

4 Results

4.1 Network Metadata

To examine the feasibility of logging all network traffic metadata we made use of
python scripts, as described in section 3.3 to log network traffic metadata and to log
system performance. To examine the feasibility of capturing network metadata, we
have conducted the following experiments:

1. Capture Metadata For 12+ Hours a Python 2.7 script with the Pymongo and
Scapy Module.

2. Capture Metadata For 12+ Hours a Python 2.7 script with the Pymongo and
Socket Module.

3. Detect 100 centralized NMAP Scans Using a Python 2.7 script with the Py-
mongo and Socket Module

4. Detect 100 TCP Reverse Shells created with python 2.7 Scans Using a Python
2.7 script with the Pymongo and Socket Module

4.1.1 Experiments 1 & 2

During experiment 1 we performed a 12 hour network capture using Python with
the Scapy and Pymongo module. During the capture we specifically captured meta-
data of the TCP and UDP protocol on our local subnet, as depicted in figure 1.
During the process of capturing the metadata we monitored system performance and
measured statistics of the CPU, Memory, Network, Disk IO and the total amount of
Disk Space used every minute for the duration of the experiment.

During experiment 1 we observed that the system did not make efficient use of
resources. In addition to this problem we found that the Python script in combina-
tion with Scapy was unable to process all packets in realtime that were received on
the network interface. Because of this reason we created and designed experiment 2.
In this experiment we created a Python script to perform the UDP and TCP meta-
data capture in combination with the Socket module. Because the Scapy module for
Python is a packet analyzer and packet manipulation module we thought the perfor-
mance of the script should improve when receiving the data directly from the Socket
and processing it directly.

In the upcoming sections we will explain the observed differences in the results of
the performance statistics for both performed experiments.

CPU

The statistics of the CPU performance for both experiments are included in the
Appendix. For Metadata Experiment 1 in figure 25 on page 39 and in table 3 on page
40 and for Metadata Experiment 2 in figure 26 on page 41 and in table 4 on page 42.

When examining and comparing the results of Metadata Experiment 1 and Meta-
data Experiment 2 one can observe that there is a significant difference in CPU
utilization. The major difference is caused by the fact that the Scapy Module when
imported might cause interference with the core affinity when imported [3]. We used
the solution proposed on Stackoverflow to reset the core affinity. After this and by
replacing the Scapy module with the Socket module to directly read the network data
from the interface performance improved significantly, as can be observed in figure 25
and in table 3 and figure 26 and in table 4.

20

Disk Performance

Figure 14: Results Of Disk Performance During Experiment

When comparing the results of write 1 and read 1 (experiment 1) and write 2
and read 2 (experiment 2) depicted in figure 14 one can observe that the read values
have the same mean usage. The spike in the read usage in experiment 1 can be
explained by a random process accessing the /dev/sdb disk during experiment 1.
During experiment 2, one can observe that the average write value is higher than
during experiment 1. This difference is caused by the fact that during experiment
2 we used the Socket module, which is able to process about 4 times the amount of
packets as will be explained in 4.1.1.

The measured values of figure 14 are included in the Appendix in table 5 on page
42 and table 6 on page 42.

Memory

Figure 15: Results Memory Usage During Experiment 1

21

When comparing the results of both the experiments in figure 15 one can observe
a significant difference in memory usage during the 12 hour experiment. From this
experiment we can conclude that the Socket module makes more efficient use of mem-
ory than the Scapy module. It seems that the Scapy module stores more into memory
than the Socket module of Python.

The measured values of figure 15 are included in the Appendix in table 9 on page
43 and 10 on page 43

Network

Figure 16: Results Network Performance During Experiments

When comparing the results of the both experiments in figure 16, one can observe
that the mean usage is about the same. The highest usage spike for ingress 2 was
a one time measured value, as a result of random network jitter. Most likely to be
caused by the different systems on the local subnet. One can observe that the mean
utilization of the network stays the same during both experiments.

The measured values of figure 16 are included in the Appendix in table 7 on page
42 and 8 on page 42.

Storage

Experiment
Number

Disk Space Used in
MB

Mean Item Size in
Bytes

Total Packets
Captured

1 71.5 383 1,323,088
2 261 351 4,341,085

Table 1: Mongo DB Statistics At The End Of The Experiments

When comparing the results of the both experiments in table 1, one can observe
that we have processed more data in the seconds experiment. The mean object size

22

however remains almost the same during both experiments.

4.1.2 Experiment 3

As described in section 3.3.2 during this experiment we will examine the feasibility
of detecting Nmap port scans. During the analysis of 100 nmap port scans with default
settings we found that Nmap has the following characteristics:

Mean
Completion
Time

Packets
Send

Packets
Send To
Target

Flags Set Packets
Send From
Target

Flags Set Mean Time
Between
Packets

13.302947s 3428 1714 Syn 1713 Rst 0.281ms

Table 2: Nmap Calculated Statistics After 100 Default Portscans

Based on the work of Jung et al. [19] we want to define a threshold at, which the
system registers the possible portscan. When combining this with the work of Roesch
et al. [27] we wanted to look at a threshold based on time and TCP flags. During
the examination of the port scans we executed. We found that when using the Nmap
tool, with exception of the full connect method of Nmap, every syn packet uses the
same TCP sequence number as depicted in figure 17.

Syn TCP Seq X
-

Syn TCP Seq X
-

Syn TCP Seq X
-

TargetNmap

Figure 17: Nmap Detection Pattern

After having found that a Nmap portscan uses the same TCP sequence number
for every portscan we started filtering for syn packets that make use of the same TCP
Sequence number. Based on the mean time between packets that are being sent to the
target host we defined a threshold of 1 second in, which a syn packet with the same
TCP sequence number has to be received or else the portscan has ended. We have
tested this method to detect 100 Nmap default portscans in, which we have achieved
100% accuracy. We have combined this with timestamps and using this method we
are able to achieve 100% realtime accuracy for Nmap scans performed from host x to
y within timeframe z.

4.1.3 Experiment 4

Based on the data and experience we obtained during the execution of experiment
3, explained in section 4.1.2, we want to detect a TCP reverse shell, which is often the
result of an exploit performed on a system. To detect a TCP reverse shell we defined
a method based on the work of Roesch et al. [27] When examining the characteristics

23

of a TCP shell we found that when sending data using the SSH protocol after the
TCP 3 Way Handshake has been performed [13]. As mentioned by Roesch et al. [27]
”almost all requests to web servers have their TCP PUSH and ACK flags set” [27]
Based on this information we inspected established SSH sessions and found that we
were able to detect the pattern as depicted in figure 18

Push Ack
-

Push Ack
�

Ack
-

ShellClient

Figure 18: TCP Shell Detection Pattern

The pattern depicted in figure 18 enables us to look for TCP shells within the
network. Using this method and combining this with the TCP end sequence of a
TCP shell depicted in figure 19.

Fin Ack
-

Ack
�

Fin Ack
�

Ack
-

ShellClient

Figure 19: TCP Shell End Pattern

We can observe a detectable pattern within a TCP stream, which can be used to
detect shells within a TCP stream. To test the patterns as depicted in figure 18 and
figure 19. We scripted this into a filter using python 2.7 first looking in the TCP
streams for the pattern depicted in figure 18 after having detected this pattern it will
then look for the end pattern depicted in figure 19. We combine these patterns with
time to achieve accountability for the moment a TCP shell is sending data till the
moment a TCP shell is stopped. We have performed experiments with 100 in a loop
created Python TCP Reverse shells on a host machine while trying to detect the TCP
reverse shells with our custom build Python Filter. Using our Python filter we were
able to detect 100% of the started TCP reverse shells in real time. By combining this
with timestamps we were able to achieve accountability for TCP reverse shells based
on our custom made filter.

24

4.2 Full Capture

Examining the feasibility of logging all network traffic, similar test where per-
formed as in section 1. The following experiments have been conducted. This sec-
tion will mainly focus on capturing and storing typical pentest traffic by simulating
portscans and using pentest suites. Results give an indication of system performance
while capturing and storing all network traffic. Furthermore the results indicate if
accountability can be achieved when using this method.

1. Capture all traffic for 12 hours simulating traffic by executing a continuous
portscan

2. Evaluating the usability for accountability

Memory

In the following expirement we measured memory usage during the experiment.
The results are depicted in figure 20.

Figure 20: Memory usage in percentage

From the results above a stable trend in memory usage can be observed. However,
the utilization is quite high, possibly MongoDB caches or reserves memory in order
to serve queries.

Processor

This experiment measured the system performance while executing a default
NMAP scan continuously for 12 hours. The results are depicted in the table 11.

What can be seen from the results in table 11 is that all cores at some point
in time reach maximal utilization and that there is a high standard deviation since
performance is measured in a percentage. To examine this further, we look into the
specific programs being run, which are:

1. Tcpdump : Capture traffic and write to a pcap file

2. Tshark : Convert the pcap to JSON

3. Mongoimport: Import the JSON file to MongoDB

Follow-up experiments were conducted as described in section 3.2 focusing on system
utilization caused by in the above enumerated programs.

25

4.2.1 Tcpdump

Tcpdump captures the traffic, which is mirrored from the switch and saves this to
a pcap file every minute. Upon researching we came to the conclusion that Tcpdump
uses little system resources. The results are depicted in table 12 on page 45. The
results show that during the experiments Tcpdump used little CPU-resources and
according to the standard deviation was stable in CPU-utilization. Memory and disk
usage was negligible.

4.2.2 Tshark

As mentioned in section 3.2 the structure of pcap files requires to be read se-
quentially preventing multithreading. This behavior can be seen in table 11 on page
45. Since CPU is measured in utilization per core in percentage, these result show
that Tshark is only able to use a single core while converting pcap to json. While
converting the results show that the single core being used by Tshark is fully utilized.

During the experiments we also measured the disk utilization which can be seen in
figure 21 What can be seen from this graph is the fact that the write speed is higher
than the read speed. Also the disk performance shows a low standard variation and
the mean speed in reading as well as in writing is nearly as high as the maximum
speed. Therefore, it can be concluded that the read and write speeds are stable. It is
likely that the disk performance could be higher since Tshark could process the data
faster as seen in table 11 on page 45.

Figure 21: Disk usage during Tshark pcap to json conversion

The results show that Tshark write speed is consistently higher than the speed at
which its reads. The result of the consistent higher write speed can be seen in the
difference is size between the pcap and json file.

The results in table 8 where acquired by capturing a network stream generated
using iperf. They show a growth in size of approximately 6.3 times the size of the
pcap file.

4.2.3 Mongoimport

To maintain readability of this paper the graph depicting the CPU usage while
importing JSON using mongoimport can be found in the figure 27 on page 44. The
results show that the MongoDB tool mongoimport utilizes all available cores to import
the JSON file into it’s database. The results also show that the mean usage is nearly
as high for all cores as the highest usage.

26

The feasibility of storing the captured data from the test can be seen in table 8.
The storage size in GiB is 5,5 GiB, which is feasible given modern storage solutions.
For example, our storage array has 22 TiB of storage which is several years old.

4.2.4 Usability in accountability

If a full capture were to be used for accountability there must be certainty that all
packets where captured and stored. Therefore, we devised a simple but elegant test to
verify the functionality. In our environment we setup one server to flood ping another
server with one million packets. Since a successful ping consists of two packets (echo
and reply) the total number of received packets must be two million.

Listing 1: Sending and recieving of one million ping packets
#! / b i n / b a s h
sudo ping −f −c 1000000 192 . 168 . 1 . 107
1000000 packets transmitted , 1000000 rece ived , 0% packet l o s s , time 151825ms

Listing 1 shows that one million ping reply packets were transmitted and one million
replies were received withing tree minutes. Therefore the database should contain
two million ping packets.

Listing 2: Counting the number of ICMP(ping) packets in the database
MongoDB Ente rpr i s e > db .ICMP. count ({ ” l a y e r s . icmp” : {” $ e x i s t s ” : true }}) ;
2000000

The results in listing 2 show that the database contains two million ping packets. The
figure 22 shows an example of a captured ICMP packet. Since all packets are capture
fully all properties of a packet can be queried using the MongoDB query language.
In the appendix the listing 4 can be found of a json formatted packet which can be
imported an exported to/from the MongoDB database.

Figure 22: Example data from a captured packet

27

5 Discussion

We are concerned with capturing large amounts of data due to the ethical and legal
aspects. Bélanger and Crossler wrote a paper about privacy in the digital age. We
were not able to assess the exact limitations resulting from the Dutch ”Nieuwe Wet op
de inlichtingen- en veiligheidsdiensten”(WIV) legislation. The European Union is also
trying to catch up her legislation with the rapidly advancing digital possibilities, to
prevent the invasion of the privacy of her inhabitants with the General Data Protection
Regulation (GDPR)[1].

The methods proposed in this paper might intrude on the privacy of users. There-
fore, it is needed to discuss the applicability of these methods when trying to achieve
accountability.

28

6 Conclusion

6.1 Metadata

One can observe the following from the results explained in section 4.1:

1. Accountability based on Metadata capture is plausible

2. Port Scan Detection is based on TCP metadata is possible for NMAP

3. TCP shell detection based on TCP metadata is plausible

4. Python is not fast enough for realtime packet sniffing

Accountability of actions based on metadata capture is plausible. The difficulty
however lies in the fact that some accountability of actions seem only achievable by
inspecting the payload data of a packet. More research into this subject is needed to
definitively state if full accountability can be achieved based on packet metadata.

Port scan detection based on TCP metadata is possible for NMAP. More research
is still needed to look into the feasibility of detecting port scans when other tools are
used and to detect UDP port scans.

TCP shell detection based on metadata is plausible. More research is needed to
see if other TCP connection based protocol do not create false positives with the
method used in this research.

During this experiment we found that the python method we used, was not as
reliable as a real-time packet analyzer as methods written in the C programming
language like TCPdump.

6.2 Full Capture

Given the results the following can be concluded.

1. Accountability based on full packet capture is plausible

2. MongoDB suitable storing packets and querying

3. The pcap file format possibly limits the amount of data which can be stored

Our results show that capturing network traffic for the purpose of accountability is
plausible. The main limitation in our research is the libpcap library which stores
captured traffic in pcap files. Due to the structure of these files they have to be
read sequentially; this results into the fact that operation on these files cannot be
multithreaded at the moment.

This introduces a possible limitation when converting to the json supported filefor-
mat which is used when importing into MongoDB. Since only one core can be utilized
when converting it can be concluded that operations on pcap files do not scale well.

What can be concluded is that our setup is suitable for analysis in regard of
accountability. All packets are stored including a timestamp which can be used to
verify actions during a pentest.

6.3 Comparison Of Experiments

In this section a comparison will be made between the results of the full capture
experiment, explained in section 4.2, and the results of of the metadata capture
experiment, explained in section 4.1

29

CPU Performance

From the CPU utilization measurements can be concluded that capturing of meta-
data is less CPU intensive than the full capture of metadata. The difference is espe-
cially apparent when comparing figure 26 on page 41 to figure 28 on page 26. When
examining the results of the metadata experiment, one can observe that CPU utiliza-
tion fluctuates little over the available cores, while CPU utilization when capturing
all data has a high level of fluctuation.

The high fluctuation in the results of capturing all data, comes due to the fact that
the conversion process from pcap to json is only able to use one thread and therefore,
one core. This could be a limiting factor when scaling up.

Therefore, it can be concluded that full capture is feasible when a powerful CPU
is available, preferably with a high clockrate. In comparison Metadata capturing
requires far less computational power. Therefore, when looking at CPU utilization
the most preferred method is making use of metadata capture method instead of the
full capture method.

Disk Performance

Figure 23: Comparison Of Disk Performance Between Full & Metadata Capture

When examining the difference in results of the full capture experiment and the
metadata experiment in figure 23, one can observe a significant difference in read and
write operations over the duration of 12 hours.

The difference between these experiments are caused by two different factors. The
first factor is the amount of packets captured. During the full capture experiment
4,030,050 packets where captured, in comparison during the metadata capture exper-
iment 4,341,085 packets were captured. The second factor is the mean item size when
writing the packets into MongoDB, for the full capture experiment the mean item size
was 3,8 KiB in comparison the mean item size for the metadata capture experiment
was only 351 B. These results would explain the high difference in the mean write
operations on the disk.

Based on the results of the both experiments, one can therefore conclude that the
metadata method makes more efficient use of disk IO than the full capture method.

30

Memory Usage

Figure 24: Comparison Of Memory Performance Between Full & Metadata Capture

When examining the difference in results of the full capture experiment and the
metadata experiment in figure 24, we observed a significant difference in memory
usage over the duration of 12 hours.

The full data capture experiment utilizes around 60% memory at any given mo-
ment in time during the experiment. MongoDB is responsible for this high memory
usage, most likely because MongoDB makes use of some kind of caching.

When comparing the result of the full capture experiment to the result of the
metadata capture experiment, we can observe that the memory usage of the metadata
experiment gradually increases, but remains significantly lower than the full capture
method. The difference in these results is most likely caused due to the fact that
during the full capture experiment more data had to be processed as explained in the
subsection Disk Performance of section 6.3.

From the comparison of the results in this section, we can therefore conclude that
when looking at memory usage the metadata method would be the preferred method
to achieve accountability.

6.4 Method Comparison

As can read be in section 6, the metadata capture method makes more efficient
use of system resources than the full capture method. The downside of the metadata
capture method in comparison with the full capture method exists in the fact that
the Full capture method is more reliable in capturing packets at this moment in time.
In addition to this it is harder to achieve full accountability of actions because during
the capturing of metadata the data payload is not included. Exploits that will be
performed during the execution of a pentest are most likely and easily to be detected
in the payload of a packet. The downside of inspecting the packet payload exists in
the privacy and legal aspects of this data as explained in section 5.

31

An own consideration has to be made when trying to achieve accountability of ac-
tions during a pentest. By making use of the full data capture method, accountability
of actions are easier to achieve because the data payload is included in the capture.
However when one wants to make efficient use of system resources and wants to avoid
legal and privacy aspects than the metadata method should be the most likely choice.

32

7 Future Work

Data capture

Regarding full capture the main focus of future work is looking further into pcap
structures to research the possibilities regarding multithreading. Operations on pcap
files are currently done sequentially by one thread. This limits scalability since, adding
more processors or machines will not results in better performance when handling
pcap files. The libpcap and therefore, the pcap file format is the conventional way
of capturing traffic. In this paper we discussed several limitations of the file format.
Possible future work is therefore, looking into other libraries or methods to store
captured traffic in a scalable database.

Port Scan Detection

More research is needed to look into the methods proposed in this paper to detect
NMAP port scans. Future work should look into the applicability of this method on
other port scan tools, the applicability of the proposed method on the UDP protocol
based port scans and if this methods are known in other related work.

TCP Shell Detection

More research is needed to look into the methods proposed in this paper to detect
TCP shells. In a more realistic network environment it might be that other statefull
TCP based protocols cause false positives in the TCP shell detection rate.

Legal

In the last years the legislation of different regions tries to catch up with the fast
moving digital trend. Further research is needed on the upcoming legislation in the
area of digital privacy to prevent that the methods in this paper cross the boundary
of illegality. Regarding our own work this is mainly relevant to Full capture since, all
data is captured possibly containing privacy sensitive data.

Metadata Feasibility

More research needs to be done into the accountability of action in the other
network protocols. The research in this paper namely focused on the TCP protocol.
To achieve accountability of actions in the UDP protocol different thresholds needs to
be defined and tested to look into the feasibility of accountability in these protocols.

Post Metadata Capture Analysis

Due to the fact that it took longer than expected to define the methods needed
to achieve accountability in the TCP protocol. During this research we were unable
to perform the experiment depicted in figure 6 on page 14. One can look into this
method if realtime accountability of actions is not needed for a pentest procedure.

33

References

[1] Gpdr legislation, 2018. URL https://en.wikipedia.org/wiki/General_Data_

Protection_Regulation.

[2] V. Ahlers, F. Heine, B. Hellmann, C. Kleiner, L. Renners, T. Rossow, and
R. Steuerwald. Replicable security monitoring: Visualizing time-variant graphs
of network metadata. methods, 6:9, 2014.

[3] ali m. Why does multiprocessing use only a single core after i import
numpy?, 2013. URL https://stackoverflow.com/questions/15639779/

why-does-multiprocessing-use-only-a-single-core-after-i-import-numpy.

[4] J. Anderson, C. Gropp, L. Ngo, and A. Apon. Random access in nondelimited
variable-length record collections for parallel reading with hadoop. pages 965–
970. IFIP, May 2017. ISBN 978-3-901882-89-0.

[5] P. Barford and D. Plonka. Characteristics of network traffic flow anomalies. In
Proceedings of the 1st ACM SIGCOMM Workshop on Internet Measurement,
pages 69–73. ACM, 2001.

[6] B.Clark. Rtfm: Red Team Field Manual. CreateSpace Independent Publishing
Platform, 2014.

[7] A. J. Bennieston. Nmap-a stealth port scanner, 2004.

[8] M. Bishop. About penetration testing. IEEE Security Privacy, 5(6):84–87, Nov
2007. ISSN 1540-7993. doi: 10.1109/MSP.2007.159.

[9] O. Bonaventure. Ethernet 802.3 frame format. URL http://cnp3book.info.

ucl.ac.be/2nd/html/protocols/lan.html.

[10] N. Briscoe. Understanding the osi 7-layer model. PC Network Advisor, 120(2),
2000.

[11] J. Buck, N. Watkins, G. Levin, A. Crume, K. Ioannidou, S. Brandt, C. Maltzahn,
N. Polyzotis, and A. Torres. Sidr: Structure-aware intelligent data rout-
ing in hadoop. In Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis, SC ’13, pages 73:1–
73:12, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2378-9. doi: 10.
1145/2503210.2503241. URL http://doi.acm.org.proxy.uba.uva.nl:2048/

10.1145/2503210.2503241.

[12] F. Bélanger and R. E. Crossler. Privacy in the digital age: A review of information
privacy research in information systems. MIS Quarterly, 35(4):1017–1041, 2011.
ISSN 02767783. URL http://www.jstor.org/stable/41409971.

[13] L. Chappell. Inside the tcp handshake. NetWare Connection, 2000.

[14] D. Clark. Characterizing cyberspace: past, present and future. MIT CSAIL,
Version, 1:2016–2028, 2010.

[15] S. E. Deering and R. M. Hinden. Internet protocol, version 6 (ipv6) specification.
RFC 2460, RFC Editor, December 1998. URL http://www.rfc-editor.org/

rfc/rfc2460.txt. http://www.rfc-editor.org/rfc/rfc2460.txt.

34

https://en.wikipedia.org/wiki/General_Data_Protection_Regulation
https://en.wikipedia.org/wiki/General_Data_Protection_Regulation
https://stackoverflow.com/questions/15639779/why-does-multiprocessing-use-only-a-single-core-after-i-import-numpy
https://stackoverflow.com/questions/15639779/why-does-multiprocessing-use-only-a-single-core-after-i-import-numpy
http://cnp3book.info.ucl.ac.be/2nd/html/protocols/lan.html
http://cnp3book.info.ucl.ac.be/2nd/html/protocols/lan.html
http://doi.acm.org.proxy.uba.uva.nl:2048/10.1145/2503210.2503241
http://doi.acm.org.proxy.uba.uva.nl:2048/10.1145/2503210.2503241
http://www.jstor.org/stable/41409971
http://www.rfc-editor.org/rfc/rfc2460.txt
http://www.rfc-editor.org/rfc/rfc2460.txt
http://www.rfc-editor.org/rfc/rfc2460.txt

[16] N. Feamster. Outsourcing home network security. In Proceedings of the 2010
ACM SIGCOMM workshop on Home networks, pages 37–42. ACM, 2010.

[17] C. W. Huang, W. H. Hu, C.-C. Shih, B.-T. Lin, and C.-W. Cheng. The im-
provement of auto-scaling mechanism for distributed database - a case study
for mongodb. In 2013 15th Asia-Pacific Network Operations and Management
Symposium (APNOMS), pages 1–3, Sept 2013.

[18] E. M. Hutchins, M. J. Cloppert, and R. M. Amin. Intelligence-driven computer
network defense informed by analysis of adversary campaigns and intrusion kill
chains. Leading Issues in Information Warfare & Security Research, 1(1):80,
2011.

[19] J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan. Fast portscan detection
using sequential hypothesis testing. In Security and Privacy, 2004. Proceedings.
2004 IEEE Symposium on, pages 211–225. IEEE, 2004.

[20] Y. Lee and Y. Lee. Toward scalable internet traffic measurement and analysis
with hadoop. SIGCOMM Comput. Commun. Rev., 43(1):5–13, Jan. 2012. ISSN
0146-4833. doi: 10.1145/2427036.2427038. URL http://doi.acm.org.proxy.

uba.uva.nl:2048/10.1145/2427036.2427038.

[21] R. L. Lubas, A. S. Jackson, and I. Schneider. The Metadata Manual : A Practical
Workbook. Chandos Information Professional Series. Chandos Publishing, 2013.
ISBN 9781843347293. URL http://search.ebscohost.com.proxy.uba.uva.

nl:2048/login.aspx?direct=true&db=nlebk&AN=670969&site=ehost-live.

[22] Marko Spithoff and Henk van Doorn. Pentest accountability scripts. https:

//gitlab.os3.nl/mspithoff/RP-1_Scripts.git, 2018.

[23] S. McLaughlin, D. Podkuiko, S. Miadzvezhanka, A. Delozier, and P. McDaniel.
Multi-vendor penetration testing in the advanced metering infrastructure. In Pro-
ceedings of the 26th Annual Computer Security Applications Conference, pages
107–116. ACM, 2010.

[24] J. Postel. User datagram protocol. STD 6, RFC Editor, August 1980. URL http:

//www.rfc-editor.org/rfc/rfc768.txt. http://www.rfc-editor.org/rfc/
rfc768.txt.

[25] J. Postel. Internet protocol. STD 5, RFC Editor, September 1981. URL http:

//www.rfc-editor.org/rfc/rfc791.txt. http://www.rfc-editor.org/rfc/
rfc791.txt.

[26] J. Postel. Transmission control protocol. STD 7, RFC Editor, Septem-
ber 1981. URL http://www.rfc-editor.org/rfc/rfc793.txt. http://www.

rfc-editor.org/rfc/rfc793.txt.

[27] M. Roesch et al. Snort: Lightweight intrusion detection for networks. In Lisa,
volume 99, pages 229–238, 1999.

[28] N. Tuck, T. Sherwood, B. Calder, and G. Varghese. Deterministic memory-
efficient string matching algorithms for intrusion detection. In IEEE INFOCOM
2004, volume 4, pages 2628–2639 vol.4, March 2004. doi: 10.1109/INFCOM.
2004.1354682.

35

http://doi.acm.org.proxy.uba.uva.nl:2048/10.1145/2427036.2427038
http://doi.acm.org.proxy.uba.uva.nl:2048/10.1145/2427036.2427038
http://search.ebscohost.com.proxy.uba.uva.nl:2048/login.aspx?direct=true&db=nlebk&AN=670969&site=ehost-live
http://search.ebscohost.com.proxy.uba.uva.nl:2048/login.aspx?direct=true&db=nlebk&AN=670969&site=ehost-live
https://gitlab.os3.nl/mspithoff/RP-1_Scripts.git
https://gitlab.os3.nl/mspithoff/RP-1_Scripts.git
http://www.rfc-editor.org/rfc/rfc768.txt
http://www.rfc-editor.org/rfc/rfc768.txt
http://www.rfc-editor.org/rfc/rfc768.txt
http://www.rfc-editor.org/rfc/rfc768.txt
http://www.rfc-editor.org/rfc/rfc791.txt
http://www.rfc-editor.org/rfc/rfc791.txt
http://www.rfc-editor.org/rfc/rfc791.txt
http://www.rfc-editor.org/rfc/rfc791.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc793.txt

[29] M. Tuexen, F. Risso, J. Bongertz, and G. Harris. Pcap next gen-
eration (pcapng) dump file format. Internet-Draft draft-tuexen-opswg-
pcapng-00, IETF Secretariat, June 2014. URL http://www.ietf.org/

internet-drafts/draft-tuexen-opswg-pcapng-00.txt. http://www.ietf.

org/internet-drafts/draft-tuexen-opswg-pcapng-00.txt.

[30] D. Worrall. Realtime sonification and visualisation of network metadata. Georgia
Institute of Technology, 2015.

[31] A. Yasinsac and T. Leckie. Metadata for anomaly-based security protocol at-
tack deduction. IEEE Transactions on Knowledge & Data Engineering, 16:
1157–1168, 09 2004. ISSN 1041-4347. doi: 10.1109/TKDE.2004.43. URL
doi.ieeecomputersociety.org/10.1109/TKDE.2004.43.

36

http://www.ietf.org/internet-drafts/draft-tuexen-opswg-pcapng-00.txt
http://www.ietf.org/internet-drafts/draft-tuexen-opswg-pcapng-00.txt
http://www.ietf.org/internet-drafts/draft-tuexen-opswg-pcapng-00.txt
http://www.ietf.org/internet-drafts/draft-tuexen-opswg-pcapng-00.txt
doi.ieeecomputersociety.org/10.1109/TKDE.2004.43

8 Appendix

The scrips that are created for this project are published on the OS3 gitlab [22].

Listing 3: Converting pcap to json preventing read conflicts
#! / b i n / b a s h
while true ; do

s1=”$ (l s o f −c tcpdump | grep /mongodb/performance /raw/ | awk ’{ pr in t $9 } ’) ”
s2=”$ (l s /mongodb/performance /raw/ −t1 −d $PWD/∗ | grep . pcap | t a i l −1)”

while true ; do
i f [” $s1 ” == ”$s2 ”]
then

echo ” f i l e s equal ”
s l e ep 10
break

f i
i f [” $s1 ” != ”$s2 ”]
then

echo ” f i l e s unequal ”
tshark −T ek −r $s2 > . . / j son / capture . j son
mongoimport . . / j son / capture . j son −h 145 .100 .102 .181 −d auto capture −c BANDWITH
rm . . / j son / capture . j son
rm $s2
break

f i
done

done

Listing 4: JSON structured captured packet
{

” i d ” : ObjectId (”5 a71c61ca fa670 f72 fb93e6c ”) ,
” timestamp” : ”1517405638697” ,
” l a y e r s ” : {

” frame” : {
” frame frame encap type ” : ”1” ,
” frame frame t ime ” : ”Jan 31 , 2018 14 :33 :58 .697807000 CET” ,
” f r ame f r ame o f f s e t s h i f t ” : ” 0.000000000 ” ,
” f rame frame t ime epoch ” : ” 1517405638.697807000 ” ,
” f rame f rame t ime de l ta ” : ” 0.000085000 ” ,
” f r ame f r ame t ime de l t a d i sp l ayed ” : ” 0.000085000 ” ,
” f r ame f r ame t ime r e l a t i v e ” : ” 0.000876000 ” ,
” frame frame number ” : ”11” ,
” f rame f rame len ” : ”98” ,
” f rame f rame cap len ” : ”98” ,
” frame frame marked” : ”0” ,
” f rame f rame ignored ” : ”0” ,
” f r ame f rame pro toco l s ” : ” eth : e thertype : ip : icmp : data”

} ,
” eth ” : {

” e th e th d s t ” : ” 00 :0 c : 2 9 : 4 8 : 2 a : f c ” ,
” e t h d s t e t h d s t r e s o l v e d ” : ”Vmware 48 : 2 a : f c ” ,
” e th d s t e th addr ” : ” 00 :0 c : 2 9 : 4 8 : 2 a : f c ” ,
” e t h d s t e t h add r r e s o l v ed ” : ”Vmware 48 : 2 a : f c ” ,
” e t h d s t e t h l g ” : ”0” ,
” e t h d s t e t h i g ” : ”0” ,
” e t h e t h s r c ” : ”d4 : ae : 5 2 : bf : e4 : 8 a” ,
” e t h s r c e t h s r c r e s o l v e d ” : ” De l l b f : e4 : 8 a” ,
” e th s r c e th add r ” : ”d4 : ae : 5 2 : bf : e4 : 8 a” ,
” e t h s r c e t h add r r e s o l v e d ” : ” De l l b f : e4 : 8 a” ,
” e t h s r c e t h l g ” : ”0” ,
” e t h s r c e t h i g ” : ”0” ,
” e th e th type ” : ”0x00000800”

} ,
” ip ” : {

” i p i p v e r s i o n ” : ”4” ,
” i p i p h d r l e n ” : ”20” ,
” i p i p d s f i e l d ” : ”0x00000000” ,
” i p d s f i e l d i p d s f i e l d d s c p ” : ”0” ,
” i p d s f i e l d i p d s f i e l d e c n ” : ”0” ,
” i p i p l e n ” : ”84” ,
” i p i p i d ” : ”0x00003ab3” ,
” i p i p f l a g s ” : ”0x00000002” ,
” i p f l a g s i p f l a g s r b ” : ”0” ,
” i p f l a g s i p f l a g s d f ” : ”1” ,
” i p f l a g s i p f l a g s m f ” : ”0” ,
” i p i p f r a g o f f s e t ” : ”0” ,
” i p i p t t l ” : ”64” ,
” i p i p p r o t o ” : ”1” ,
” ip ip checksum” : ”0x00007c26” ,
” ip ip check sum sta tu s ” : ”2” ,
” i p i p s r c ” : ” 192 . 168 . 1 . 20 ” ,
” i p i p add r ” : ” 192 . 168 . 1 . 107 ” ,
” i p i p s r c h o s t ” : ” 192 . 168 . 1 . 20 ” ,
” i p i p h o s t ” : ” 192 . 168 . 1 . 107 ” ,
” i p i p d s t ” : ” 192 . 168 . 1 . 107 ” ,
” i p i p d s t h o s t ” : ” 192 . 168 . 1 . 107 ”

} ,
” icmp” : {

” icmp icmp type ” : ”8” ,
” icmp icmp code ” : ”0” ,
” icmp icmp checksum” : ”0 x00000ef2 ” ,
” icmp icmp checksum status ” : ”1” ,

37

” icmp icmp ident ” : ”24659” ,
” icmp icmp seq ” : ”6” ,
” i cmp icmp seq l e ” : ”1536” ,
” icmp icmp data t ime ” : ”Jan 31 , 2018 14 :34 :18 .000000000 CET” ,
” i cmp i cmp data t ime re l a t i v e ” : ”−19.302193000” ,
” icmp data ” : {

” data data data ” : ”8a : b4 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 1 0 : 1 1 : 1 2 :
1 3 : 1 4 : 1 5 : 1 6 : 1 7 : 1 8 : 1 9 : 1 a : 1 b : 1 c :
1d : 1 e : 1 f : 2 0 : 2 1 : 2 2 : 2 3 : 2 4 : 2 5 : 2 6 :
2 7 : 2 8 : 2 9 : 2 a : 2 b : 2 c : 2 d : 2 e : 2 f : 3 0 :
3 1 : 3 2 : 3 3 : 3 4 : 3 5 : 3 6 : 3 7 ” ,
” data data l en ” : ”48”

}
}

}
}

38

Figure 25: Graph CPU Performance Per CPU During Metadata Experiment 1

39

Type Mean Usage in % Highest Use in % Standard Deviation
CPU 0 8.16288 100.0 26.4459
CPU 1 1.63648 12.295901366211263 1.60463
CPU 2 1.02486 100.0 8.9808
CPU 3 1.02294 23.130724396336387 1.4368
CPU 4 0.142207 1.3616738625041516 0.217878
CPU 5 1.21329 19.640479360852197 1.56345
CPU 6 0.103724 1.6491754122938531 0.183634
CPU 7 1.14579 5.6000000000000005 1.25056
CPU 8 2.53055 100.0 15.5338
CPU 9 0.0202621 1.2987012987012987 0.0680157
CPU 10 0.0083148 0.1665556295802798 0.0149853
CPU 11 0.0504778 4.945878434637802 0.230707
CPU 12 0.00242082 0.4660452729693742 0.018273
CPU 13 0.0249903 0.34970857618651124 0.0286254
CPU 14 0.00571036 0.14990006662225183 0.0114437
CPU 15 0.023802 0.5996002664890073 0.045158

Table 3: Metadata Experiment 1: Performance Statistics Per CPU Measured At 1
Minute Intervals For The Duration Of 12 Hours

40

Figure 26: Graph CPU Performance Per CPU During Metadata Experiment 2

41

Type Mean Usage in % Highest Use in % Standard Deviation
CPU 0 2.07909 23.44118638355241 2.51184
CPU 1 1.32737 23.54515050167224 2.46531
CPU 2 1.82097 42.23114233149356 4.3271
CPU 3 1.08944 20.807505444798124 2.03535
CPU 4 0.979611 31.490143668559973 2.80132
CPU 5 0.864488 13.05002509620211 1.70889
CPU 6 0.760897 46.200200870438564 2.89439
CPU 7 0.907568 20.783132530120483 2.21533
CPU 8 0.0563073 6.848171037247369 0.274931
CPU 9 0.0267433 1.4176117411607738 0.0803261
CPU 10 0.0884846 13.559605417154321 0.655206
CPU 11 0.0452862 5.037406483790523 0.259985
CPU 12 0.117944 10.364939176803865 0.72291
CPU 13 0.0378881 1.2504168056018674 0.0872348
CPU 14 0.0693562 3.8775170577467133 0.244411
CPU 15 0.0340973 0.9838252459563115 0.0739087

Table 4: Metadata Experiment 2: Performance Statistics Per CPU Measured At 1
Minute Intervals For The Duration Of 12 Hours

Type Mean Usage in kB/s Highest Use in kB/s Standard Deviation
Read 3.71708 235.73 13.009
Write 32.5083 36.70 6.0984

Table 5: Metadata Experiment 1: Disk Performance Statistics Measured At 1 Minute
Intervals For The Duration Of 12 Hours

Type Mean Usage in kB/s Highest Use in kB/s Standard Deviation
Read 2.0307 18.53 2.54482
Write 121.914 203.21 32.1098

Table 6: Metadata Experiment 2: Disk Performance Statistics Measured At 1 Minute
Intervals For The Duration Of 12 Hours

Max Network Usage in
Bytes

Mean Network Usage in
Bytes

Standard Deviation

27996 21160 10727.5

Table 7: Metadata Experiment 1: Network Performance Statistics Measured At 1
Minute Intervals For The Duration Of 12 Hours

Max Network Usage in
Bytes

Mean Network Usage in
Bytes

Standard Deviation

446092 22246 46269.1

Table 8: Metadata Experiment 2: Network Performance Statistics Measured At 1
Minute Intervals For The Duration Of 12 Hours

42

Time Used Memory in %
2018-01-23 20:34 1.68947872739
2018-01-23 21:34 3.43643752462
2018-01-23 22:34 8.37820353806
2018-01-23 23:34 13.2206957435
2018-01-24 00:34 18.0983909958
2018-01-24 01:34 23.0326908017
2018-01-24 02:34 27.7590798325
2018-01-24 03:34 32.5438730891
2018-01-24 04:34 37.4290831886
2018-01-24 05:34 42.3212852578
2018-01-24 06:34 47.2197983394
2018-01-24 07:34 52.0113768465
2018-01-24 08:34 57.6948388321

Table 9: Metadata Experiment 1: Memory Usage Statistics Measured At 1 Minute
Intervals Displayed At 1 Hour Intervals For The Duration Of 12 Hours

Time Used Memory in %
2018-01-24 20:18 1.62377853332
2018-01-24 21:18 3.07685572952
2018-01-24 22:18 5.78469354501
2018-01-24 23:18 6.47722685111
2018-01-25 00:18 6.6960937386
2018-01-25 01:18 7.13698909982
2018-01-25 02:18 7.45291668491
2018-01-25 03:18 7.94564990053
2018-01-25 04:18 8.19286162467
2018-01-25 05:18 8.4779880638
2018-01-25 06:18 8.86795756665
2018-01-25 07:18 9.09236939001
2018-01-25 08:18 9.53972168313

Table 10: Metadata Experiment 2: Memory Usage Statistics Measured At 1 Minute
Intervals Displayed At 1 Hour Intervals For The Duration Of 12 Hours

43

Figure 27: Graph CPU Performance Per CPU During Mongoimport

44

Type Mean Usage in % Highest Use in % Standard Deviation
CPU 0 27.5671 99.833444 38.2188
CPU 1 27.5671 100.0 38.2188
CPU 2 38.2188 100.0 36.9437
CPU 3 9.99241 100.0 24.4719
CPU 4 16.3257 100.0 34.8598
CPU 5 7.4331 100.0 20.4161
CPU 6 12.0529 100.0 29.6994
CPU 7 12.6071 100.0 27.5199
CPU 8 31.2449 100.0 44.3446
CPU 9 37.6214 100.0 40.4369
CPU 10 23.6925 100.0 40.3025
CPU 11 7.47638 100.0 22.7909
CPU 12 1.19342 100.0 7.21468
CPU 13 4.96719 100.0 17.4896
CPU 14 1.82377 100.0 8.84589
CPU 15 3.24615 100.0 12.504

Table 11: Full Capture Experiment: Performance Statistics Per CPU Measured At 1
Minute Intervals During Mongo Import

Highest usage Mean Usage Standard Deviation
2.0 0.0263327 0.063251

Table 12: TCP Dump Utilization: Performance Statistics Per CPU Measured At 1
Minute Intervals For The Duration Of 12 Hours

Documents Size
Bytes

Storage Size
Bytes

Avg Object
Size

Index Size

4030050 14,5 GiB
(15,533,405,143)

5,5 GiB
(5,921,763,328)

3,8 KiB
(3,854)

41,7 MiB
(43,696,128)

Table 13: Full Capture Experiment: MongoDB Storage Space Used

Filename Filesize
IPERF.pcap 14 GiB

14188688907 Bytes
IPERF.json 84 GiB

89862268165 Bytes

Table 14: Full Capture Experiment: Storage Space Used Per Capture File

45

Figure 28: Full Capture Experiment: Performance Statistics Per CPU Measured At
1 Minute Intervals For The Duration Of 12 Hours

46

Time Used Memory in %
2018-01-24 20:18 59.5816846516
2018-01-24 21:18 60.0025161816
2018-01-24 22:18 60.6165106165
2018-01-24 23:18 61.5161816681
2018-01-25 00:18 62.6118146848
2018-01-25 01:18 64.6881681616
2018-01-25 02:18 65.1841689468
2018-01-25 03:18 65.8963186981
2018-01-25 04:18 58.1238419846
2018-01-25 05:18 58.9816816818
2018-01-25 06:18 58.2346818132
2018-01-25 07:18 58.2515616816
2018-01-25 08:18 58.3026841848

Table 15: Full Capture Experiment: Memory Performance Statistics Measured At 1
Minute Intervals For The Duration Of 12 Hours

Type Mean Usage in kB/s Highest Use in kB/s Standard Deviation
Read 1224.81 1244.67 12.0139
Write 5608.87 5695.28 48.92

Table 16: Full capture: Disk Performance Statistics Measured At 1 Minute Intervals
For The Duration Of 12 Hours

47

	Introduction
	Related Work
	Taxonomy of a Pentest

	Methods
	Experiment Setup
	Full Network Traffic Capture
	Metadata Network Traffic Capture
	Network Metadata
	Detecting Centralized NMAP TCP Port Scans Based on TCP Metadata
	Detecting TCP (Reverse) Shell Sessions Based On TCP Metadata

	Results
	Network Metadata
	Experiments 1 & 2
	Experiment 3
	Experiment 4

	Full Capture
	Tcpdump
	Tshark
	Mongoimport
	Usability in accountability

	Discussion
	Conclusion
	Metadata
	Full Capture
	Comparison Of Experiments
	Method Comparison

	Future Work
	Appendix

