X
%

X
UNIVERSITY OF AMSTERDAM

Virtual infrastructure partitioning and provisioning under nearly
real-time constraints

Faculty of Physics, Mathematics and Informatics
MSc Security and Network Engineering
Research Project 1

Author: Andrey Afanasyev
Andrey.Afanasyev@os3.nl

Supervisors:
dr. Z. (Zhiming) Zhao, dr. ir. A. (Arie) Taal, Mr H. (Huan) Zhou MSc!

z.zhao, a.taal, h.zhou}@uva.nl

February 11, 2018

Abstract

Distributed or cloud application became a very common in today world. There are situations
when virtual infrastructure used by application need to be partitioned in order to reduce costs and
decrease a recovering time after failures. Further, partitions of the divided graph might be relocated
across different data centers following a set of practical requirements and constraints.

A virtual infrastructure can be reduced tot a graph which need to be partitioned. A graph partition
problem (GPP) is a well-known non-deterministic polynomial-time (NP-hard) complexity problem.
There are many graph partition existing algorithms and some of them are implemented in software
tools[I].

This research is focusing on investigating literature proposed constraints provided from developer,
application and data center perspective in relation to virtual infrastructure. During research a par-
titioning METIS as a software tool was selected.A prototype based on Python wrapper of tool was
invented in order to measure graph partitioning elapsed time of each implemented algorithm.

During experiment was used a 10, 100 and 1000 nodes graphs of 3 degree each with 15, 150 and
1500 edges retrospectively. A Fiduccia-Mattheyse algorithm with One-sided node-based refinement
perform better then other algorithms for all types of defined graphs, but not significantly compare
to two-sided node-based refinement. However, it was observed that this combination is more com-
putational intensive compare to Greedy algorithm or even classical Fiduccia-Mattheyse.

Acknowledgements

I would like to thank my supervisors Dr. Zhiming Zhao and Dr. ir. Arie Taal for their support
and guidance throughout this challenging research project. In addition, I would like to thank Mr
H. (Huan) Zhou MSc for refinement of the research scope and aspects by providing research related
information to get more focused results.

Contents

1 Introductionl 4
2 State of the artl 5
2.1 Constrains landscape]. L Lo 5
22 Toolselectionl o o o 6
[3 Virtual Infrastructure Graph Partitioner| 7
BT OVEIVIEW] .« © . o o oo o o e e e e e e 7
... 7
4 Experiment| 8
4.1 Environmentl L e 8
4.2 Description| L e e e 8
[6_Discussion 11
BT Resultdl. .« . o o oo o e e e 11
0.2 Observationsl e e e 11
6 Conclusions and Future work] 12

1 Introduction

In the epoch of ubiquitous use of cloud applications on client devices when information can be passed
from different sources of data to cloud applications, developers of cloud applications may need an op-
posite activity. A situation application nodes connected in a virtual infrastructure should be separated
between cloud data centers to provide: application services to the end users, decrease recovering time
from failures and fulfill underlying constraints of cloud application, providers and other components. In
order to optimize systems performances and costs, developers need to plan the partitioning virtual infras-
tructure infrastructure directly according their own requirements and understanding of their applications.

Cloud applications often consist of nodes which are connected in a virtual infrastructure located by
one provider and one data center. According new trends and research direction developers are beneficial
in spreading application infrastructure between different data centers and even providers[2]. Applica-
tion’s virtual infrastructure might be represented as a graph, where vertices are nodes and edges are link
lines exchanging data.

Represented graph need to be partitioned according to the developer requirements. This leads to well
known graph partitioning problem. Recent systematic reviews show that the graph partitioning problem
(GPP) is in focus of many researchers[l]. Due to the high demand in science and IT industry this field
of mathematics is in active development where different graph partitioning algorithms exist.

This research was conducted in the period from 8 January 2018 till 11 of February 2018. The goal
of this paper is to categorize cloud application developer requirements related to virtual infrastructure
proposed in literature. Select a software tool for partitioning a virtual infrastructure under near real-time
constraints. Finally, provide an experiment by which set of graphs are partitioned in order to profile
software tool implemented algorithms on the basis of the elapsed time efficiency.

Additionally, For this research was assumed that a virtual infrastructure is represented as a weighted
undirected graphs. Measurements are done in terms of comparing algorithms elapsed time on defined
sets of graphs. Only edge cutting algorithms are in scope of this research. No new or existing algorithms
are created or coded during this stage.

Based on the aforementioned, the following main research question is defined:

How profiling of the graph partitioning algorithms might improve fractioning of a virtual
infrastructure ?

o Which user and application constrains might be applied during profiling of the graph partitioning
algorithms?

o What key algorithms are implemented for evaluation?
o Which graph partitioning algorithms are most desirable in the specific scenario’s?

The paper structured is as follows. The Section 2, reviews a the state of the art of the collected developers
virtual infrastructure partitioning requirements and selecting a right software tool. Next, the section 3
contains a discussion about proposed Virtual Infrastructure Graph Partitioner script. Section 4 describes
the experimental setup and gathered the results. Section 5 discuss the results of the experiment and
answers research questions. Finally, section 6 concludes the paper and light ups the way for future
research.

2 State of the art

In this section, firstly the most important developer and graph partitioning software tool requirements
gathered from literature are specified. Further, open source partitioning tools proposed in literature are
compared. Finally, a partitioning tool with set of implemented algorithms will be selected to use in
experiment setup.

2.1 Constrains landscape

Out of the defined research questions, trends and research directions in cloud proposed in literature [2][3]
and mentioned in Section |1} a several functional requirements might be enumerated. Those requirements
are spread across three parties: Developer of an application which has interest using a saving costs virtual
infrastructure, a developed application which heavy rely on virtual infrastructure, and data center which
provides a facilities to deploy a virtual infrastructure.

Developer:

e Costs. To reduce virtual infrastructure costs user might need to segment his infrastructure in
multiple parts across different locations. It might be based on price of the exchanged data between
nodes.

e Availability. In order to provide sufficient level of services to the end user infrastructure need to
perform according developer defined requirements.

e Failures mitigation. To mitigate application unavailability and related services a fast reliable
recovery from failures is required.

e Geo-location. To spread virtual infrastructure between different geographical locations in order to
provide sufficient service to the end user or recovery from failures.

Application:

e Availability. In order to provide services to the end user an application need to have sufficient
virtual infrastructure resources in response to elasticity requirements under specific sitation.

e Resiliency. Being able to adapt and provide services under stress or faults in order to avoid failures
a virtual infrastructure as whole or partly need sufficiently fast recovers form failures.

Data center:

e Availability. A physical infrastructure should operate sufficient in order to support application
required virtual infrastructure.

e Maintainability. Data centers need to have a time space for improving or supporting their physical
infrastructure. This may lead to unexpected failures.

Therefore, finding a balance between application availability, mitigation of the virtual infrastructure
components failures and geographical application spreading might save developers exchanging data costs
and improve resiliency. To select the graph partitioning tool which might used to partition virtual
infrastructure represented as a graph to seek the balance a following requirements need to be to fulfill:

e Open-source. Community need to have possibility to contribute and to be easy involved to de-
velopment of the tool in order to purpose new features and fix bugs to keep application relevant
according new trends in virtual infrastructure.

e Maintainability. The virtual infrastructure evolves rapidly a new features are added regularly in
that sense tool must have possibility to be easy maintained.

e Usability. In order to reduce complexity tool needs to have a proper, understandable programming
interface to interact with virtual infrastructure represented as a graph. Interacting via Python - a
cross-platform general purpose programming language was chosen as a criteria.

e Cross-platform. Due to fact that virtual infrastructure may consist of multiple platforms it is
urgent that tool may run on multiple platforms.

2.2 Tool selection

Over past two decades a multiple graph partitioning tools were developed as open and closed source.
The paper of Bulug et al [I] summarize and discuss old and new graph partitioning software tools.

Table 1: Comparison of proposed graph partitioning tools and defined requirements

Tool License Latest stable Programming Cross-Platform Python
release language wrapper

Chaco [4] GPL v2.0, 1998 ANSI C No (Unix-like) No

KaHIP[5] GPLv2 v2.00, 2017 C++ No (Unix-like) Yes

KaHyPar-CA [6] GPLv3 2017 C++ Yes(Unix-like, Windows) No

METIS [7] Apache 2.0 v5.1.0,2013 ANSIC Yes(Unix-like, Windows) Yes (multiple)

Mondriaan [8] LGPL v4.2, 2017 C No (Unix-like) No

PaToH [9)] BSD v3.2, 2011 C No (Unix-like) No

Zoltan [10] LGPL v3.8, 2016 C No (Unix-like) No

Table [[| compares the most important requirements defined in the section and the tools proposed and
described in literature in the last section. Among all other tools the METIS version 5.1.0 released in 2013
fulfill previously mentioned requirements. Additionally, tool is available as a package in Debian Stretch
repository[T1]. This make possible to automate deployment and maintainability of the tool. There is no
windows package available for download, but according a BUILD-Windows.txt file presented in archive
a source code can be compiled once using a Visual Studio C++ compiler.

METIS supports multilevel recursive-bisection, multilevel k-way partitioning schemes. Might be used
for both edge cutting and node clustering. METIS uses a classical Fiduccia-Mattheyses(fm) algorithm
with optional One-sided node-based(seplsided), which is default and Two-sided node-based (sep2sided)
refinement components. Those components developed by a team behind METIS. Additionally, a Greedy
algorithm can be used too.

However, there are three different Python wrappers which might be used by prototype or in real life
environment.

Table 2: Comparison of METIS’s python wrappers

Wrapper License Python Latest stable Cross-Platform Functionality
version release

NetworkX-METIS[I2] Apache 2.0 2.7 and 3,2 1.0, 2015 Yes Limited

METIS for Python[I3] MIT 2 and 3 0.2a4, 2018 Yes Full

PyMetis[14] MIT 2 and 3 2016.2, 2016 Yes Basic

Table [2] illustrates the differences between available wrappers. Despite fact that METIS for Python
is still in development it provides a best functionality among all available wrappers. Further, in the
prototyping and experimenting stage a METIS for Python will be used.

3 Virtual Infrastructure Graph Partitioner

In this section the architecture of the prototype of the Virtual Infrastructure Partitioner script will be
described. The relation between developer and partitioning script and how prototype is build.

3.1 Overview

Figure[T]illustrates the process of generating graph or getting it from a file, getting developer requirements
file which are all parts of Input component. Graph partitioning and visualizing are parts of Processing
component. Visualizing is use only for testing purpose and might not needed in production. Processing
component produce a measurements file, visualizing of original and partitioned graphs. Measurements
file stores elapsed time of each algorithm used during experiment. It is useful for further analyzing.
Analyzing component process process measurements and delivers clear representative plots which are
useful for this research.

Input Processing Output

E‘ Origianal Graph

" . - Origianal Grap
Virtual Infrastructure Graph SRS ‘ g
AT
\;\ — N
N Partitioned Graph
]
Graph Partitioning System

Measurements

Developer Requirements

Analyze o
] - Plots

Process and Plot

Figure 1: Architecture of the Virtual Infrastructure Graph Partitioner

3.2 Prototype

To demonstrate the benefit of the design a prototype with experimental purpose was build. The prototype
is a script tool written in Python v3.5.2. Besides aforementioned METIS for Python module was used
another modules:

e networkx: in order to convert or generate graph in to METIS readable format,
e 0s and csv: to manage measurements stored in a csv file,

e time: to measure elapsed time of graph partitioning per algorithm.

matplotlib: to analyze and visualize measurements in form of plots,

e numpy: to simplify data ordering and some calculations.

Current prototype may read and write Gaphviz(*.dot) and GraphML(*.xml) files. This allows to use a
real virtual infrastructure graphs in future. During visualization process a PNG (*png) files are generated.
Results from the Analyze architectural component among with Output component were actively used
during experiments discussed in following section. The developed code is publically available and can be
accessed on Githubll]

4 Experiment

In order to illustrate benefit of chosen graph partitioning tool and related python wrapper for Virtual
Infrastructure Graph Partitioner a several experiments were conducted. These experiments aim to an-
swer following question:

Which graph partitioning algorithms are most desirable in the specific scenario’s?

The goal of the first question is to measure if there is a difference between graphs partitioning algo-
rithms in elapsed time. During experiments a certain assumptions were taken in mind.

e A graph partitioning elapsed time which takes less then 10 millisecond considered as a real-time
partitioning.

e There are three different size (10, 100, 1000 nodes) regular graphs in degree of 3 were gener-
ated.Those graphs represent different scenario’s.

e Partitioning done using a balanced mode with edge-cuts minimizing.

Measurements of CPU’s and Memory are desirable, but doe to time limitations and required amount of
work are out of the scope.

4.1 Environment

All experiments were conducted on the physical machine. Table [3| illustrates hardware components of
used machine. An fully updated Ubuntu Server 16.04.3 operating system in default configuration was
installed and used during experiments.

Table 3: The hardware components of a physical machine used during experiment
Ttem Description
CPU AMD A10-7870K Radeon R7, 12 Compute Cores 4C+8G
Memory 7106MiB System memory, DDR3, PC3-10700 (667 MHz)
Mainboard ASRock FM2A88X-ITX+
Storage Crucial_CT512M550SSD3, 476,9GiB
Network 1x 1Gb/s

Over the years a great performance improvements are done in Hypervisors software. Based on that
knowledge an assumption was taken in account. Assumption consist of statement that a fluctuations
between tests on virtual machine with the same configuration as a physical machine should be not
significant and results should be similar to results gathered from a physical machine.

4.2 Description

For experiment were chosen three random undirected graphs of different sizes. Table || represents char-
acteristics of those graphs. Each of this graph represent a different situation.

Uhttps://github.com/aafanasyev/RP1-VIGP

https://github.com/aafanasyev/RP1-VIGP

Table 4: Graphs characteristics used during experiments
Id Nodes Edges Maximum Degree
1 10 15 3
2 100 150 3
3 1000 1500 3

Each classical algorithm and its refinement component will partition each original unpartioned graph
1000 times in 3 partitions. Partitioning done using balanced mode. After each iteration a pause of 1
second taken in order to save results. In order to get statistical data an elapsed time per algorithm per
each iteration were produced. This data was saved in n.csv file. Where n is a quantity of nodes per graph.

Random regular weighted graph. Partitioned random regular weighted graph
10 nodes and 15 edges 10 nodes and 15 edges
Done in 0.887 milliseconds

p=2n=3
. .
. .
]
. T . H
-
o
=
. . .‘6
o
. £
p=1n=4 3
&
=
8
s
=
. y . . 2
b=
2
.
p=0n=3
(a) Original (b) Partitioned
Figure 2: A 10 nodes graph.
Ran:ggl regular vdue]l.gsgtezl graph. Partitioned random regular weighted graph.
nodes an edges 100 nodes and 150 edges
Done in 3.536 milliseconds p=2n=33
. .
. PN
* . > . . .
. .
. N o . . \ . . * Low _,.- i é
. b . . 2
‘ ot . = s <
! . o T . . °
< * are « * . p=1n=33 F
. . > r . ° L) 2
P " y L Tt v g
. '. . r . I . - :.1
. e S §
. ! £
\ g2
. I~
.
p=0n=34
(a) Original (b) Partitioned

Figure 3: A 100 nodes graph.

Random regular weighted graph.

Partitioned random regular weighted graph.
1000 nodes and 1500 edges 1000 nodes and 1500 edges

Done in 22.302 milliseconds p=2n=323

p=1n=342

partition (p) consisting of nodes (n)

p=0n=335

(a) Original (b) Partitioned

Figure 4: A 1000 nodes graph.

Figures [£:2] [£.2] and [4:2] illustrate originally generated graphs and partitioned graphs conducted
during one iteration of classical Fiduccia-Mattheyses algorithm(fm) without any sided refinement. The
matplotlib Python module may represent original and partitioned graph visually different but both
graphs stays isomorphic.

10

5 Discussion

In this section the results of the experiment are discussed.

5.1 Results

Which user and application constrains might be applied during profiling of the graph partitioning algo-
rithms?

Keeping in mind failures mitigation to fulfill availability requirements and spreading application across
different Geo-located data centers costs saving on data exchange might be one of the most important
constraint for developer. From application point of view availability of resources to provide stable ser-
vices is another important constraint. Therefore a virtual infrastructure graph partitioning tool may
provide a balance between all these constraints.

What key algorithms are implemented for evaluation? After evaluating a tools proposed by literature a
METIS graph partitioning software which may run cross-platform was selected. A best Python available
wrapper for this software is a metis for python. METIS software has implemented a classical Fiduccia-
Mattheyses(fm) algorithm with optional One-sided node-based(seplsided) and Two-sided node-based
(sep2sided) refinement components and Greedy algorithm.

Which graph partitioning algorithms are most desirable in the specific scenario’s?

Comparison of elapsed times of graph partition algorithms. Comparison of elapsed times of graph partition algorithms.

Graph(G) of 10 nodes (V) and 15 edges(E). Equally balanced 3 partitions(p). Graph(G) of 10 nodes (V) and 15 edges(E). Equally balanced 3 partitions(p).
1000 experiments per algorithm 1000 experiments per algorithm
] — Medi — Medi
8.0 o e 30 4 * Mean ()
7.5 1 O owenrstor e Mquarties 28 O lowenmstor e quartiles
7.04 Standard deviation(o) Standard deviation(o)
N G 267
£ 6579 E o4l
5 g o
ER 2 224
S 5.5 , S 20
250 8
E a5 z 187
5 4.0 < 16
E£351 £ 141
=1 = .
5 3.0 =121 :
' @ .
8 2.5 % 104
T 2.0 i 2 84 ! : H ;
K [}
151 1200 JL JL — L 51 _Ii_ JL _J
e = =t os s 102 e A ome s -
A [0901 0982 gg08 30952 .00, =2 0553 R = et o S e = = =k
0.5 2
T T T T T T T T
fm greedy seplsided sep2sided fm greedy seplsided sep2sided
Graph partitioning algorithms Graph partitioning algorithms
(a) 10 nodes (b) 100 nodes

Figure 5: An experiment results.

Figure illustrate results of experiment. It is clear that a classical Fiduccia-Mattheyses(fm) algo-
rithm with Two-sided node-based (sep2sided) refinement component developed by a researchers behind
METIS performs better in small scale graph. However in high scale one-sided node-based performs a bit
better.

5.2 Observations

Despite the results that differences in elapsed time between two-sided node-based refinement and one-side
node-based refinement are significantly small it was observed without empirical data that CPU usage by
two-sided node-based refinement is higher then by one-sided node-based refinement. However, one-sided
node-based refinement uses more memory. The classical Fiduccia-Mattheyse and Greedy algorithm are
perform less and use more CPU and RAM resources.

11

6 Conclusions and Future work

Selecting a correct partition algorithm might be profitable for developer to save costs on exchanged data
and mitigate failures. Using a METIS software with implemented Fiduccia-Mattheyses with Two-sided
node-based refinement requires less execution time to partition graphs with small amount of nodes and
low maximum degree. However, it may require more CPU and RAM resources.

Relation of each algorithm to CPU and RAM resources might be a great improvement of this research.
Detection of a virtual infrastructure topology as a graph type is not really researched yet an need some
effort. Combination of nodes clustering and edges cutting is available as a different components in METIS
but it is not clear how it can be combined together. Researching and implementing more algorithms
might be profitable not only for METIS but for community in general. Additional, research on user and
virtual infrastructure application constraints might improve usage of virtual infrastructure.

12

References

[1]

[10]

[11]

[12]

[13]

[14]

Aydin Bulug, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian Schulz. Recent advances
in graph partitioning. |https://www.researchgate.net/publication/310515157_Recent_Advances_in_
Graph_Partitioning, 11 2016. (Accessed on 28-Nov-2017).

Blesson Varghese and Rajkumar Buyya. Next generation cloud computing: New trends and research
directions. CoRR, abs/1707.07452, 2017.

Junchao Wang, Huan Zhou, Yang Hu, Cees de Laat, and Zhiming Zhao. Deadline-aware coflow
scheduling in a dag. In 2017 IEEE International Conference on Cloud Computing Technology and
Science (CloudCom), pages 341-346. IEEE, 2017.

B Hendricksonand R Leland and B Hendrickson. The chaco user’s guide: version 2.0. Technical
report, Tech. Rep. SAND94-2692, Sandia National Labs, Albuquerque, NM, 1995.

Peter Sanders and Christian Schulz. Think Locally, Act Globally: Highly Balanced Graph Parti-
tioning. In Proceedings of the 12th International Symposium on Experimental Algorithms (SEA’13),
volume 7933 of LNCS, pages 164—-175. Springer, 2013.

Tobias Heuer and Sebastian Schlag. Improving coarsening schemes for hypergraph partitioning by
exploiting community structure. In 16th International Symposium on Experimental Algorithms,
(SEA 2017), pages 21:1-21:19, 2017.

D. Lasalle and G. Karypis. Multi-threaded graph partitioning. In 2013 IEEE 27th International
Symposium on Parallel and Distributed Processing, pages 225-236, May 2013.

Daniél M Pelt and Rob H Bisseling. A medium-grain method for fast 2d bipartitioning of sparse
matrices. In Parallel and Distributed Processing Symposium, 2014 IEEFE 28th International, pages
529-539. IEEE, 2014.

Kamer Kaya, Umit V Catalyiirek, and Bora Ucar. Integrated data placement and task assignment
for scientific workflows in clouds. 2011.

K.D. Devine, E.G. Boman, L.A. Riesen, U.V. Catalyurek, and C. Chevalier. Getting started with
zoltan: A short tutorial. In Proc. of 2009 Dagstuhl Seminar on Combinatorial Scientific Computing,
2009. Also available as Sandia National Labs Tech Report SAND2009-0578C.

George Karypis. Package: metis (5.1.0.dfsg-5 and others). |https://packages.debian.org/stretch/
metis, March 2013. (Accessed on 21-Jan-2017).

NetworkX Developers. Networkx-metis. http://networkx-metis.readthedocs.io/en/latest, August
2015. (Accessed on 22-Jan-2017).

Ken Watford. Metis for python. http://metis.readthedocs.io/en/latest/, January 2018. (Accessed
on 23-Jan-2017).

Andreas Kléckner. Pymetis. https://mathema.tician.de/software /pymetis/, August 2016. (Accessed
on 21-Jan-2017).

13

https://www.researchgate.net/publication/310515157_Recent_Advances_in_Graph_Partitioning
https://www.researchgate.net/publication/310515157_Recent_Advances_in_Graph_Partitioning
https://packages.debian.org/stretch/metis
https://packages.debian.org/stretch/metis
http://networkx-metis.readthedocs.io/en/latest
http://metis.readthedocs.io/en/latest/
https://mathema.tician.de/software/pymetis/

	Introduction
	State of the art
	Constrains landscape
	Tool selection

	Virtual Infrastructure Graph Partitioner
	Overview
	Prototype

	Experiment
	Environment
	Description

	Discussion
	Results
	Observations

	Conclusions and Future work

