Deanonymisation in Ethereum Using
Existing Methods for Bitcoin

February 7, 2018

Robin Klusman
Security and Network Engineering
University of Amsterdam
robin.klusman@os3.nl

Abstract—This paper aims to apply two existing deanonymisa-
tion techniques developed for the Bitcoin network to Ethereum.
Ethereum is a blockchain based platform like Bitcoin, but there
are some significant differences with regard to their peer-to-peer
network and blockchain structure. The first attack evaluated in
this paper is an attempt to reveal IP addresses of Bitcoin users
by monitoring the peer-to-peer network. The second attack aims
to cluster groups of addresses belonging to the same user by
analysing the Bitcoin blockchain. It proves difficult to apply
these methods to Ethereum due to the differences between both
networks in the volatility of entry nodes and the way transactions
are handled. However, by exploiting some of the specifics of the
Ethereum network, such as the peer selection protocol or the
bootnodes, similar attacks are potentially feasible.

I. INTRODUCTION

Blockchain technology has gained significant popularity
over the recent years since the launch of Bitcoin in 2009
based on the paper by Nakamoto from the year prior [1].
With the massive popularity of Bitcoin, other blockchain based
platforms started to emerge, one of which is Ethereum that
was launched in 2015 [2]. Ethereum is a blockchain-powered
application platform that is able to run smart contracts which
consist of any code made for the Ethereum Virtual Machine
(EVM). Ethereum has its own digital currency called Ether
(ETH), which is also used to buy the gas needed for the
execution of a smart contract. However, Ether can also be
used as a regular digital currency similar to Bitcoins (BTC)
[3].

These blockchain based digital currencies (also called
crypto-currencies) have a certain anonymous feel to them.
Unlike (online) banking, the user does not need to provide any
personal details to a central authority to use crypto-currencies.
However, the use of crypto-currencies is not as anonymous as
is commonly believed, as we will describe later in this paper.
This believed anonymity has attracted the attention of those
with unlawful intentions. Bitcoin for instance was used to
conduct activities such as money laundering and black market
trading [4] [5]. These activities make crypto-currency plat-
forms worth investigating from a law-enforcement or forensics
point of view.

Tim Dijkhuizen
Security and Network Engineering
University of Amsterdam
tim.dijkhuizen @os3.nl

The aim of this study is to determine if it is feasible to
deanonymise Ethereum users by means of the same principles
that allowed deanonymisation in the Bitcoin network. In this
way we hope to aid law enforcement agencies in tracking and
linking activity in the Ethereum blockchain to certain actors
that are of interest to them.

We focus on Ethereum due to its prominent position in
the crypto-currency arena. At the time of writing (January
2018) Ether has a market capitalisation of over 117 Billion
US Dollars and holds the second position after Bitcoin with
223 Billion US Dollars [6]. We chose Ethereum over the even
more prominent Bitcoin as there has already been a significant
effort in researching the privacy of Bitcoin.

We limit ourselves to investigating attacks on the privacy
of users because such attacks are most useful for forensics.
Attacks that focus on manipulating the network to one’s own
benefit are not relevant to our goal of tracking suspect actors
within the network. We chose to apply existing attacks on the
Bitcoin network to Ethereum, because ample literature exists
on attacking Bitcoin and some of these attacks could be viable
when applied to Ethereum.

The remainder of this paper is structured as follows: Section
II outlines our main research question and our sub-questions.
Section III describes the possible ethical implications of our
research. In Section IV the related work in this field is
described. In Section V the Bitcoin platform and its inner
workings are explained while Section VI describes the inner
workings of Ethereum. In Section VII the existing attacks on
the Bitcoin network are discussed. In Section VIII we will
explore the feasibility on Ethereum of the attacks targeting
Bitcoin. In Section IX we discuss the results and Section X
our conclusions. We conclude our paper with suggestions for
future work in Section XI.

II. RESEARCH QUESTIONS

Following from the introduction, our research question is
defined as:

o Is deanonymisation of clients feasible for the Ethereum
network?

In order to answer our main research question, the following
sub-questions are defined:

o What differences exist between the Ethereum and Bitcoin
networks?

e What deanonymisation methods exist for the Bitcoin
network?

¢ Is it possible to deanonymise Ethereum clients using the
same methods?

III. ETHICAL IMPLICATIONS

In our research we will investigate the privacy of Ethereum
users and attempt to find a deanonymisation method that can
track Ethereum addresses or link them to IP addresses. Our
main focus is a theoretical investigation of existing methods
made for the Bitcoin network and if they can be applied to
the Ethereum network. We will not put these methods into
practice and therefore do not compromise the privacy of any
Ethereum or Bitcoin users.

IV. RELATED WORK

Biryukov et al. developed a method to deanonymise Bitcoin
clients by linking IP addresses to wallet addresses [7]. This
attack focuses on the Bitcoin P2P network and relies on
the principle that the first peer to broadcast a transaction is
likely the creator of that transaction. With sufficient resources
Biryukov et al. would manage to deanonymise clients with a
success rate ranging from 11% up to 60% in 2014. This attack
is relatively efficient compared an attack that connects to all
nodes in the P2P network, however it still requires a significant
number of connections and is therefore still rather resource
intensive. With the increased size of the Bitcoin network at
the time of writing, significant additional resources would
likely be needed to establish the necessary connections for
this deanonymisation method.

Conti et al. present a survey on security and privacy issues of
Bitcoin [8]. Most relevant for our research are the several pri-
vacy issues covered therein, which show that Bitcoin does not
provide anonymity but instead provides only pseudonymity.
Even if users create multiple Bitcoin addresses, the addresses
belonging to the same user can be found through blockchain
analysis, they state. A tool that analyses the Bitcoin blockchain
in such a way, Bitlodine, has been developed by Spagnuolo
et al. [9]. We further discuss Bitlodine in Section VII-B.
However, these methods of deanonymisation differ from the
previous approach as no link is made to IP addresses. Instead,
clients are tracked based on their Bitcoin addresses only.
Bitlodine uses the change characteristic of Bitcoin, where
excess currency in a transaction is returned to the sender as
change, to cluster addresses belonging to the same user.

Al Jawaheri presents a way to deanonymise Bitcoin users by
combining posts on social media with clustering methods for
Bitcoin addresses [10]. Their method works by first scraping
social media platforms for publicly posted Bitcoin addresses,
posted for instance with the intent to receive donations. The
gathered addresses are then used to find a cluster of addresses
belonging to that same user through applying one of the

heuristics also used by Spagnuolo et al. With this set of
addresses, Al Jawaheri is able to link the user’s social media
account to transactions that were thought to be anonymous,
even if anonymisation tools such as Tor were used for the
transaction [10]. This method relies on a user posting at least
one of their Bitcoin addresses publicly on social media and
the information of their social media profile being accurate to
effectively deanonymise them.

Atzei et al. present a survey of the vulnerabilities that
exist in Ethereum’s smart contracts [11]. Their paper de-
scribes several attacks that are aimed at illegitimately obtaining
Ethereum’s currency, Ether. Among the described attacks is
the well known attack on the Distributed Autonomous Organ-
isation (DAO) which implements a crowd funding platform for
the development of Ethereum. This sparked a hard-fork of the
Ethereum blockchain in the summer of 2016 [11]. None of the
attacks on smart contracts described in this paper are aimed
at invading the user’s privacy, which makes the investigation
of such attacks a relevant field of study.

V. BITCOIN ARCHITECTURE

Like most blockchain based platforms, Bitcoin consists
of two key elements, a peer-to-peer (P2P) network and a
blockchain. The P2P network is unstructured and anyone can
join using a persistent TCP connection [12]. Joined nodes can
add new transactions to this public ledger that is run by the
nodes in the network called miners. This means there is no
need for a central authority in the network, making it fully
decentralised [13]. Each element will be discussed in turn
below.

A. P2P Network

Through the P2P network of Bitcoin, both new transactions
that are being broadcast, and the blockchain consisting of all
old transactions are transferred between nodes [14]. A more
detailed explanation of the blockchain of Bitcoin can be found
in Section V-B.

Each node aims to maintain exactly eight so called entry
nodes, see Figure 1. The entry nodes are the eight server
nodes (i.e. nodes that accept incoming connections) to which
a Bitcoin client establishes an outbound connection. Server
nodes themselves also maintain those eight outgoing connec-
tions, i.e. entry nodes. Through these entry nodes the client
communicates to the rest of the network. Each node maintains
the connection to its entry nodes until they go down, at which
point a new entry node is found. Nodes listen by default on
port 8333 for inbound connections, but do not necessarily have
incoming connections. If a node connects to the network for
the first time, it will connect to one of the hard-coded seed
servers [15]. DNS queries are done to those seed servers to
update the client’s address database with new nodes. For every
address that is added to the database, a timestamp is stored as
well to ensure its freshness.

After an initial set of peers is discovered through the seed
servers, a node can discover additional peers by sending a
getaddr message to one of its current peers. That peer will

P2P Network

Fig. 1. Entry nodes (blue & dashed line) of a certain client (red) in the Bitcoin
P2P network (interconnections not depicted), arrows indicate an outgoing
connection from the red client node

then return a list with 23% of its known peers’ addresses
(selected at random) to the requesting node, with a maximum
of 1000 addresses. This list can include any address that the
peer knows of, including those that it has no connection to
[12] [16].

Transactions propagate through the network from one peer
to another in several steps. First the sending peer sends an
inv message to its peers to inform them about one or multiple
new transaction(s). This message contains a hash of the new
transaction(s) [12]. A node that receives the inv message, re-
quests the actual data by sending back a getdata message. The
sending peer then responds with the corresponding transaction
data. The receiver does several checks on the received data and
if those pass, the trickling process is started.

Within the transaction propagation, trickling is used as a
method to make it harder for adversaries to analyse the traffic
and determine which transaction is originating from a certain
node. Trickling does this by queuing the ¢nv messages before
sending them out [12]. A sending node randomly selects
another neighbour from its peer list every 100ms and flushes
all outgoing message that are in that neighbour’s queue.

Peers remember transactions that have been sent over a
connection and will not resent them over the same connection.
Such remembered transactions are forgotten eventually if
they do not make it into the blockchain [7]. Each node is
itself responsible for having its transactions included in the
blockchain, so re-sending or re-broadcasting can be necessary
when a transaction is still not included in a block after a certain
time period [12].

B. Blockchain

Conti et al. describe the Bitcoin blockchain as a “public
append-only link-list based data structure which stores the

Block N —> Block Header
N /
Block Header version
Transaction Counter
Transaction List prev_block
- J merkle_root
Block N+1 timestamp
Block Header bits
Transaction Counter
.) nonce
Transaction List \ /

(N J

Fig. 2. Overview of the Bitcoin blockchain and the data included in each
block

entire network’s transaction history in terms of blocks” [8].
Everyone can get a copy of the whole blockhain and see the
information that is stored in it. Bitcoin blocks, see Figure 2,
consist of a header, transaction counter and transaction list
[17] [18] [16].

The prev_block field inside the header is a 32 byte hash
of the previous block’s header. This hash is calculated by
hashing the previous block header twice with the SHA-256
hashing function [19], which creates the link between blocks.
The merkle_root field ensures the integrity of the transactions
of the block that it is included in, since it contains a hash based
data structure of all transactions in the block.

It could happen that two blocks are mined close to si-
multaneously. This causes a fork to occur in the blockchain
when two or more distinct blocks with the same parent are
mined simultaneously. Forks are resolved automatically when
ultimately one of the two forks becomes the longer chain and
all nodes in the network adopt that chain [20].

The transactions within a block consist of an input and
output value [12]. When a user issues a transaction within
the Bitcoin network, the output amount of that transaction
has to be identical to the input amount. In the case that user
A has an input of 3 Bitcoins and wants to transfer only 2
Bitcoins to user B, it means 1 Bitcoin is unused. For this,
Bitcoin automatically creates a shadow address that is used
to collect the 1 Bitcoin ‘change’ [9]. Furthermore, the output
of a transaction is marked as an UTXO (unspent transaction
output) [12]. Each UTXO can only be used once as input for a
new transaction. After using an UTXO, it is marked as STXO
(spent transaction output).

C. Consensus Model

Bitcoin relies on a Proof of Work (PoW) consensus model.
Any node can connect to the network and start issuing
transactions. Those transactions get validated by miners, which
bundle a set of valid transactions of their choice and generate a
proof of work (PoW) for it [8]. The proof of work consists of
a computationally hard puzzle, the difficulty of which depends
on the total computational capacity of the network. This PoW
is necessary to prevent a so called Sybil attack, where a

single party creates a multitude of fake identities in order to
manipulate the consensus in the network by creating a false
majority [21]. Without PoW, fake identities could write their
own blocks which will subsequently be seen as the genuine
blocks because the fake identities could have a majority in the
network. By requiring a PoW, it becomes difficult to create
a fake majority, as significant computational power (more
than the entire genuine network) is required. With this model,
decisions are thus made not by the majority of nodes, but by
the majority of computational power [12].

VI. ETHEREUM ARCHITECTURE

Just like Bitcoin, Ethereum is a decentralised, blockchain
based platform in which users can send and receive the
associated currency — Ether in Ethereum’s case.

It relies on many of the same principles that Bitcoin does
— such as the PoW based consensus model, but its exact
workings often differ and are only sparsely documented. An
investigation of the Ethereum clients’ source code is often
necessary to fully understand how Ethereum works. There are
also some more obvious key differences between the two.
Ethereum’s blockchain differs from the one used in Bitcoin
as it stores a state, and account balances are stored directly
instead of being based on unspent transaction outputs. The
P2P network also has significant differences in the way nodes
connect to the network and find additional peers. The most
notable difference however, is that Ethereum not only allows
users to trade Ether but it also provides a blockchain powered
application platform that can run so called smart contracts [2]

[3].

A. Smart Contracts

A smart contract is essentially an Ethereum client with the
same permissions and options. However, it is not controlled
by a person, but by an arbitrary piece of code written for
the Turing complete Ethereum Virtual Machine (EVM). What
we call a Smart Contract then is the combination of the
Ethereum account and the code running on that account. Each
contract can be identified by its Ethereum address in the
same way a normal Ethereum user can. Smart contracts are
typically not directly written in EVM assembly code, but in the
(Ethereum specific) higher level programming language called
Solidity [11]. Unlike conventional programs, smart contracts
live publicly on Ethereum’s blockchain. Any user can create
a smart contract, and once it is written and deployed it
cannot be altered by anyone, not even by its creator. After
deployment, any client can call the contract’s functions by
sending transactions to it. When a transaction is sent, the
corresponding functions from the smart contract are executed
by miners and any state-changes are added to the blockchain
[11].

Miners are paid for their services with gas. Each EVM in-
struction they execute has an associated gas cost. The inclusion
of a gas cost is to prevent DoS attacks on miners through
smart contracts that never terminate [11]. The client calling
a contract can define the maximum gas that the operation

is allowed to consume and the price (in Ether) that they are
willing to pay per unit of gas [22].

Smart contracts are a valuable feature of Ethereum. It allows
its users to automate many of processes and since contracts
are public and immutable once they are deployed, clients using
the contract can verify that the contract does what they expect
it to.

B. Blockchain

Ethereum blocks, see Figure 3, consist of a block header,
a trie data structure containing transactions included in the
current block and a list of block headers for the siblings of
the block’s parent known as ommers (i.e. blockchain forks
that occurred due to simultaneously mined blocks, one block
prior to the current block). The header contains hashes of
transaction trie root and the sibling list to prevent tampering
after the block has been added to the blockchain. The Proof-of-
Work hash for an Ethereum block is computed over the entire
header excluding the mixHash and nonce values, which
are generated during the PoOW computation and added to the
header afterwards [23] [3]. It is also noteworthy that, unlike
Bitcoin, Ethereum blocks include the state after application of
the current block [2].

Ethereum’s blocks are thus largely similar to Bitcoin blocks
but do include a number of additional values like the previ-
ously mentioned list of ommers and transaction receipts which
contain the transaction outcomes [3]. Additionally, as opposed
to Bitcoin, Ethereum stores more data directly, like account
balances and the global state, whereas in the Bitcoin network
these things need to be computed. A more detailed description
of all values included in Ethereum blocks can be found in the
paper by Wood [3].

C. P2P Network

Ethereum’s P2P network uses a protocol based on the
Kademlia P2P Distributed Hash Table (DHT) [24] but with
some significant changes. All DHT functionality is removed,
as it is not needed for Ethereum’s implementation [25].
Instead, there are six hard-coded bootstrap nodes, called
bootnodes, and clients exchange messages to find more peers
using a slightly modified version of Kademlia’s peer discovery
protocol. Unlike in the Bitcoin P2P network, Ethereum’s P2P
protocol uses nodel Ds to identify nodes. A nodel D is simply
a node’s public key and is also used to encrypt traffic between
nodes. nodel Ds are used in combination with the IP address
belonging to that node, which means a link between the
two is easily established [24]. To find the exact workings
of Ethereum’s P2P network, we had to analyse the Ethereum
source code as published on GitHub.

Each node keeps track of peers, as per the Kademlia
protocol, in rows, where each row ¢ contains peers whose
nodel D has the same first 7 bits as the node itself [25]. For
each row the node aims to maintain exactly and stores at most
k peers in that row. The value for k can be chosen to determine
the level of redundancy in the network [26].

Block N —> Block Header

-~

~

Block Header parentHash
Transaction trie ommersHash
Ommers List beneficiary
stateRoot
Block N+1 transactionsRoot
Ve ~ receiptsRoot
Block Header logsBloom
Transaction trie difficulty
Ommers List number
_ J gasLimit
Block N+2 gasUsed
Ve ™ timestamp
Block Header extraData
Transaction trie mixHash
Ommers List nonce
N Y %
Fig. 3. Overview of the Ethereum blockchain and the data included in each
block

A client discovers more peers using a findnode query with
its own nodel D as parameter to some of its existing peers
[27] [28] [25] [29]. The recipient node of this query will then
use the received nodelD to select to which of its peers it
will forward the querying node [30] [31] [32]. This is decided
by performing an XOR on the SHA3 hashes of the sender’s
nodel D and each of the nodel Ds of the known peers for this
node. The resulting values are sorted and from the addresses
of the peers corresponding to the topmost results, known as the
closest peers, 16 are forwarded to the querying node [29]. The
querying node then recursively queries the newly discovered
peers to find more peers until no new peers are discovered that
are closer to the provided nodel D [26] [24].

To find more peers in this way, a node first needs some
entry point into the network to send a findnode query to.
For this purpose, currently a total of six hard-coded bootstrap
nodes [33], or bootnodes, exist to which a peer can send an

add_me message to receive a list of peers that are inside the
network [33] [26].

VII. EXISTING ATTACKS

Various attacks have been researched for the Bitcoin net-
work, part of which are aimed at attacking Bitcoin users’
privacy by for instance tracking all transactions by a certain
user, revealing a user’s IPs or mapping which Bitcoin wallets
belong to the same person. This Section focuses on two attacks
on Bitcoin users’ privacy, the first attack aims to link IP
addresses to Bitcoin addresses and the second attack tries to
cluster different Bitcoin addresses belonging to the same user.

A. Discovering IP Addresses

As mentioned before, Biryukov et al. developed an effective
but invasive and resource intensive deanonymisation method
for the Bitcoin P2P network. This attack works by identifying
as many entry nodes as possible of a client or IP address we
are interested in.

Entry nodes are identified by connecting adversary con-
trolled nodes to nearly every Bitcoin server node. These nodes
then listen for client IP addresses that are advertised in the
network and log the set of server nodes which advertised that
address. This set then includes (a subset of) the entry nodes
of that specific client but can include some false entries as
well. To filter out these false entries Biryukov et al. exploit
the fact that Bitcoin clients will not forward an address over
a connection if that connection was recently used to forward
that same address [7]. Once a subset of the entry nodes is
known, the adversary establishes multiple connections to a
large amount of the server nodes in the network and listens
for transactions that are being broadcast. If a transaction is first
broadcast from exactly those nodes that form an entry-node
subset, we know that the creator of that transaction is likely
the node belonging to those entry nodes.

It is important to note that this attack relies on the fact that
entry nodes remain largely constant for a given client. If entry-
nodes are not constant, at least to some extent, this attack will
no longer be able to effectively deanonymise.

Furthermore, this attack will require significant resources
to execute, as a large amount of connections need to be made
to nearly all the server nodes in the network. At the time of
writing (May 2014) Biryukov et al. applied a proof of concept
of this attack on the testnet of Bitcoin which consisted of an
average of 240 Bitcoin server nodes. They were able to cor-
rectly link 59.9% transactions to the corresponding IP address
by adding 50 connections to all server nodes, which results
in using 40% of the total connection capacity of those server
nodes. This results in a total of 12000 connections within the
test network, making this attack on Bitcoin unfeasible or even
impossible for the average individual. A large corporation or
government agency would be more capable of amassing the
required resources and executing such an attack. However,
with the increase in size of the Bitcoin network since 2014,
which at the time of writing consists of just under 120000
nodes [34] [35], it is possible that by now this type of attack
is out of reach for even such parties.

B. Clustering Bitcoin Addresses

Another method for deanonymisation is finding out which
Bitcoin addresses belong to the same user. Spagnuolo et al.
present a framework that is able to find such a clustering of
addresses called Bitlodine [9].

Bitlodine consists of several modules, of which the three
most interesting modules are the scraper, the block parser
and the clusteriser. The scraper is used to crawl the web for
Bitcoin addresses that users have posted publicly, similar to the
techniques described by Al Jawaheri. The block parser stores

all Bitcoin blocks into a database and the clusteriser groups
addresses using two heuristics.

The first heuristic exploits so called multi-input transactions.
A multi-input transaction occurs when a user, A, wants to
transfer a certain amount of Bitcoins to another user, B,
but does not have a single UTXO with enough coins for
the transaction. A will then have to use multiple inputs to
aggregate the amount A wants to transfer. When a transaction
includes multiple input addresses, Spagnuolo et al. assume that
those input addresses belong to the same wallet and, in turn,
the same user.

The second heuristic uses the concept of change that the
Bitcoin network has. As explained in Section V-B, most
transactions include change being sent back to the user that the
transaction originates from. This fact can be used to identify
additional addresses belonging to that user, Spagnuolo et al.
use this in Bitlodine. They analyse the transactions that contain
only two output addresses. If one of the two output addresses
never appeared in the blockchain before, it is likely that this
address is the newly generated shadow address of the sending
user [9].

An adversary with average computational power would be
able to apply both the heuristics described previously, and
thus make deanonymisation in this way feasible. However,
more computational power will result in faster processing of
transactions. At the time of writing, the total size of the Bitcoin
blockchain is just over 155GB [36]. A government agency
or large company potentially has access to much larger the
computational power, and could therefore speed up processing
of all this data significantly.

VIII. FEASIBILITY OF EXISTING ATTACKS FOR ETHEREUM

When applying the first attack described by Biryukov et
al. to Ethereum’s P2P network, we encounter some issues.
Ethereum clients do not have certain static entry nodes and the
connections to their peers are more volatile — if a closer peer
is found it will connect to that peer and possibly disconnect
from a previous peer. Additionally, Ethereum clients may
connect to many more than eight peers. The exact number is
defined by each client and is not a global setting. Monitoring
all nodes that a certain client is connected to by finding a
super-set of entry nodes and then narrowing this set down,
therefore becomes troublesome. This attack is therefore not
feasible for Ethereum in its current form. If a different method
for identifying those nodes is adopted, this strategy of identify-
ing the nodes to which a client is connected and then using that
to deanonymise that client, can be feasible for Ethereum. An
adversary could attempt identifying or taking control over the
nodes to which a client is connected by exploiting Ethereum
clients’ nature to connect to nodes whose public key hashes
close to their own.

Another issue with the attack described by Biryukov et al. is
the scale of the Ethereum network, which at the time of writing
consists of over 24000 nodes [37]. An adversary that wishes
to deanonymise Ethereum users by finding an IP address
when given an Ethereum address, will need to monitor the

entire network by connecting to practically every node. Due
to the size of the network, this approach requires significant
resources. However, if an adversary does have access to the
necessary resources, this attack will be effective. An adversary
whose goal is to identify a wallet address when given a certain
IP address will require less resources to do so. In this case,
the adversary can find the node with the given IP address in
the P2P network and attempt to monitor all its connections.
This approach is less impacted by the scale of the network and
depends only on the number of peers that the certain node is
connected to. This number is also likely to increase with the
network size, as a larger network leads to each node being able
to fill up more of its rows with peers. However, the increase
in connected peers will be much lower than the total increase
in network size.

When we look at the second attack on users’ privacy
described by Spagnuolo et al. and attempt to apply its clus-
tering methods to the Ethereum blockchain, issues arise as
well. As described previously, Ethereum does not work with
UTXOs but instead stores a state that keeps track of which
funds belong to what address. For this reason, multi-input
transactions do not exist in the same form as they do in the
Bitcoin network. This means that clustering addresses based
on multi-input transactions is not possible for Ethereum.

Due to the lack of UTXOs, Ethereum also does not need the
concept of change that Bitcoin does. A user can simply transfer
exactly the desired amount of funds to another user without
having to ‘use up’ an entire UTXO. Clustering addresses based
on guessing shadow addresses through the change feature
therefore also becomes impossible, meaning that both clus-
tering techniques are not applicable to the Ethereum network.

However, the scraping functionality in Bitlodine can be
successfully applied to Ethereum, as Ethereum users might
also post their addresses online publicly.

I1X. DISCUSSION

Both the discussed Bitcoin deanonymisation attacks are
difficult to apply to the Ethereum network. In the case of
the attack by Biryukov et al. the specifics of the Bitcoin
P2P network that the attack relies on do not exist in the
Ethereum network. Ethereum’s network however, does have
other features that can potentially be exploited by an attacker,
such as the peer selection protocol which chooses peers based
on their public key’s hash closeness.

The clustering methods described by Spagnuolo et al. are
also difficult to apply, as they rely on Bitcoin’s UTXO based
system which does not exist in Ethereum. Clustering addresses
in Ethereum is also less necessary, as users have no reason
to create additional addresses due to the lack of a change
concept in Ethereum. If a user does create multiple Ethereum
addresses, clustering or tracking those will require similar
techniques to those that are used when finding relations
between regular bank accounts, which are out of scope for
this paper.

Other possibilities for attacks on users’ privacy exist but are
not covered in this paper, such as attacking the peer selection

protocol, the bootnodes or the wallet software. We briefly
discuss the possibilities for such attacks in Section XI.

X. CONCLUSIONS

Due to the differences between the Bitcoin and Ethereum
networks, deanonymisation of Ethereum clients turned out to
be unfeasible using existing methods designed for the Bitcoin
network. Both of the investigated methods rely on specific
features in the Bitcoin network. The IP discovery attack relies
on the static entry nodes that exist in Bitcoin’s P2P network
and the clustering attack uses the UTXO based transactions to
cluster addresses, both of which do not exist in the same way
in Ethereum.

However, Ethereum does have other potentially exploitable
features such as the hard-coded bootnodes and the peer selec-
tion protocol. Furthermore, Ethereum does not facilitate the
creation of shadow addresses that exist in Bitcoin, potentially
making users traceable without clustering metrics, as in most
cases they only use a single address.

XI. FUTURE WORK

An attack which builds on the same principle of monitoring
the nodes to which a certain client is connected, might
be possible by creating a shadow P2P network and taking
control of Ethereum’s bootnodes. An adversary with sufficient
resources could create a shadow P2P network which connects
to the real network but does not reveal any legitimate nodes to
its peers. If the adversary also gains control over all bootnodes
and modifies them to point newly joining nodes only to
the adversary’s nodes, a situation arises where the adversary
controls all peers of a newly joined node. This enables her
to find which Ethereum address belongs to that node when
it broadcasts a transaction. Since IP addresses of nodes are
known, it allows the adversary to link this IP address to the
Ethereum address used for the transaction. This kind of attack
would not be feasible for an average person, but a government
agency could forcibly take control over bootnodes to mount
this kind of attack. We have not implemented or verified the
effectiveness of such an attack and leave it as a possibility for
future work.

Another method to achieve control over all of a node’s
peers and deanonymise the user running that node could be to
abuse the peer selection protocol. An Ethereum node selects
its peers based on their closeness to the node itself, which
is determined by doing an XOR of the SHA3 hash of both
nodes’ public keys. This trait can be exploited by attempting
to create nodes with public keys that hash close to a certain
target node. Generating and hashing public keys is not an
exceptionally expensive operation, making this attack feasible
when dealing with a sparse network. One method to prevent
such an attack is to assign the public keys instead of letting
users generate them themselves. This method has also been
applied to DHTSs using smartcards to distribute the key material
Druschel and Rowstron [38]. This would have the negative
effect of introducing a centralised element into a system that
aims to be fully decentralised and is therefore unlikely to

see adoption by Ethereum. Additionally, even if an adversary
manages to generate multiple public keys that hash close to the
target node, they have no way to know for certain what other
nodes the target node might be connected to, thus reducing
the success rate of this kind of attack.

Another approach could be not to gain control over, but
only to identify the nodes that a certain client is connected
to. When such nodes are identified, listening for transaction
broadcasts in the same way that Biryukov et al. do may
allow deanonymisation of clients. The adversary could attempt
this by hashing the public keys of all nodes it can find
and determining which nodes the client they are interested
in is likely to connect to. However, this approach gives no
assurance that those nodes are the right nodes. This paper
has not explored the possibilities for such an attack but we
think it warrants further investigation and as such leave it as
a suggestion for future work.

Another possibility for deanonymisation in the Ethereum
network exists through an attack on wallet software that clients
use. If intelligence agencies find a vulnerability in existing
wallet software or create their own and manage to achieve
widespread adoption, tracking users based on IP or Bitcoin
address becomes viable without having to expend significant
resources. Such investigations are out of scope for this paper,
so again leave this as a suggestion for future work.

REFERENCES

[1] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system. 2008. URL: https://bitcoin.org/bitcoin.pdf.

[2] Vitalik Buterin et al. Ethereum white paper. 2013. URL:
https://github.com/ethereum/wiki/wiki/White-Paper.

[3] Gavin Wood. “Ethereum: A secure decentralised gener-
alised transaction ledger”. In: Ethereum Project Yellow
Paper 151 (2014). URL: https://ethereum . github.io/
yellowpaper/paper.pdf.

[4] Malte Moser, Rainer Bohme, and Dominic Breuker.
“An inquiry into money laundering tools in the Bitcoin
ecosystem”. In: eCrime Researchers Summit (eCRS),
2013. 1IEEE. 2013, pp. 1-14.

[5] Nicolas Christin. “Traveling the Silk Road: A mea-
surement analysis of a large anonymous online market-
place”. In: Proceedings of the 22nd international con-
ference on World Wide Web. ACM. 2013, pp. 213-224.

[6] CoinMarketCap. Cryptocurrency Market Capitaliza-
tions. URL: https ://coinmarketcap . com/ (visited on
01/11/2018).

[71 Alex Biryukov, Dmitry Khovratovich, and Ivan Pus-
togarov. “Deanonymisation of clients in Bitcoin P2P
network”. In: Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security.
ACM. 2014, pp. 15-29.

[8] Mauro Conti, Chhagan Lal, Sushmita Ruj, et al. “A
Survey on Security and Privacy Issues of Bitcoin”. In:
arXiv preprint arXiv:1706.00916 (2017).

https://bitcoin.org/bitcoin.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://coinmarketcap.com/

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

Michele Spagnuolo, Federico Maggi, and Stefano
Zanero. “Bitiodine: Extracting intelligence from the bit-
coin network™. In: International Conference on Finan-
cial Cryptography and Data Security. Springer. 2014,
pp- 457-468.

Husam Basil Al Jawaheri. “Deanonymizing tor hidden
service users through bitcoin transactions analysis”. MA
thesis. 2017. DOI: http://hdl.handle.net/10576/5797.
Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli.
“A Survey of Attacks on Ethereum Smart Contracts
(SoK)”. In: International Conference on Principles of
Security and Trust. Springer. 2017, pp. 164—186.
Florian Tschorsch and Bjorn Scheuermann. “Bitcoin
and beyond: A technical survey on decentralized dig-
ital currencies”. In: IEEE Communications Surveys &
Tutorials 18.3 (2016), pp. 2084-2123.

Sarah Meiklejohn et al. “A fistful of bitcoins: char-
acterizing payments among men with no names”. In:
Proceedings of the 2013 conference on Internet mea-
surement conference. ACM. 2013, pp. 127-140.

Joan Antoni Donet Donet, Cristina Pérez-Sola, and
Jordi Herrera-Joancomarti. “The bitcoin P2P network”.
In: International Conference on Financial Cryptogra-
phy and Data Security. Springer. 2014, pp. 87-102.
Bitcoin Core Team. Bifcoin Core - Source code.
2018. URL: https : // github . com / bitcoin / bitcoin /
blob / 595a7bab23bc21049526229054ealfff1a29cObf /
src/chainparams.cpp#L.128 (visited on 01/22/2018).
Bitcoin.org. Bitcoin Developer Reference. 2018. URL:
https://bitcoin.org/en/developer- reference (visited on
01/24/2018).

John Ratcliff. How to Parse the Bitcoin BlockChain.
2014. URL: http://codesuppository.blogspot.nl/2014/
01/how - to- parse - bitcoin - blockchain.html (visited on
01/24/2018).

Bitcoin Wiki. Protocol documentation. 2018. URL:
https : // en . bitcoin . it / wiki / Protocol_documentation
(visited on 01/24/2018).

Kiran Vaidya. Bitcoin’s implementation of Blockchain.
2016. URL: https://medium.com/all - things - ledger/
bitcoins-implementation- of - blockchain- 2be713f662c2
(visited on 01/24/2018).

Cuneyt Gurcan Akcora, Yulia R Gel, and Murat
Kantarcioglu. “Blockchain: A Graph Primer”. In: arXiv
preprint arXiv:1708.08749 (2017). URL: https://arxiv.
org/abs/1708.08749.

Arati Baliga. Understanding blockchain consensus mod-
els. Tech. rep. Persistent Systems Ltd, 2017.
Ethereum Community. go-ethereum transaction.go.
2017. URL: https://github.com/ethereum/go-ethereum/
blob / 6f69cdd109b1dd692b8dfb15e7¢53d2051fbc946 /
core/types/transaction.go (visited on 01/24/2018).
Ethereum Community. Ethash Wiki. 2017. URL: https:
// github.com/ethereum/wiki/wiki/Ethash (visited on
01/24/2018).

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

[33]

[34]
(35]

(36]

(37]

(38]

Petar Maymounkov and David Mazieres. “Kademlia:
A peer-to-peer information system based on the xor
metric”. In: International Workshop on Peer-to-Peer
Systems. Springer. 2002, pp. 53-65.

Ethereum Community. RLPx: Cryptographic Network
& Transport Protocol. 2015. URL: https://github.com/
ethereum / devp2p / blob / master / rlpx . md (visited on
01/24/2018).

Ethereum Community. Kademlia Peer Selection. 2015.
URL: https://github.com/ethereum/wiki/wiki/Kademlia-
Peer-Selection (visited on 01/24/2018).

Ethereum Community. go-ethereum udp.go. 2017. URL:
https : // github . com / ethereum / go - ethereum / blob /
1d06e41f04d75¢31334c455063e9ec7b4136bf23 / p2p /
discover/udp.go (visited on 01/24/2018).

Adem Efe Gencer et al. “Decentralization in Bit-
coin and Ethereum Networks”. In: arXiv preprint
arXiv:1801.03998 (2018). URL: https://arxiv.org/abs/
1801.03998.

Luke Anderson et al. “New kids on the block: an
analysis of modern blockchains”. In: arXiv preprint
arXiv:1606.06530 (2016). URL: https://arxiv.org/abs/
1606.06530.

Ethereum Community. go-ethereum hive.go. 2017. URL:
https : // github . com / ethereum / go - ethereum / blob /
32516¢768ec09e2a71cab5983d2c8b8ae5d92fc7/swarm/
network/hive.go (visited on 01/24/2018).

Ethereum Community. go-ethereum kademlia.go. 2017.
URL: https://github.com/ethereum/go- ethereum/blob/
32516c768ec09e2a71cab5983d2c8b8ae5d92fc7/swarm/
network/kademlia/kademlia.go (visited on 01/24/2018).
Ethereum Community. go-ethereum address.go. 2017.
URL: https :// github . com / ethereum / go - ethereum /
blob / 86f6568f6618945b19057553ec32690d723da982 /
swarm / network / kademlia / address . go (visited on
01/24/2018).

Ethereum Community. go-ethereum bootnodes.go.
2018. URL: https://github.com/ethereum/go-ethereum/
blob / ¢335821479db9930a98cbd48996f880c35a59797 /
params/bootnodes.go#L.21 (visited on 01/24/2018).
Addy Yeow. Global Bitcoin Node Distribution. 2017.
URL: https://bitnodes.earn.com/ (visited on 02/07/2018).
Blockchain.info. Bitcoin Charts & Graphs. 2018. URL:
https://blockchain.info/charts (visited on 02/01/2018).
Blockchain.info. Blockchain Size. 2018. URL: https :
//blockchain . info / nl/ charts / blocks - size (visited on
02/07/2018).

EtherNodes. EtherNodes - The Ethereum Node Ex-
plorer. 2017. URL: https://www.ethernodes.org/ (visited
on 02/07/2018).

Peter Druschel and Antony Rowstron. “PAST: A large-
scale, persistent peer-to-peer storage utility”. In: Hot
Topics in Operating Systems, 2001. Proceedings of the
Eighth Workshop on. IEEE. 2001, pp. 75-80.

https://doi.org/http://hdl.handle.net/10576/5797
https://github.com/bitcoin/bitcoin/blob/595a7bab23bc21049526229054ea1fff1a29c0bf/src/chainparams.cpp#L128
https://github.com/bitcoin/bitcoin/blob/595a7bab23bc21049526229054ea1fff1a29c0bf/src/chainparams.cpp#L128
https://github.com/bitcoin/bitcoin/blob/595a7bab23bc21049526229054ea1fff1a29c0bf/src/chainparams.cpp#L128
https://bitcoin.org/en/developer-reference
http://codesuppository.blogspot.nl/2014/01/how-to-parse-bitcoin-blockchain.html
http://codesuppository.blogspot.nl/2014/01/how-to-parse-bitcoin-blockchain.html
https://en.bitcoin.it/wiki/Protocol_documentation
https://medium.com/all-things-ledger/bitcoins-implementation-of-blockchain-2be713f662c2
https://medium.com/all-things-ledger/bitcoins-implementation-of-blockchain-2be713f662c2
https://arxiv.org/abs/1708.08749
https://arxiv.org/abs/1708.08749
https://github.com/ethereum/go-ethereum/blob/6f69cdd109b1dd692b8dfb15e7c53d2051fbc946/core/types/transaction.go
https://github.com/ethereum/go-ethereum/blob/6f69cdd109b1dd692b8dfb15e7c53d2051fbc946/core/types/transaction.go
https://github.com/ethereum/go-ethereum/blob/6f69cdd109b1dd692b8dfb15e7c53d2051fbc946/core/types/transaction.go
https://github.com/ethereum/wiki/wiki/Ethash
https://github.com/ethereum/wiki/wiki/Ethash
https://github.com/ethereum/devp2p/blob/master/rlpx.md
https://github.com/ethereum/devp2p/blob/master/rlpx.md
https://github.com/ethereum/wiki/wiki/Kademlia-Peer-Selection
https://github.com/ethereum/wiki/wiki/Kademlia-Peer-Selection
https://github.com/ethereum/go-ethereum/blob/1d06e41f04d75c31334c455063e9ec7b4136bf23/p2p/discover/udp.go
https://github.com/ethereum/go-ethereum/blob/1d06e41f04d75c31334c455063e9ec7b4136bf23/p2p/discover/udp.go
https://github.com/ethereum/go-ethereum/blob/1d06e41f04d75c31334c455063e9ec7b4136bf23/p2p/discover/udp.go
https://arxiv.org/abs/1801.03998
https://arxiv.org/abs/1801.03998
https://arxiv.org/abs/1606.06530
https://arxiv.org/abs/1606.06530
https://github.com/ethereum/go-ethereum/blob/32516c768ec09e2a71cab5983d2c8b8ae5d92fc7/swarm/network/hive.go
https://github.com/ethereum/go-ethereum/blob/32516c768ec09e2a71cab5983d2c8b8ae5d92fc7/swarm/network/hive.go
https://github.com/ethereum/go-ethereum/blob/32516c768ec09e2a71cab5983d2c8b8ae5d92fc7/swarm/network/hive.go
https://github.com/ethereum/go-ethereum/blob/32516c768ec09e2a71cab5983d2c8b8ae5d92fc7/swarm/network/kademlia/kademlia.go
https://github.com/ethereum/go-ethereum/blob/32516c768ec09e2a71cab5983d2c8b8ae5d92fc7/swarm/network/kademlia/kademlia.go
https://github.com/ethereum/go-ethereum/blob/32516c768ec09e2a71cab5983d2c8b8ae5d92fc7/swarm/network/kademlia/kademlia.go
https://github.com/ethereum/go-ethereum/blob/86f6568f6618945b19057553ec32690d723da982/swarm/network/kademlia/address.go
https://github.com/ethereum/go-ethereum/blob/86f6568f6618945b19057553ec32690d723da982/swarm/network/kademlia/address.go
https://github.com/ethereum/go-ethereum/blob/86f6568f6618945b19057553ec32690d723da982/swarm/network/kademlia/address.go
https://github.com/ethereum/go-ethereum/blob/c335821479db9930a98cbd48996f880c35a59797/params/bootnodes.go#L21
https://github.com/ethereum/go-ethereum/blob/c335821479db9930a98cbd48996f880c35a59797/params/bootnodes.go#L21
https://github.com/ethereum/go-ethereum/blob/c335821479db9930a98cbd48996f880c35a59797/params/bootnodes.go#L21
https://bitnodes.earn.com/
https://blockchain.info/charts
https://blockchain.info/nl/charts/blocks-size
https://blockchain.info/nl/charts/blocks-size
https://www.ethernodes.org/

	Introduction
	Research questions
	Ethical implications
	Related work
	Bitcoin architecture
	P2P Network
	Blockchain
	Consensus Model

	Ethereum architecture
	Smart Contracts
	Blockchain
	P2P Network

	Existing attacks
	Discovering IP Addresses
	Clustering Bitcoin Addresses

	Feasibility of existing attacks for Ethereum
	Discussion
	Conclusions
	Future work

