System & Network Engineering - University of Amsterdam

Research Project 1

Breaking CAPTCHAs on the Dark Web

11 February, 2018

Authors Supervisor
K. Csuka Y. de Bruijn
kevin.csuka@os3.nl yonne.debruijn@fox-it.com

D. Gaastra
dirk.gaastra@os3.nl

Cees de Laat

Abstract

On the Dark Web, several websites inhibit automated scraping
attempts by employing CAPTCHAs. Scraping important content
from a website is possible if these CAPTCHASs are solved by a web
scraper. For this purpose, a Machine Learning tool is used, Ten-
sorFlow and an Optical Character Recognition tool, Tesseract to
solve simple CAPTCHAs. Two sets of CATPCHASs, which are also
used on some Dark Web websites, were generated for testing pur-
poses. Tesseract achieved a success rate of 27.6% and 13.7% for set
1 and 2, respectively. A total of three models were created for Ten-
sorFlow. One model per set of CAPTCHAs and one model with
the two sets mixed together. TensorFlow achieved a success rate
of 94.6%, 99.7%, and 70.1% for the first, second, and mixed set,
respectively. The initial investment to train TensorFlow can take
up to two days to train for a single type of CAPTCHA, depend-
ing on implementation efficiency and hardware. The CAPTCHA
images, including the answers, are also a requirement for training
TensorFlow. Whereas Tesseract can be used on-demand without
need for prior training.

1 Introduction

The dark web contains, among other things, information about illegal activity,
which is of interest to various organizations from an intelligence perspective [1].
The intelligence can be used to monitor activity related to specific high profile
organizations, or specific threat actors. Since there are a lot of different types of
websites, with sometimes unique subscriber requirements it is hard to scrape these
websites. In some cases, an existing member has to vouch for a new member, users
have to post at least once a month a message on the website, or one has to pay in
Bitcoin to get access, etc.. The goal of this research is to come up with a theoretical
framework and provide a Proof of Concept for scraping potentially interesting dark
web websites that inhibit scraping through the use of CAPTCHAs.

The Turing Test scenario is based on an interrogator chatting remotely with a
machine and a human. The interrogator asks several questions, to both human and
machine, and inspects their answers. If the interrogator can accurately differentiate
between human and machine by virtue of the humans answers being more accurate,
then the investigated system is not intelligent, and vice versa [2].

CAPTCHA is an abbreviation which stands for ’'Completely Automated Public
Turing test to tell Computers and Humans Apart’. As the acronym suggests, it is
a test to determine whether the user is human or not.

The main purpose of CAPTCHASs is to distinguish between humans and ma-
chines in security applications, such as preventing automatic comments and reg-
istration on different websites, protecting email addresses from web scraping or
protecting online polls from being skewed by certain views [3].

There are three common approaches to defeat CAPTCHAs:

1. Using a service which solves CAPTCHAs through human labor

2. Exploiting bugs in the implementation that allow the attacker to bypass the
CAPTCHA

3. Character recognition software to solve the CAPTCHA

In this research we focus on the third item, using software to solve a CAPTCHA.

1.1 Research questions
Based on this information, the research question is defined as:

e How would a scraper be able to circumvent CAPTCHASs that pre-
vent it from properly scraping dark web websites?

In order to answer the main research question, the following sub-questions are
defined:

e What will be the potential impact of breaking CAPTCHASs on the dark web?

e How can standard Optical Character Recognition (OCR) software aid a
scraper in circumventing CAPTCHASs?

e How can Machine Learning and Neural Networks aid a scraper in circum-
venting CAPTCHASs?

2 Related work

While CAPTCHAs have been developed based on pure text, images, audio and
video, text CAPTCHAs are almost exclusively used in real applications, such as
dark web websites. In a text CAPTCHA, characters are deliberately distorted
and connected to prevent recognition. Security of an existing text CAPTCHA is
enhanced systematically by adding noise and distortion, and arranging characters
more tightly [4].

Lawrence et al. created their own dark web scraping tool, named D-miner [5].
They describe it is important to maintain anonymity while browsing marketplaces
as it is possible for operators to detect browser settings unique to individuals in
order to fingerprint users. The Tor Browser is a standard web browser maintained
by the Tor Foundation for the purpose of browsing onion websites available over
the Tor network. The Tor Browser attempts to mitigate fingerprinting by setting
a static resolution of the browser and adjusting multiple settings upon starting.
Similarly, D-miner uses Selenium to programmatically adjust its fingerprint to ap-
pear as a normal Firefox browser. D-miner then authenticates to the dark web
site and hands the session to the Requests library thus utilizing the headers and
authentication data from Selenium. Therefore, even after scraping is handed off
from Selenium to Requests, D-miner has the same fingerprint as Firefox.

D-miner has no functionality included to bypass CAPTCHAs. It solves this by
human labor. According to the authors: ”Programmatic approaches to captcha-
solving are out of the scope of this research and an open research problem as many
current implementations are largely ineffective and slow, increasing the chance of
detection, the load on the DNM, and the length of time needed to scrape.” [5]
DNM refers to DarkNet Marketplace.

Ryan Mitchell demonstrates that Python is a fantastic language for image pro-
cessing by using the library Tesseract. But in order to process images correctly,
they have to be cleaned first. Cleaning can be done using the library Pillow [6].
The method described to break the CAPTCHA is Optical Character Recognition
(OCR). OCR is the recognition of printed or written characters by a computer.
It enables one to convert different types of documents, such as scanned paper
documents, PDF files or images captured by a digital camera into editable and
searchable data. Tesseract is an open-source OCR engine for various operating
systems.

As Osadchy et al. researched, CAPTCHAs are most likely to be broken by
machine learning. Recent advances in Deep Learning (DL) allow for solving com-
plex problems that used to be considered very hard. While this progress has ad-
vanced many fields, it is considered to be bad news for CAPTCHAs, the security
of which rests on the hardness of some learning problems. The paper introduced
a new method even Al cannot solve, named DeepCAPTCHA, a new and secure
CAPTCHA scheme based on adversarial examples, an inherit limitation of the cur-
rent DL networks. They implemented a proof of concept system, and its analysis
shows that the scheme offers high security and good usability compared with the
best previously existing CAPTCHA [7].

Some naive pattern recognition algorithms are introduced by J. Yan and A.
Ahmad [8]. They focused on four visual schemes, used by captchaservice.org. The
first is called word_image, which is a distorted image of a six-letter word. Secondly,
they attacked random_letter_images, which consists of a distorted image of six
random letters. The user_string_image is where the challenge is a distorted image
of a user-supplied string with at most 15 characters. Lastly, they managed to
attack number_puzzle_text_images, which is a multi-model scheme that includes
distorted images along with an instruction for the user to solve a puzzle. All of
these schemes were successfully broken by exploiting design flaws in them. Their
success rate neared 100%.

To break CAPTCHASs, one can use Deep Learning. Arun Patala shows the ease
of the tool Torch, which is a Deep Learning framework [9]. A success rate of 92%
is achieved breaking simple CAPTCHAs.

3 Methods

The first part of our research consists of categorizing dark web websites. This is
done to evaluate the impact of this research on privacy and security of the dark
web. A total of 634 onion links are manually analyzed for this purpose.

The second part of our research aims to break CAPTCHAS to allow for scraping
of the blocked parts of a website. Two approaches are analyzed and discussed.
The first approach is using OCR software to recognize the characters within a
CAPTCHA. The second approach makes use of Machine Learning to train a Neural
Network on CAPTCHAs.

3.1 Categorizing dark web websites

The websites are categorized by their state, alive or down. A website is marked
as down if it was either unable to serve a web page due to a connection error or if
some form of notice is displayed that the website has moved to a different location.
A website is considered alive if there is content displayed that is appropriate for the
type of website. Note that no differentiation is made between the different types
of websites.

Following this preliminary analysis, duplicates are identified and not taking into
consideration, since a significant number of websites are reachable through multiple
.onion addresses.

The blockades found on an alive, non-duplicate website are categorized as fol-
lows:

e CAPTCHA

Closed Registration
No CAPTCHA required
CAPTCHA required

Open Registration
No CAPTCHA required
CAPTCHA required

Accepting the Terms and Conditions

Accepting the Terms and Conditions

Proof of Work

Forbidden, HTTP error code 403

e Unauthorized, HTTP error code 401

Websites that were completely open to scraping are not categorized. This re-
search focuses on websites which use a CAPTCHA as a blockade. For this reason,
the remaining data is available in the raw data set, but not present in this paper.

3.2 Breaking CAPTCHASs

The first tool that is used to solve CAPTCHAs is Tesseract [10], which uses OCR
to identify characters. It is considered one of the most accurate OCR engines
currently available, with the precision depending on the clearness of the image.

The second approach is using TensorFlow [11], which creates a Neural Network
model and trains it by Machine Learning. More specifically, we use large parts
of P. Li’s implementation of TensorFlow for CAPTCHA recognizing [12]. Once a
model is trained, it can be employed to recognize patterns in new CAPTCHAs it is
given. The specifications for the machine that is used to train the model are given
in Appendix A.

The Neural Network is trained with two sets of CAPTCHAs [13] [14] which are
used on the dark web [15] [16]. First, two models are trained, one for each set of
CAPTCHASs. The training size for this is 100,000 images. Lastly, a multi-purposed
model is trained to be able to recognize both types of CAPTCHA. The training
size for this is includes 100,000 images of set 1 and 100,000 images of set 2 for a
total of 200,000 images. The test set is still composed of 1,000 images, 500 random
images from each set.

Three examples of each set of CAPTCHA are shown in Figure 1 and Figure 2.

j9c8m MYVNR pUSVT

Figure 1: Three CAPTCHA examples of set 1 [13]

TensorFlow .

WCEK PRI i
Figure 2: Three CAPTCHA examples of set 2 [14]

Each CAPTCHA contains five characters. Where every character can be ei-
ther an uppercase letter, a lowercase letter, or a number. To increase readability
by humans, the letters ’O’, '0’, and the number ’0’ is omitted from the possible
characters.

Both TensorFlow and Tesseract will solve the same test set, which consists of
1,000 unique CAPTCHASs. Both tools will be compared to each other in terms of
success rate and accuracy. The success rate provides a measure of whether, and how
often, a hypothetical implementation of the given approach would have passed the
CAPTCHA. Each CAPTCHA in the test set will get a binary evaluation which
is either a pass or a fail. This means that if at least one character is incorrect,
the whole CAPTCHA is marked as a fail. Determining the accuracy of each tool
is a more nuanced method. For each CAPTCHA in the test set, a Levenshtein
algorithm [17] is used to measure the accuracy of each individual character.

The tool used to scrape the dark web is Scrapy [18]. Scrapy is the web crawler
to scrape websites. It is an open source and collaborative framework for extracting
data from the web and written in Python.

The workflow to solve a CAPTCHA with TensorFlow, via Scrapy, is shown in
Figure 3.

(welpage o

pass return value to spider -
Login:

- [1

4 f . request to example.onion Password:
IS

return ‘N8GCY”’

Hidden

\J receive valid session

reply W|th response
CAPTCHA:

‘N8GCY
[]

save CAPTCHA to disk &
start TensorFlow.p

run recognition algorlthm

Figure 3: Workflow of solving a CAPTCHA with TensorFlow via Scrapy

4 Results

4.1 Categorizing dark web websites

We analyzed a data set of 634 dark web websites, of which 465 were up. The data
shown in Figures 4a and 4b is derived.

Figure 4a shows that almost 12% of dark web websites inhibit scraping in some
way, this amounts to 55 websites in the data set. Of those websites, 51.9%, which
are 26 websites, use CAPTCHASs, as shown in Figure 4b.

Modern CAPTCHASs, such as reCAPTCHA were not identified. The reason
is that reCAPTCHA sends traffic to Google servers [19]. Simple CAPTCHASs are
generated on the server itself and does, therefore, not have to communicate with
external servers or parties.

48.1%
51.9%
I No Blockade [CAPTCHA Involved
3 Blockade 3 Other
(a) Percentage of scraping blockades (b) Percentage of scraping blockades using
encountered (n = 465) CAPTCHAs (n = 55)

Figure 4: Success rates and accuracy

4.2 Breaking CAPTCHASs

The source code of this project is available at the GitLab of OS3 [20]. The reposi-
tory contains:

e A Scrapy spider, to login at a website and solving a CAPTCHA with Ten-
sorFlow

A Scrapy spider, to solve a CAPTCHA with Tesseract

TensorFlow, including a trained Neural Network model

The source code of the test websites

Script to download CAPTCHA images to disk

Script to measure success rate

TensorFlow is able to solve the CAPTCHA and pass the return value to Scrapy.
With this method, Scrapy is able to circumvent the blockade and thus log in.

It took TensorFlow 68 hours to complete training a data set consisting of 100,000
CAPTCHA images. The specifications hardware of the server used are provided in
Appendix A. During training, TensorFlow reached 50,780 steps. Meaning, there
was a total of 50,780 iterations made. Every Step had a batch size of 128 images.
Every 10 steps, the TensorFlow loss function is run. This function returns a value
that states the amount of errors that were made in the Neural Network. The loss
over the steps taken is plotted in Figure 5. Note that for a proper scale, the loss
values above 5 were omitted. Therefore, the step count starts at 30 instead of 0.

—— Set 1 CAPTCHA
—— Set 2 CAPTCHA
—— Set 1+ 2 CAPTCHA

Output loss function (values above 5 omitted)

0 10000 20000 30000 40000 50000
Steps taken

Figure 5: Loss over steps

The measured success rate is shown in Figure 6. Tesseract successfully solved
276 CAPTCHASs on set 1 and 137 on set 2, performing considerably worse on that
type of CAPTCHA. TensorFlow successfully solved 946 CAPTCHASs on set 1 and
997 on set 2. On a mixed set, TensorFlow scored worse than with the individual
sets with the amount of CAPTCHASs solved being 701.

Cumulative Levenshtein distance

Success rate (%)

100

80 +

60 +

20 4

5000

Tesseract (Set 1) Tesseract (Set 2) TensorFlow (Set 1) TensorFlow (Set 2) TensorFlow (Set 1 + 2)
Tool (training set #)

Figure 6: Correctly solved CAPTCHAS, higher is better

The total count of Levenshtein distance is shown in Figure 7. TensorFlow is
the most accurate with a Levenshtein distance of 69 on set 1, 3 on set 2, and 457
on the mixed model. Tesseract achieved a Levenshtein distance of 2178 on set 1
and 3629 on set 2.

4000 +

3000 +

2000 ~

1000 4

T T
Tesseract (Set 1) Tesseract (Set 2) TensorFlow (Set 1) TensorFlow (Set 2) TensorFlow (Set 1 + 2)
Tool (training set #)

Figure 7: Total count of Levenshtein distances, lower is better

5 Discussion

Out of the alive, non-duplicate 465 onion sites investigated, 26 of these sites blocked
scraping by using CAPTCHAs. This number may seem low, but it does not take
away the fact that the content on these websites may be of interest.

The current implementation of TensorFlow can be trained for simple CAPTCHAs
resulting in a high success rate. Models that are trained on a mixed set of differ-
ent CAPTCHAS seem to be performing worse than their single set counter parts.
Furthermore, training a model will take time. However, training can faster us-
ing better hardware or training on GPU instead of CPU. Furthermore, as shown
in Figure 5, the training process can be halted between 10,000 and 40,000 steps,
depending on the difficulty of the CAPTCHA being trained.

Tesseract shows a much lower success rate and accuracy. This also depends
heavily on the CAPTCHA type it is trying to interpret. However, it should be
noted that Tesseract is faster to deploy, as no model needs to be trained beforehand.
In most cases, a high success rate will not be necessary since the spider will be able
to make multiple requests to the server.

TensorFlow requires a data set for training a model. The model cannot be
trained if a CAPTCHA does not include an answer. Therefore, having access to
the source code of creating a CAPTCHA is highly recommended, since this allows
the generation of a CAPTCHA with the corresponding answer.

Some CAPTCHASs on the dark web cannot be recreated by available tools since
it makes use of proprietary code. Downloading a CAPTCHA and filling in the
answer can be done manually, but might be undesired since it could take up a lot
of time. An option to save time is to use a service which solves the CAPTCHA
[21].

To give an indication, solving 1,000 images costs $1,39. TensorFlow could
be trained with a set of about 50,000 images, depending on the difficulty of
the CAPTCHA, resulting in a cost of $69.50 per CAPTCHA set. However, as
shown in Figure 5 the actual amount for a decent success rate also depends on the
CAPTCHA itself.

All in all, it should be noted that the results of this research can have big
implications on web sites that do not want to be scraped. For this reason, we
suggest using other, smarter, methods to aid the prevention of unwanted scraping
on a web site. Such methods include, but are not limited to: behavior-based
blocking and authorization of users with a permissions-based system.

6 Future work

Due to the scope, this research was unable to provide a more granular study of
the websites analyzed in the first part of the research. A more granular approach
could involve, but is not limited to: identifying websites of interest, a deeper study
into the content of a website, and an analysis of privilege structures in place that
could inhibit a human user from seeing certain content.

The implementation of TensorFlow used in the second part of our research did
not apply character segmentation, since this would result in an approach that was
less universal. However, future research can be conducted in this field as it could
increase accuracy and success rate. A possible framework could be Tesseract 4.0,
which from this version on uses Machine Learning as well, but is currently still in
the Alpha development stage [22].

Improvements can be made to the Tesseract implementation. The current ap-
proach feeds images into Tesseract without applying improvements to the images.
Improvements such as reducing noise, enhancing the contrast and rotating the
image, so the characters are upright, could result in a higher success rate and
accuracy.

The optimal training time, training data, and batch size for TensorFlow can be
further investigated for different use cases.

The scraper is currently configured for one use case, it solves one type of
CAPTCHA used on one website. If this technology is to be used in a produc-
tion environment, the scraper should be developed for more use cases, such as
preventing the scraper from being detected by a web server. This can be done, for
example, by spoofing a user-agent or configuring the spider to crawl at different
crawl speeds.

7 Conclusion

Our research shows that the most accurate solution for CAPTCHA solving is using
a Machine Learning tool, such as TensorFlow. Even when the accuracy differs per
CAPTCHA set, TensorFlow shows a high accuracy rate at each set. A success rate
of almost 100% was achieved by employing Machine Learning techniques. However,
if immediacy takes precedent over success rate and accuracy, then Tesseract might
be a better option.

TensorFlow allows combining multiple CAPTCHASs into one model, allowing
for a more versatile solution at the cost of some accuracy.

Active scraping blockades are put up by numerous websites, about half of which
involve a CAPTCHA in their blocking measures. Since TensorFlow, Tesseract, and
Scrapy are both written in Python. Our Proof of Concept demonstrates that it is
fairly easy to combine these products to bypass CAPTCHAs.

Training a model for TensorFlow requires CAPTCHAs and the answer of the
CAPTCHA. Therefore, it is advised to own the source code of creating a CAPTCHA.

8 Acknowledgements
The authors would like to thank Yonne de Bruijn from Fox-IT for his active support
and supervision during this project.

References

[1] Krijn de Mik. RP 2017-2018. http://delaat.net/rp/2017-2018/index.html.

[2] Alan M Turing. Computing machinery and intelligence. In Parsing the Turing
Test, pages 23—65. Springer, 2009.

[3] Ahmad Hassanat. Bypassing CAPTCHA By Machine A Proof For Passing
The Turing Test. arXiv preprint arXiv:1409.0925, 2014.

[4] Sushma Yalamanchili and M Kameswara Rao. A framework for devanagari
script-based captcha. arXiv preprint arXiv:1109.0152, 2011.

10

[10]

[11]

Jeff Yan and Ahmad Salah El Ahmad. D-miner: A framework for mining,
searching, visualizing, and alerting on darknet events. In Heather Lawrence,
Andrew Hughes, Robert Tonic, Cliff Zou, pages 1 — 9. IEEE, 2017.

Ryan Mitchell. Web Scraping with Python: Collecting Data from the Modern
Web. O’Reilly, 2015.

Margarita Osadchy, Julio Hernandez-Castro, Stuart Gibson, Orr Dunkelman,
and Daniel Pérez-Cabo. No Bot Expects the DeepCAPTCHA! Introducing
Immutable Adversarial Examples with Applications to CAPTCHA. TACR
Cryptology ePrint Archive, 2016:336, 2016.

Jeff Yan and Ahmad Salah El Ahmad. Breaking visual captchas with naive
pattern recognition algorithms. In Computer Security Applications Confer-
ence, 2007. ACSAC 2007. Twenty-Third Annual, pages 279-291. IEEE, 2007.

Arun Patala. Using deep learning to break a Captcha system. Deep Learn-
ing, 2016. https://deepmlblog.wordpress.com/2016/01/03/how-to-break-a-
captcha-system/.

Ray Smith. An overview of the Tesseract OCR engine. In Document Analy-
sis and Recognition, 2007. ICDAR 2007. Ninth International Conference on,
volume 2, pages 629-633. IEEE, 2007.

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
et al. Tensorflow: Large-scale machine learning on heterogeneous distributed
systems. arXiv preprint arXiw:1603.04467, 2016.

Patrick Li. Github - captcha_recognize, 2018.
https://github.com/PatrickLib/captcha_recognize Commit #19.

Cory LaViska. https://labs.abeautifulsite.net/simple-php-captcha/.
Hsiaoming Yang, 2017. https://pypi.python.org/pypi/captcha/0.2.4.

The Undernet Directory, 2018. http://underdj56iovcytp.onion/page/register.
CoinMixer Anti DoS, 2018. http://coinmixibh45abn7.onion/.

Li Yujian and Liu Bo. A normalized levenshtein distance metric. IEEFE trans-
actions on pattern analysis and machine intelligence, 29(6):1091-1095, 2007.

Scrapy Developers. https://scrapy.org/.

Google, 2017. https://developers.google.com/recaptcha/docs/ verify.

Kevin Csuka and Dirk Gaastra, 2018. https://gitlab.os3.nl/kesuka/repo_rp62.
Death by Captcha, 2018. http://www.deathbycaptcha.com.

Patrick Li. Github - tesseract, 2018. https://github.com/tesseract-
ocr/tesseract Commit #2,198.

11

A Hardware specifications of the server used

Machine

Dell PowerEdge R815

Bios-release-date

04/19/2011

Operating System

Ubuntu 16.04.3 LTS

Processors 4 CPUs, each 12 cores, AMD Opteron(tm) Processor 6172

Disk SCSI Disk, Dell PERC H700, 255GiB (274GB)

Memory 16x 8GiB DIMM DDR3 Synchronous 1333 MHz, Samsung M393B1K70DHO0-YH9
Network NetXtreme IT BCM5709 Gigabit Ethernet

12

