
An Analysis of Atomic Swaps on and between

Ethereum Blockchains using Smart Contracts
Research Project I

Security & Network Engineering

Bennink, Peter
University of Amsterdam
peter.bennink@os3.nl

Gijtenbeek, Lennart van
University of Amsterdam
lgijtenbeek@os3.nl

Supervisors:
Deventer, Oskar van

oskar.vandeventer@tno.nl

Everts, Maarten
maarten.everts@tno.nl

February 11, 2018

Abstract

This research study analyzes the different methods that exist to ex-
ecute atomic swaps on and between Ethereum blockchains. Both coins
and tokens have been covered to account for every combination of single-
chain and cross-chain swaps. We have designed and developed single-usage
swap contracts that require a new contract to be published for every swap.
These contracts are compatible with the ERC-20 token standard, and can
thus be applied to a wide range of use cases. The reason these contracts
are considered reliable and provide an atomic swap is explained in de-
tail. To increase the scalability of the atomic swap process, we have also
investigated whether or not creating reusable smart contracts is a pos-
sibility. Reusable contracts come with additional complexity to achieve
correctness of the atomic swap, since they must be able to consistently
perform swaps between different clients at the same time, without these
swaps interfering. Besides a general analysis on reusable contracts, we
have designed and implemented a reusable single-chain token swap con-
tract as a proof of concept. For the other cases of atomic swaps, we found
theoretical solutions which we discuss in the report. Based on our anal-
ysis and experiments we conclude that atomic swaps and projects that
implement them (i.e. decentralized exchanges) have a good chance of suc-
ceeding. The usage of smart contracts has proven to be a good method
to implement this functionality.

Contents

1 Introduction 3

2 Objectives 4
2.1 Methodology . 4

3 Literature study 5
3.1 Ethereum . 5

3.1.1 Smart contracts . 5
3.1.2 ERC-20 Token Standard 6
3.1.3 Atomic swaps . 7

3.2 Decentralized exchanges . 7

4 Design and Implementation 8
4.1 Single-chain . 9

4.1.1 Single-chain token swap 10
4.1.2 Single-chain coin-token swap 12

4.2 Cross-chain . 14
4.2.1 Cross-chain coin swap . 15
4.2.2 Cross-chain token swap 16
4.2.3 Cross-chain coin-token swap 17

4.3 Reusable contracts . 18

5 Discussion 21
5.1 Future research . 21

5.1.1 Off-chain communication 21
5.1.2 Attack vectors . 22
5.1.3 Reusable contracts . 22
5.1.4 Atomic swaps on other blockchains 23
5.1.5 Analysis of decentralized exchanges 23

6 Conclusion 23

2

1 Introduction

Due to the popularity of cryptocurrencies, the number of coins and tokens as
well as blockchains is steadily increasing. Currently, third parties are needed to
exchange coins and tokens between wallets. Both parties send their funds to the
exchange, and the exchange then sends them to the opposite party. Exchanges
typically charge a fee for this. They are the trusted third party, but in recent
years these exchanges have on multiple occasions in some way broken this trust
[12, 20, 19, 2]. The centralization of these exchanges stands in stark contrast to
the typically decentralized blockchain technology, which makes them a major
weakness.

The concept of atomic swapping has been receiving a lot of media attention,
since it aims to resolve the problem explained above [11]. An atomic swap is
an exchange of funds (coins and/or tokens) that either happens completely or
not at all. This happens without the funds going through a third party, which
means that the centralized exchanges seen today would be playing a different
role. They would only negotiate transactions between clients, but the actual
transaction of funds would happen between the two clients. One could argue
that this increases the decentralization (and therefore security and reliability)
of the entire blockchain infrastructure.

In this research paper, the newest developments regarding atomic swaps are
investigated. We performed an analytical study of the different possibilities for
executing atomic swaps with respect to tokens and coins. With the knowledge
gained from this study we developed our own atomic swap implementations. The
main focus is the Ethereum blockchain [14, 6], as this is currently the biggest
blockchain-based platform in terms of the number of different active tokens.
1 The two types of atomic swaps that we investigate are swaps on a single
blockchain (single-chain), and swaps between two separate blockchains (cross-
chain). Within these two categories we can further identify different cases of
atomic swaps based on the two types of funds that are swapped, namely coins
or tokens. This gives us the following five different types of atomic swaps:
single-chain token swaps, single-chain coin/token swaps, cross-chain coin swaps,
cross-chain token swaps, and cross-chain coin/token swaps. Single-chain coin
swaps are not relevant, as any blockchain can contain one coin at most, which
means that this type of swap does not exist. Our implementation makes use
of smart contracts published on the blockchain to conduct the atomic swap
between the two parties.

The results of the investigation are positive. We were able to perform an
atomic swap for all five situations, by using smart contracts to act as the third
party. The main contribution to this field of research is the design and imple-
mentation of a single-chain atomic swap for coins and tokens, as well as the
extension of the Hashed TimeLocked Contract (used in cross-chain swaps) to
also function with tokens. This type of contract will be explained in detail in
section 3.1.3. We argue that for these different scenarios the process is indeed

1Cryptocurrency Market Capitalizations - Tokens

3

https://coinmarketcap.com/tokens/

atomic and safe to conduct for both parties. These contracts are only valid for
that specific transaction, and will have to be deployed again for every trans-
action. A general investigation into the intricacies that come with designing
a correct, secure and scalable reusable contract has also been done. For one
type of swap (the single-chain token swap) we succeeded in creating a proof of
concept contract that can be used repeatedly and concurrently.

2 Objectives

We conducted this research in cooperation with TNO (Nederlandse Organisatie
voor Toegepast Natuurwetenschappelijk Onderzoek, English: Dutch Organi-
sation for Applied Scientific Research) [10]. TNO has launched their own
Ethereum blockchain called Techruption 2, which is based on the Quorum
blockchain [7, 9]. The goal of this project is to get a better understanding
of the current state of atomic swaps in blockchain technology. The main re-
search question of this project is ’Are there reliable methods for making atomic
swaps on and between blockchains?’.

The Ethereum platform currently hosts the most tokens. As of the 31st of
January 2018, coinmarketcap.com lists 577 tokens, 470 of which are based on the
Ethereum blockchain3. Therefore, to maximize the practical use of this project
we have chosen to investigate atomic swaps on this blockchain. The Ethereum
code has also been forked to create other blockchains which can make use of
contracts built for the Ethereum blockchain [7]. As such, this project will also
look into cross-chain transactions.

2.1 Methodology

This research study consists of two main parts: a literature study on the con-
cept of atomic swaps and the progress made in implementation, and the actual
implementation of atomic swaps on the Ethereum blockchain. Based on the
knowledge gained from the literature study, we research into the possibilities
smart contracts have to support the atomic swaps for the five possible scenarios
listed below:

1. Atomic on-chain token swaps

2. Atomic on-chain coin/token swaps

3. Atomic cross-chain coin swaps

4. Atomic cross-chain token swaps

5. Atomic cross-chain coin/token swaps

2Techruption - techruption.org
3Cryptocurrency Market Capitalizations - Tokens

4

https://www.techruption.org/
https://coinmarketcap.com/tokens/

The cross-chain cases appear more difficult, since here the atomic swap is con-
ducted between two blockchains that cannot directly communicate with each
other, which means we need to find a solution that makes sure all required ac-
tions can only happen in a certain order, and neither of the two clients nor an
outsider could in some way misuse the contracts in such a way that anyone loses
their ownership. The off-chain communication that is necessary to perform the
atomic swap between the two clients (e.g. via a decentralized exchange) is out
of the scope for this project.

3 Literature study

In this literature study we aim to find out more about the context of atomic
swaps and Ethereum to get an idea of what has already been done, and how.
Besides that, we also touch upon two decentralized exchanges that are currently
in development, to get a better idea of the real world uses for atomic swaps.

3.1 Ethereum

Ethereum is the name of the cryptocurrency platform created by Vitalik Buterin
in 2015 [14, 6]. The goal was to create a blockchain-based platform with a
scripting language that can be used for application development, something
Bitcoin largely lacked [21]. Bitcoin does have a scripting language, Script, but
it is too basic to perform more complex tasks. The native currency on the
Ethereum blockchain is called Ether (ETH).

3.1.1 Smart contracts

Smart contracts are programs that can be published on the Ethereum blockchain.
The main scripting language Ethereum uses is called Solidity, a ’contract-oriented,
high-level language for implementing smart contracts, influenced by C++, Python
and JavaScript and designed to target the Ethereum Virtual Machine (EVM)’ 4.
Similar to wallets, smart contracts have a public address and an Ether balance.
However, they do not have a private key associated with them. Smart contracts
are able to send funds to other parties on the blockchain, and they are also able
to receive funds. For example, the smart contract could perform transactions
of ETH or Ethereum tokens, based on certain conditions.

For a small (variable) amount of ETH (called Gas), every node has the
ability to deploy a smart contract on the blockchain. When a smart contract is
executed, miners will verify the transaction in order to reach consensus about the
global transaction history. To execute a write function call to a smart contract,
the caller also pays a fee in Gas. Thereby, continuously executing code to DoS
the miners on the network is not as easily done as on the Internet, since it would
cost the attacker too much funds to perform the attack.

4Solidity - ReadTheDocs: https://solidity.readthedocs.io/en/develop/

5

https://solidity.readthedocs.io/en/develop/

Once a smart contract is deployed, the code is immutable and can be open-
sourced, which makes the contract fully transparent. Since the code is static
from the point that the contract is published, it is important to make sure code
works as it is supposed to and is bug-free. In order to test smart contracts, de-
velopers can first pre-publish them on the Ethereum test networks (e.g. Rinkeby
and Ropsten). Smart contract functions can be called upon by other contracts
and/or wallets, unless it self destructs rendering it unusable. The amount of Gas
it costs to perform instructions on a smart contract depends on the complexity
of the instructions. This is a constant factor; it is implemented in this way to
decouple the instruction costs from the Ether price at that moment. Ethereum
smart contracts have a wide range of applications [8].

3.1.2 ERC-20 Token Standard

A popular application of the smart contract is to publish tokens on the Ethereum
blockchain. A token is a subcurrency or some other unit of value, that exist on
top of the existing blockchain next to its native currency. One of the reasons
to deploy a token on the Ethereum blockchain instead of creating a whole new
blockchain is the fact that a lot of use cases for tokens have requirements that
are met by the Ethereum blockchain. Setting up a new blockchain to include
these requirements is often not necessary, involves more work, and leaves users
with multiple separate blockchains to synchronize.

The ERC-20 Token Standard defines a default setup to implement tokens on
the Ethereum blockchain [23]. In order to conform to this standard, one must
implement a set of basic functions in the smart contract. The ERC-20 standard
allows for a smoother integration of tokens with third party software, as well as
other tokens and smart contracts. This is the very reason the implementation-
part of this project will focus on compatibility with the ERC-20 standard.

In order for a smart contract to qualify as an ERC-20 token, the following
functionality must be implemented:

• Return the total supply of tokens.

• Request the amount of tokens a specific wallet holds.

• Transfer a number of tokens from the caller to a specified destination.

• Approve another wallet to spend a certain amount of tokens on behalf of
the caller.

• Return the amount of tokens a wallet is allowed to spend on behalf of
another wallet.

• If the caller is approved by the spender, transfer a number of tokens from
the spender to a specified destination.

The implementation of the ERC-20 standard used in this study can be found
at the Git repository for this project5.

5Git repository: https://github.com/clvang000/SNE TNO RP1

6

https://github.com/clvang000/SNE_TNO_RP1

3.1.3 Atomic swaps

Atomic swaps for blockchains is a new subject that is currently being researched
by a number of separate parties [11]. An atomic swap can be defined as a
transaction between two parties that does not depend on a third party, for
instance a centralized exchange, and either happens in full, or not at all. The
reason this is preferred is the fact that trusting a third party is a risk, as that
third party could, accidentally or on purpose, leave one or both clients without
their funds [12, 20, 19]. What makes the Ethereum blockchain particularly
suitable for atomic swaps is the fact that it supports smart contracts, and the
fact that Solidity, a language used to write these contracts, is Turing-complete.

A method used to implement cross-chain atomic swaps with contracts has
existed for a few years already. These contracts are known as Hashed TimeLock
Contracts (HTLC) [22]. The idea is that both contracts (one on each blockchain)
store the hash of a secret key initially only known to one of the two parties (client
A from now on). Both parties publish a swap contract on the two different
blockchains and commit to locking their funds in the contracts for a predefined
amount of time. The time limit on the contract on which client A deposits
their funds is longer than that of the contract deployed by client B. Only after
this time limit has passed can they request a refund. Client A deposits their
funds first, and only after client B has checked that this deposit is right, they
deposit as well. Only when a claim-request specifying the secret key is sent to
the contract, will the contract transfer the funds. The swap contract verifies
the key by generating a SHA-256 hash from it and checking whether it equals
the hash that is hard-coded into the contract. Client A can now use the key
to claim the funds put up by client B, an action that makes the key publicly
available. Client B can then claim the funds from the swap contract put up by
client A, using the secret key.

Because the time limit on the contract that client A published is longer than
that on the contract client B published, there is no chance that client A can
simultaneously claim client B’s funds and refund their own (because a refund
can only be requested when the time limit has passed). If client A does not
claim their funds, client B cannot either, and if client A does claim their funds,
client B automatically can as well. This is exactly what an atomic swap entails.

3.2 Decentralized exchanges

The main advantages of decentralized exchanges over centralized exchanges are
that you have control over your funds, and there is less risk of loss of funds if
the exchange is hacked. Using atomic swaps, these exchanges would no longer
need to be part of the actual transfer, and only negotiate the transfer between
two parties. There are several new projects that are currently under develop-
ment, and aim to set up a decentralized exchange in the near future. Since
these projects are still under development, we only briefly discuss two of such
projects below, to show the contribution atomic swaps can make to the subjects
of blockchain and cryptocurrencies. As future research, we could perform an

7

in-depth analysis of these exchanges once they are deployed.

Altcoin.io This upcoming exchange [1] is described on their website as ”A
truly decentralized cryptocurrency exchange. Powered by Atomic Swaps.”. Be-
sides the decentralized nature of the coin and token transfers initiated via this
exchange, the front-end of the exchange is also implemented with IPFS (a dis-
tributed hypertext protocol)[13], adding an additional layer of decentralization
and making it harder to target with DDoS attacks. Their main focus is the
Ethereum blockchain, but it is also meant to swap funds with other blockchains,
such as Bitcoin. On 7 October 2017, the team behind altcoin.io was the first to
perform an atomic swap for the Ethereum between Bitcoin blockchains [5].

Web3.js is an Ethereum JavaScript API that is used for a lot of these types
of projects, including the web-wallet6 and the online Solidity editor7 of the
Ethereum Foundation. This API allows web-based Ethereum tools to interact
with local wallets, and Altcoin.io will seemingly also be using this for their
platform.

Blockport.io Blockport is an upcoming project that aims to provide a hy-
brid cryptocurrency exchange that combines aspects from both centralized and
decentralized exchanges [3, 4]. The Blockport whitepaper states that their ”intu-
itive trading platform reduces counterparty risk, transaction fees and vulnerabil-
ity to fraudulent activities. We aim to provide liquidity, security, transparency
and an improved user-experience.”

4 Design and Implementation

In this section we explain the implementation of each type of atomic swap
based on the findings in section 3. These implementations have been tested on
the Rinkeby and Ropsten Ethereum test networks, which are provided by the
Ethereum Foundation for development purposes [17, 16]. The processes have
been split up into steps to make it as clear as possible. The swap contracts
discussed in sections 4.1 and 4.2 are only used a single time for one specific
swap between two clients. For the single-chain token swap we created a proof
of concept for a reusable swap contract. This contract is discussed in section
4.3, where we also discuss reusable contracts for the other types of swaps.

In this chapter multiple references will be made to the smart contracts that
were developed. These contracts are available at the Git repository for this
project8. All five contracts contain the same two functions that can be called
by the clients: claim() and refund(). The claim()-function is used to claim the
funds on the contract. In the case of the cross-chain swaps this function requires
a secret key as input (since a HTLC contract is used).

6Ethereum web wallet - wallet.ethereum.org
7Solidity editor - remix.ethereum.org
8Git repository: https://github.com/clvang000/SNE TNO RP1

8

https://wallet.ethereum.org/
http://remix.ethereum.org/
https://github.com/clvang000/SNE_TNO_RP1

While the implementation of the client-side software is not within the scope
of this project, the theory behind it needs to be worked out to find out whether
the proposed solution is feasible as a whole. To this end both the single-chain
and the cross-chain solution include a paragraph at the end where all design
choices are substantiated, as well as the reason we believe this solution to be
atomic.

4.1 Single-chain

The single-chain swaps are done by having both parties send their funds to a
single swap contract. The single-chain implementations depicted in Figures 1
and 2 have a certain amount of commonality at the start of the process. There-
fore, these steps will be explained first, after which the subsections dedicated to
the specific swaps explain the remainder of the steps for each case. Please note
that in the single-chain atomic swap process, we found there to be no direct
need to use a HTLC. The steps discussed below correspond to the numbers in
Figures 1 and 2.

1. The clients first need to agree on the amount of tokens each party sends to
the other, a time limit, and which party will deploy the contract necessary
for the swap (client A from now on). This all happens off-chain, and
the way this communication happens is not in the scope of this project.
The time limit is used as a safety measure. The whole transaction has
to happen within this time limit for the transaction to succeed. Only
after the time limit has passed are the parties allowed to request a refund.
This measure is necessary from a user experience perspective, as it makes
transactions much swifter, because neither party can keep the other party
waiting indefinitely.

2. When the details from the first step have been agreed upon, the parties
exchange their Ethereum addresses. This happens off-chain as well.

3. Both parties now have all the information to create and deploy the con-
tract. While only one of the clients has to actually deploy the contract,
it is important that both are able to compile it, for reasons that become
apparent in steps 4 and 5. In our case, client A generates and deploys the
contract. This contract is slightly different for the two single-chain cases,
but the general setup is the same. More information about the difference
between tokens and coins can be found in section 3.1.

4. Client A sends the address of the swap contract it published, the source
code for the contract, the compiler used, and the arguments used to client
B.

5. Client B compiles the contract themselves using the available information,
and compares it to the contract on the chain. This is an easy way to make
sure that the contract that was deployed was exactly what both parties
agreed upon.

9

6. Client B confirms to client A that they accept the contract as it was
deployed. If the contract was not as expected, the swap can either be
stopped completely, or re-tried. This is more related to the user experience
than to atomic swap process, and happens completely off-chain, thus it
does not fall not within the scope of the project.

This is the point where the token swap and the coin-token swap start to differ
in their implementation. The following two subsections are thus continuations
of steps 1-6 explained above.

4.1.1 Single-chain token swap

Figure 1: Single-chain token swap

7. At this point it is safe for both parties to send their tokens to the contract.
This happens in the following way: client A executes transfer() on token
contract A, in which they request the contract to move tokens from their
own wallet to the swap contract. Client B does the same with token con-
tract B. The order in which this happens does not matter, as the contract
does not execute any transaction until all funds are on the contract.

10

8. One of the clients checks whether the funds have been transferred to the
swap contract. This happens by indexing the blockchain and checking
the transactions. Which party does this can be decided off-chain, for the
purposes of this explanation client B will do this.

9. Once client B sees the right amounts on the swap contract, they send a
confirmation of this to the swap contract (by calling claim()).

10. The swap contract checks if it has received the agreed upon funds from
both clients. It has to request its balance at both of the token contracts,
as it does not have that information itself.

11. If the contract concludes the funds have both been received, it will proceed
to transfer the funds to the clients. It does this by executing transfer()
on each token contract, requesting a token transfer to the corresponding
wallets.

Validation This process should be atomic due to multiple factors. Firstly,
once the funds are on the swap contract, only the contract itself can move the
funds. Executions of Ethereum smart contract functions are atomic as a whole,
thus we can be confident that any function is either completely executed or not
at all [15, 14]. The two clients can call two functions on the contract to move
the funds, claim() and refund(). At no point is either client capable of stealing
the other client’s funds. The following snippet of code demonstrates this:

1. function claim() onlyParticipant public returns (bool) {

2. uint token1_balance = token1_instance.balanceOf(this);

3. uint token2_balance = token2_instance.balanceOf(this);

4. if (token2_balance >= amountOf_token2 &&

5. token1_balance >= amountOf_token1 &&

6. now < timeOut) {

7. token1_instance.transfer(clientB, token1_balance);

8. token2_instance.transfer(clientA, token2_balance);

9. selfdestruct(clientA);

10. } else {

11. return false;

12. }

13. }

This function checks the amount of each token it owns with the respective token
contracts (line 2 and 3). If these amounts are at least the amount of tokens that
was agreed upon, the transfer happens. As only this contract can transfer these
tokens, there is no risk of either person not receiving their tokens: the transfer
only happens when both parties sent (at least) the correct amount of tokens,
and then one of them calls claim(), which sends the funds to both parties at
once. The reason we chose to send all tokens (even if either party has sent more
than was agreed upon) is the fact that otherwise those tokens will get lost. As

11

all addresses involved in the transaction are hardcoded in the contract, outsiders
are not be able to re-route the funds when claimed or refunded. The contract
self-destructs after the transfer has happened (line 9), meaning that from that
point on interaction with the contract is not possible anymore.

The single-chain swaps do not require a secret key (as used with HTLCs)
because there is only one contract. The cross-chain swaps have two contracts
that should only allow certain functions to be executed once certain steps have
been executed on the other contract. Because the chains cannot see what hap-
pens on the other chain, the key is necessary to make sure that clients do not
even have the option of executing functions out of order, which might result in
stolen funds.

Aside from the atomicity, the most important part of the whole process
from a security-perspective is the client-side contract confirmation. This part of
the process makes sure that neither party can deploy a contract different from
what the other party expects. This is very similar to the contract confirmation
that Etherscan has in place 9. The individual that deployed the contract can
send the source code and other relevant information to Etherscan via their
website 10, so that Etherscan can then compile the contract under the exact
same circumstances. If their compile is the same that is found on the chain, the
contract is verified. This recompile should happen locally.

4.1.2 Single-chain coin-token swap

While the differences between the tokens swap and the coin-token swap are
minor, they are significant enough to cause confusion if not highlighted. The
main difference is the fact that the swap contract does not have to do an external
call with a token contract whether the funds have been deposited (for the Ether).

9Etherscan.io - Smart Contract of OmiseGo - https://etherscan.io/token/OmiseGo#readContract
10Etherscan.io - Verify Contract - https://rinkeby.etherscan.io/verifyContract

12

https://etherscan.io/token/OmiseGo#readContract
https://rinkeby.etherscan.io/verifyContract

Figure 2: Single-chain coin-token swap

7. Client A sends coins to the swap contract. Client B executes transfer() on
token contract B, in which they request the contract to move tokens from
their own wallet to the swap contract. The order in which this happens
does not matter.

8. Client B checks whether the funds have been transferred to the swap
contract.

9. Once they see the right amounts on the swap contract, they send a con-
firmation of this to the swap contract (by calling claim()).

10. The swap contract checks that it has received the agreed upon funds from
both clients. It has to ask token contract B what its balance is, as it does
not have that information itself. For the coin it can just check its own
balance without making any further requests to outside sources.

11. If the contract concludes the funds have both been received, it will proceed
to transfer the funds to the clients. For the token transfer, it does this by
executing transfer() on the token contract that is involved. The coins can
just be sent in the regular way.

13

4.2 Cross-chain

The swap method for the cross-chain atomic swaps uses the Hashed TimeLock
Contract explained in the literature study. The basis for the code used in these
swaps comes from previous research 11. We have extended and implemented
this method to be fully compatible with ERC-20 compliant tokens. As with the
single-chain swaps, the cross-chain atomic swap implementations depicted in
Figures 3, 4 and 5 show a certain amount of commonality. These steps will thus
be explained first, after which the subsections dedicated to the specific swaps
explain the remainder of the steps.

1. The clients first need to agree on the amount of tokens each party sends to
the other and the two time limits. These time limits are used as a safety
measure. One time limit must be significantly longer than the other. This
step happens off-chain.

2. One of the clients (client A from now on) chooses a secret key, and then
hashes it. This hash is what makes sure that at no point in the transaction
either user can steal the other parties funds.

3. The two clients exchange their Ethereum addresses, and client A also sends
the hash of the secret key to client B.

4. Both clients then create and deploy a swap contract on ’their’ blockchain
incorporating the time limits, the Ethereum addresses and the hash of the
secret key. Client A generates the contract on blockchain A, and client B
generates the contract on blockchain B. It is important that the contract
made by client A gets the longer time limit.

5. Now that the swap contracts have been generated, the clients exchange
the contract addresses, the source code for the contracts, the compiler
used, and the arguments used. This step happens off-chain.

6. Both clients compile the contract the other party made, and compare it to
the contract that was published on the blockchain. This is done to verify
whether the deployed contracts contain what was agreed upon.

7. Assuming the contract is as expected, the clients send each other a con-
firmation and the process can continue. If there is an issue, the whole
process is to be repeated. This step happens off-chain.

This is the point where the three swaps start to differ in their implementation.
The following subsections are thus continuations of steps 1-7 discussed above.

11HTLC cross-chain coin swap contract - Github

14

https://github.com/realcodywburns/Tank-Farm/blob/master/contracts/locking/HTLC(mew).sol

4.2.1 Cross-chain coin swap

Figure 3: Cross-chain coin swap

8. Client A sends their funds to swap contract A. It is important for client A
to be the first to deposit their funds, for reasons that will become apparent
in the next steps.

9. Client B has access to the blockchain, and can thus see when and how
much client A has sent to swap contract A. This happens by indexing the
blockchain and checking the transactions. If this is the amount the parties
agreed upon, the process can continue.

10. Client B transfers their funds to swap contract B.

11. Client A checks whether the transaction has succeeded and whether it was
the right amount. This happens locally.

12. Client A now calls the claim() on contract B using the secret key to claim
the funds. In the process of claiming the funds, the secret key is sent in
plaintext to contract B, and from then on is available on the blockchain
for anyone to see, including client B.

13. Client B uses the secret key to claim the funds on swap contract A. The
destination address in the swap contract is hard-coded, which means that
it does not matter that the secret key is no longer secret; even if someone
else would use it to call the claim(), the funds would still be sent to client
B.

15

Validation The validity of the cross-chain swap contracts is again confirmed
by recompiling the contracts off-chain and comparing them to the versions that
were published on-chain. The main difference with respect to the single-chain
swaps is the fact that it requires client-side input during the swap, i.e. retrieving
the key from blockchain B and then using it to claim the funds on blockchain A.
This is because the two chains cannot execute things on the other chain. This
client-side input can happen anywhere between the moment client A claims their
funds and the moment swap contract A expires, which should result in no loss of
funds. However, client side input halfway through the swap does leave open the
possibility of non-atomicity. Alternatives to the HTLC should be considered to
solve this problem, as this is not a consequence of the implementation, but of the
theory of the HTLC, which depends on user input during the swap. Assuming
client B is able to execute claim() on the contract on blockchain A, the method
using the secret key appears to be secure, as the secret key stays locally on the
machine of client A until they claim their funds.

4.2.2 Cross-chain token swap

Figure 4: Cross-chain token swap

8. Client A calls transfer() on token contract A such that their tokens are
transferred to swap contract A. It is important for client A to be the first
to deposit their funds.

9. Client B has access to the blockchain, and can thus see when and how
many tokens client A has deposited to swap contract A. This happens

16

by indexing the blockchain and checking the transactions. If this is the
amount the parties agreed upon, the process can continue.

10. Client B transfers their funds to swap contract B by calling transfer() on
token contract B.

11. Client A checks whether the transaction has succeeded and whether it was
the right amount. This happens locally.

12. Client A now calls the claim() on contract B using the secret key to claim
the funds.

13. Swap contract B calls transfer() on token contract B to move its tokens
to the wallet of client A.

14. The key is now freely available on the blockchain. Client B uses the key
to claim the funds from swap contract A.

15. Swap contract A now calls the transfer() on token contract A to move its
tokens to client A’s wallet.

4.2.3 Cross-chain coin-token swap

Figure 5: Cross-chain coin-token swap

8. Client A calls transfer() on token contract A such that their tokens are
transferred to swap contract A. It is important for client A to be the first
to deposit their funds.

17

9. Client B has access to the blockchain, and can thus see when and how
much client A has sent to swap contract A. This happens by indexing the
blockchain and checking the transactions. If this is the amount the parties
agreed upon, the process can continue.

10. Client B transfers their funds to swap contract B.

11. Client A checks whether the transaction has succeeded and whether it was
the right amount. This happens locally.

12. Client A now calls claim() on contract B using the secret key to claim the
funds.

13. The key is now freely available on the blockchain. Client B now uses that
same key to call the claim function on swap contract A.

14. Swap contract A now calls transfer() on token contract A to move its
tokens to client A’s wallet.

4.3 Reusable contracts

The different types of atomic swap implementations we have discussed use a
swap contract that is used for one single swap. In the long run it is not very
efficient to publish a new swap contract on the blockchain for each atomic swap.
The reason being that there will be a lot of duplicate code on the blockchain,
needlessly increasing its size. Deploying a new contract on the blockchain also
has costs associated with it, costs that would be much lower if we were to create
a contract that can be used multiple times. The ideal swap contract must
therefore be designed with scalability in mind.

For both the single-chain and cross-chain variant a reusable contract that is
both secure and scalable is a valuable improvement. The question of whether
or not the process is fully atomic and secure for both parties is more involved
than with a single-swap contract, because multiple parties could be performing
swaps at the same time. We find that there are two approaches:

1. Both wallets deposit their funds (coins or tokens) to the reusable contract
(similar to the single-swap contracts).

2. In case the swap involves tokens, it is also possible to approve the reusable
contract to transfer tokens on behalf of a wallet (making use of the ap-
prove() and transferFrom() functions on the token contract). This is made
possible because of the ERC-20 standard, and not a native option for ETH.

In the first approach, it is essential that the contract is able to check which
wallets deposited which coins and/or tokens to it. Since multiple swaps may be
going on in the same time frame, the contract needs a method to verify that
the two wallets involved in a swap indeed send the right amount of funds. If
the contract is not able to verify this, it may get things mixed up and use funds
destined for another swap happening at the same time.

18

The standardized ERC-20 token implementation allows us to request the
total amount of tokens we have in our wallet. However, in a situation where
one contract is used for multiple swaps at the same time, the contract should
also be aware of what funds are related to what swap. If this is not the case,
a situation could arise where the contract sends funds that were deposited by
a wallet not involved in the current swap. In order to remedy this situation,
we find that the ERC-20 token would need to be extended. This would mean
that the ERC-20 contract needs to keep track of the transactions done to the
swap contract(s) such that the swap contract can query the token contract on
whether or not a specific wallet has deposited sufficient funds to it to perform a
swap. In order for this method to work properly, we make the assumption that
there are no third parties that fund the part of any of the two parties to the
swap contract.

When it comes to the amount of ETH that is deposited to the swap contract,
we do not have to deal with additional token contracts. For example, one can
keep track of the amount of ETH that is deposited by each wallet by extend-
ing the function() payable (the default function that is executed when ETH is
transferred to a smart contract) in the swap contract to store this information.
Similar to the proposed solution for tokens, this method also only works with
additional storage of transaction data. However, in this case the problem can be
solved without extending the code of the token contracts. Although not ideal,
it does seem that both of these solutions (for tokens and ETH) would still be
more efficient with respect to scalability than publishing a new contract for each
swap.

As mentioned, the second approach only works for tokens. In this setup,
the corresponding wallet(s) would need to call the approve() function on the
ERC-20 token that it wants to transfer, to allow the swap contract to call the
transferFrom() function on the ERC-20 token on their behalf. With respect to
scalability, this method is much more efficient for tokens than the first approach
explained earlier.

We have implemented a proof of concept for a reusable swap contract that
uses this approach for the single-chain token swap case (case 1). This implemen-
tation follows the same general method as for the single swap contract explained
before (see section 4.1.1). In our implementation, the transferFrom() function
is called twice in the claim() function on the reusable contract. This could po-
tentially lead to concurrency issues when the first call succeeds and the second
fails (or the other way around). Therefore, we have made use of the require()
construct in Solidity, for both of these transferFrom() function calls. This makes
sure that if either of the transfers fail (e.g. due to insufficient funds and/or al-
lowance), all changes are rolled back and the execution is aborted. This ensures
the atomicity of the claim() transaction.

19

Figure 6: Visualization of the single-chain token swap

The steps for this swap are as follows:

1. The clients first need to agree on the amount of tokens each party sends
to the other and which party will deploy the contract necessary for the
swap (client A from now on). This all happens off-chain, and the way this
communication happens is not in the scope of this project.

2. When the details from the first step have been agreed upon, the parties
exchange their Ethereum addresses. This happens off-chain as well.

3. Client A now initiates a new swap on the contract using the initiate-
NewSwap() function. In the PoC they can choose the identifier of this
swap themselves, in the final product the idea would be that the ID gets
generated by the contract and returned to the client.

4. Client A then sends that ID to client B.

5. Client B can then calls validateSwapInstance() on the swap contract, to
validate that client A has given the contract the correct input. This func-
tion returns a boolean, indicating whether or not the information is cor-
rect.

20

6. Client B sends client A a confirmation that they agree with the initiated
swap

7. Now both parties can use approve() on their respective token contract to
allow the swap contract to handle a specific amount of their funds.

8. Client A then sends client B an off-chain confirmation that they set the
right allowance. Client B could also in intervals check the allowance client
A has given the contract, or a combined version of these methods, where
client A sends the off-chain confirmation, after which client B checks this
on-chain. We have not decided which method is best.

9. When client B sees that client A has set their allowance, and client B has
as well, they can call claim() on the contract, with the ID as parameter.

10. The contract then immediately tries to transfer the money from client
A’s wallet to client B’s wallet, and vice versa. The contract uses the
transferFrom() function on the token contracts for this. As explained,
these two transactions happen either both, or not at all.

The contract is also available at the Git repository12. It is also worthy to note
that for this contract there is no need for a refund() function, since the funds
are not deposited to the swap contract. This is still a proof of concept, and
further development is required before this contract can be used in practice.
However, we feel that the main issues for performing such an atomic swap have
been tackled by means of performing the swap via allowances on the ERC-20
token contracts.

5 Discussion

The atomic swap is currently a popular subject and there is still a lot of research
that can be done. The suggestions for future research below are based on our
own experiences during this project. Some are follow-ups to the research done
in this project, others are based on things we found during the project that
require more research but were out of scope.

There are several aspects of our research that can be extended. Primarily,
the scalability of the swap contracts is an interesting subject. If implemented
in production, we find that security and scalability are of utmost importance.
Therefore, besides experimentation with reusable contracts, research into po-
tential attack vectors and security details are also required.

5.1 Future research

5.1.1 Off-chain communication

Something that was simply outside of the scope of this project was the off-chain
communication between clients that is necessary for initiating a transaction

12Git repository: https://github.com/clvang000/SNE TNO RP1

21

https://github.com/clvang000/SNE_TNO_RP1

as well as exchanging data during the transaction. There are lots of ways to
do this, but as this is a relatively new problem, chances are there are still
improvements to be made. Web3.js, for instance, is ’a collection of libraries
which allow you to interact with a local or remote Ethereum node, using a HTTP
or IPC connection’ [18]. This is one way for web-based decentralized exchanges
to interact with wallets on client computers, which allows these exchanges to
execute the steps required for such a swap in an efficient manner. The client
still has full control over the actual execution, as each transaction has to be
confirmed by them.

5.1.2 Attack vectors

For the cross-chain atomic swaps (HTLC), we briefly want to mention a possible
attack vector here that we have come across. The question that we raise here is
the following: is it possible that once both client A and B have both deposited
their funds to the corresponding swap contract, client A will claim its funds from
swap contract B and then make it so that client B cannot claim their funds (for
instance with a DoS attack) until the timeout is expired on swap contract A,
such that he/she can then call refund() on swap contract A, leaving client A
with all the funds? It is worthy to mention that the HTLC may be slightly
flawed in this respect. Next to this attack vector, it is important to research the
possible other attacks on smart contracts. This would be essential in order to
confidently say that the contracts we developed, or may develop in the future,
are not vulnerable to any known exploits.

There are also other attack vectors related to the HTLC. For instance, client
B might be able to retrieve the key generated by client A before putting their
own funds on the contract on blockchain B, allowing them to pull client A’s
funds directly without risking their own funds at all. The client-side actions
should be analyzed as well.

Another general issue with the timeout used in the swaps is the fact that the
exchange rate of the tokens/coins that are being swapped will vary during the
process of the swap. Based on this information either party may decide they
want to stop the transaction or possibly not even send the funds to the swap
contract. However, if either party has sent their funds, and the other party
decides they do not want to go through with it, the first party will have to
wait until the timeout has passed to refund their funds. With the volatility of
cryptocurrencies this might be something to look into, possibly by shortening
the timeout or creating another theory altogether.

5.1.3 Reusable contracts

As of yet, we have developed a novel way (to our knowledge) to perform an
atomic swap of tokens with a reusable smart contract on the Ethereum blockchain.
We believe this to be an efficient method of doing so, since no additional trans-
action information will need to be stored on the blockchain, in order to make the
transition from a single-usage contract to a reusable contract. An interesting

22

future field of study, would be to also further analyze the other four cases of
atomic swaps that we investigated, and see if there are any efficient implemen-
tations of reusable contracts possible. Whenever a token is involved, we can
use the transfer method that we developed for the single-chain token transfer.
With respect to coins, we explained that the swap contract will most likely need
to keep track of its transaction history. We could investigate if applying this
method for coins is 1. possible and 2. more efficient than using single-swap
contracts, and if so, how much efficiency is gained with regard to scalability.
The development of cross-chain reusable contracts is challenging as well and it
would be an interesting subject to further investigate.

5.1.4 Atomic swaps on other blockchains

Now that we have obtained knowledge and practical experience of how to imple-
ment atomic swaps using smart contracts on the Ethereum blockchain it would
also be interesting to find out what possibilities there are to implement atomic
swaps on and with other blockchains.

5.1.5 Analysis of decentralized exchanges

While this project already includes an analysis of different decentralized ex-
changes, these projects are either not yet released, or still very new. This
means that in a short while the landscape will have changed considerably. Fu-
ture research could therefore analyze these projects in more detail. There are
multiple aspects to these exchanges. Firstly, how decentralized are they really,
ie. is the whole platform distributed, or just the financial aspect? For instance,
as has been discussed in section 3.2, Altcoin.io seems to be very decentralized
based on the information currently available on their website. Another aspect is
security. Decentralization does not plug every security hole, and decentralized
exchanges should be tested on security and reliability just as rigorously as their
centralized counterparts.

6 Conclusion

In this report, we have explained the smart contracts that we developed to
perform a single-chain atomic swap between two parties. We have implemented
this method for swapping tokens and for swapping coins and tokens. The tokens
involved in this atomic swap can by any type of ERC-20 compatible token.
This can be specified by the creator of the contract, when he/she published
the contract on the blockchain. Also, we have extended the already existent
method of performing a cross-chain coin swap (using a HTLC) by implementing
smart contracts that also function for ERC-20 compatible tokens. For both the
single-chain and cross-chain atomic swaps, we have explained why we regard
the process is indeed atomic and reliable. Besides the research into these single-
swap contracts, we have looked into a more scalable method of performing the
swaps, which is to deploy a swap contract on the blockchain only once, instead

23

of deploying a new contract for each swap. By extending the single-chain token
swap contract, we have developed a multi-swap (reusable) contract that is much
more scalable than the original contract. This reusable contract is a proof of
concept and shows that such a method of performing atomic swaps is indeed
possible for tokens. More research can still be done into varying subjects, such
as reusable contracts and possible attack vectors. This project has shown the
versatility that smart contracts have on the Ethereum blockchain. It is clearly
possible to use them for a wide range of applications, including using them as
a third party to oversee the process of atomic swaps.

24

References

[1] altcoin.io: A truly decentralized cryptocurrency exchange.
https://www.altcoin.io/.

[2] Bitgrail cryptocurrency exchange claims $195 million lost to hackers.
”fortune.com/2018/02/11/bitgrail-cryptocurrency-claims-hack”.

[3] Blockport: The first social crypto exchange. Based on a hybrid-
decentralized architecture. https://blockport.io/.

[4] Blockport Whitepaper v1.0.5. https://blockport.io/read-
the/whitepaper.pdf.

[5] Ethereum Atomic Swap. https://github.com/AltCoinExchange/ethatomicswap.

[6] Ethereum Project. https://www.ethereum.org/.

[7] Quorum: Advancing Blockchain Technology.
https://www.jpmorgan.com/global/Quorum.

[8] State of the DApps: 977 Projects Built on Ethereum.
https://www.stateofthedapps.com/.

[9] The Techruption Blockchain Project. https://blockchain.tno.nl/projects/techruption/.

[10] TNO: innovation for life. https://www.tno.nl/nl/.

[11] Atomic Action: Will 2018 Be the Year of the Cross-Blockchain Swap?,
Jan 2018. https://www.coindesk.com/atomic-action-will-2018-year-cross-
blockchain-swap/.

[12] Chris Baraniuk. Bitfinex users to share 36% of bitcoin losses after hack,
Aug 2016. http://www.bbc.com/news/technology-37009319.

[13] Juan Benet. Ipfs-content addressed, versioned, p2p file system. arXiv
preprint arXiv:1407.3561, 2014.

[14] Vitalik Buterin. Ethereum: A next-generation smart contract and decen-
tralized application platform. 2014.

[15] Thomas Dickerson, Paul Gazzillo, Maurice Herlihy, and Eric Koskinen.
Adding concurrency to smart contracts. arXiv preprint arXiv:1702.04467,
2017.

[16] Ethereum. Clique PoA protocol & Rinkeby PoA testnet Issue #225
ethereum/EIPs.

[17] Ethereum. ethereum/ropsten, Aug 2017.

[18] Ethereum. ethereum/web3.js, Jan 2018.
https://github.com/ethereum/web3.js.

25

[19] Jim Finkle and Jeremy Wagstaff. Hackers steal $64 million from cryptocur-
rency firm NiceHash, Dec 2017.

[20] Robert McMillan. The Inside Story of Mt. Gox, Bitcoin’s $460 Million
Disaster, Jun 2017. https://www.wired.com/2014/03/bitcoin-exchange/.

[21] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

[22] Joseph Poon and Thaddeus Dryja. The Bitcoin Lightning Network:
Scalable off-chain instant payments. Technical Report (draft), 2015.
https://lightning.network/lightning-network-paper.pdf.

[23] Fabian Vogelsteller and Vitalik Buterin. ERC-20 Token Stan-
dard. https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20-
token-standard.md.

26

	Introduction
	Objectives
	Methodology

	Literature study
	Ethereum
	Smart contracts
	ERC-20 Token Standard
	Atomic swaps

	Decentralized exchanges

	Design and Implementation
	Single-chain
	Single-chain token swap
	Single-chain coin-token swap

	Cross-chain
	Cross-chain coin swap
	Cross-chain token swap
	Cross-chain coin-token swap

	Reusable contracts

	Discussion
	Future research
	Off-chain communication
	Attack vectors
	Reusable contracts
	Atomic swaps on other blockchains
	Analysis of decentralized exchanges

	Conclusion

