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Abstract

Herein we propose a novel perspective into the workings of Intrusion
and Anomaly Detection within SCADA systems. We examine the effec-
tiveness of combining contextual knowledge of the system and Machine
Learning to create a Network based Anomaly Detection model. The main
focus of this paper is on finding the useful contextual information and im-
prove on current proposals of similar researches. As part of this project,
a virtual test environment using Python was developed, allowing for easy
reproduction of the tests conducted. The research resulted in the de-
velopment of a novel model, which enables modelling of more complex
processes. This was tested through a Proof of Concept Algorithm. The
proposed model also offers efficiency improvements on the researches pre-
vious research proposals. The research further hypothesises that better
response to anomalies can be achieved by the implementation of the pro-
posed model.
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1 Introduction and Problem Statement

Ample amount of research into best practices of Intrusion / Anomaly Detection
(IADS) for Supervisor Control and Data Acquisition (SCADA) Systems and
Distributed Control Systems (DCS) has been done, or currently ongoing. This is
due to the phenomenon that critical infrastructure nowadays is operated through
a DCS (examples include power plants or water treatment systems etc.) and
that more and more of these systems are getting connected to the internet (for
instance to enable remote real-time monitoring, or third party remote access for
maintenance). These systems often use well-known protocols, which can make it
even more feasible to perform attacks for an outsider. As a result, the number of
confirmed attacks against control systems are on the rise [18]. Even though the
risk is seemingly rising owners of these systems are increasingly pushing for more
interconnection, in an effort to ”reduce manufacturing and operational costs,
enhance productivity and provide access to real-time information” [20]. Even
if systems are not connected to the internet however, they are still vulnerable
to attacks: one of the reported successful attacks happened through infecting
the system through a USB flash drive (Stuxnet Worm [22]), an other has been
conducted by a person with direct access to the system (Maroochy Waste Water
System Attack [23]).

There are several attempts to classify Anomaly detection strategies for con-
trol systems, for instance based on the way evidence is collected [10]. However,
even if the recommendations made by Fovino et al. are followed and Network
based Intrusion Detection is used, best practices are still not straightforward to
define and so the simple models used in the solutions of the researchers can’t
offer all encompassing protection. This is because all SCADA systems vary in
their structure, and the process behaviour they are supervising is not always
linear or sequential. In an effort to alleviate this issue, a form of safety system
is normally implemented as part of the the control system. Such safety system
however is expensive, and only capable of acting after an anomaly was detected
by the standard input devices of the system. They are also knowledge based
systems, designed precisely for the particular SCADA environment that they
are implemented in, so they are not generic solutions. Depending on their sensi-
tivity they might also decrease system availability, due to downtime introduced
by bringing the process to a safe state. These observations underpin the need
for developing more effective, generic IADS methods.

Many researchers came up with proposals that take advantage of some form
of Machine Learning model, that makes the anomaly detection solutions less
exclusive. Researchers who try to take advantage of Machine Learning are using
unsupervised algorithms, which rely on the assumption that no information is
available on the system itself [10, 2, 3]. This seems unrealistic as the deployment
of an Intrusion Detection System would most likely be ordered by the owner
of the control system itself - who should be cooperative to provide at least
some specific information on the control system’s structure, if not all. These
proposals also experiment with single Machine Learning models, and so the
resulting system is only capable of learning either the sequential / linear features
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of the process, or the behaviour of a specific process value. As a result, it
is hypothesised in this paper that more complex relationship model between
process values and sequential features would be beneficial for the purpose of
Intrusion and Anomaly Detection.

2 Related Work

2.1 Intrusion Detection Systems

The field of Intrusion and Anomaly Detection is well established and is ongoing
since the mid-eighties [10]. In their work, Fovino et al., produce a state based
intrusion detection system where a Virtual System Image is generated based on
the detailed design knowledge of the system. This virtual image is then used to
compare to the real-time state of the system. Their approach is very accurate,
however the effectiveness is highly dependant on the actual data throughput of
the system. In their previous work, they also propose interesting methods that
can be used to model systems for anomaly detection purposes [8, 9, 16, 17].

In a similar research to the above, Hadeli et al. works with deterministic
information retrieved from configuration files to create and effective intrusion
detection method. They developed a parsing method for the IEC 61850 ”Goose”
protocol that is capable of interpreting configuration information to be later
used as base for anomaly detection on a power system [12]. They claim that
these ”formal system descriptions” are ”often available”, hence underpinning
the validity of the research question proposed herein.

Kleinmann and Wool proposed an IADS that leverages Statechart based
Deterministic Finite Automata modelling and uses unsupervised learning algo-
rithms to create Discrete-Time Markov Chains. The resulting ”healthy” virtual
image of the system is then compared to data received from real-time packet
capture on the system to find anomalies. The research project also used modbus
and S7 protocols to create a test environment, and achieved a 99.6% accuracy
rate [15]. In certain cases, their solution ran into a problem of a so called ”state
explosion”, which was eventually prevented by a dual layer statechart builder
model. Later in this paper, a differnt method is proposed to achieve the same
result, using case specific information.

In their work Caselli et al. created a Sequence-aware IADS. They were
using similar methods as proposed by Kleinmann and Wool, and they achieved
low false positive rates [3]. Their solution relies on a machine learning model
that builds a state-chart and then analyse the ”transition probability” between
states. In the detection phase, the resulting virtual model and probabilities
are compared to the actual captured states of the system. They also note that
leveraging the semantics and specific parameters of the DCS can be a powerful
way of improving the detection efficiency, however they do not implement or
test this.

It has been observed that the all the IADS models proposed by previous
researchers are all complementing some form of a conventional Intrusion De-
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tection System like a firewall, (normally SNORT) to detect obvious anomalies
within the network communication of a SCADA system.

Boukema and Lahaye were investigating which level of a process control
system would be most suitable for anomaly detection. The result of their in-
vestigation was that this can be done between Levels 0 and 1 most efficiently
(between actual devices and PLCs). Their research included implementation of
proof of concept, where they used Machine Learning (ML) techniques to create
a universal product that is capable of learning the healthy behaviour of the
system. In their experiments, they achieved 100% accuracy, however due to the
limited amount of experiments the findings are not statistically significant [2].

2.2 Artificial Intelligence and Machine Learning

In their PHD thesis, titled Supervised Sequence Labelling with Recurrent Neural
Networks, Kazuya Kawakami and Alex Graves proposed to use a combination of
different types of neural networks to create a more effective recognition technol-
ogy for handwriting and test recognition. He achieved good results throughout
his experiments, which suggests that using hybrid machine learning models to
solve complex problems can be beneficial [14].

A similar research from 1995 done by Bengio et al also underpins this idea
[1]. Their research is focusing handwriting recognition using a combination of
hidden Markov Models and Neural Networks, which is a similar model proposed
within the final sections of this paper, but within the scope of SCADA system
modelling.

2.3 Attack Models

Spennenberg et al, in 2016, created a virus that is capable of infecting Siemens
PLCs in a SCADA system. The worm does not delete the original program of
the PLCs, but creates an additional function block to be executed by the PLC,
making the worm capable of staying hidden once installed. The worm is also
capable of spreading over to other PLCs, by simulating the behaviour of the
TIA PLC programming environment of Siemens [24]. Their paper proves that
attacks are possible on the lowest layers of a SCADA system, and they suggest
basic detection methods, that in combination with the proposed models from
the previous section, can create effective and all encompassing IADS solutions.

The story behind the Stuxnet virus paper by Bruce Schneier also describe a
similar attack surface, with a real life example of the lowest levels of an Iranian
Nuclear Power Plants SCADA system being infected by a worm [22]. This
attack could have been detected if a Network Based IADS system is in place,
by alerting of the suspicious network traffic generated by the worms that spread
from the HMI Level to the PLCs of the control system.

Common in these attack models that they both target the PLC (Level 1)
layer of the SCADA system, which is the last layer before the actual controller
process, as will be visible on Figure 1 in The Taxonomy of a SCADA System
section (Section 4).
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The list of examined attacks is not exhaustive and there are several other
attack models are possible, however the aforementioned considered the most
impactful. As it is visible in the Taxanomy of a Scada System section (Section
4, the lowest computerised Level of the system is the PLC level (Level 1),
where attacks can cause unnoticeable damage (by outputting healthy values
towards the HMI whilst generating unhealthy behaviour within the process),
hence considered the Level to be protected. This paper focuses on developing a
detection method for Level 1.

3 Research Questions

From the desk study conducted it could be distilled that there are several unsu-
pervised and supervised IADS concepts are available, all of which are effective
within its own constraints. The models proposed therein offer high detection
rates for within their specific scopes, however they are ineffective for different
processes types and hence there is space for improvement.

As these solutions rely either on Single-Model ML algorithms (such as the
Discrete Time Markov Model or Neural Networks), or full descriptive knowledge
of the system, it is hypothesised within this paper that the combination of
Multi-Model ML algorithms combined with some contextual information about
the system will result in more generic modelling technique, and a more effective
IADS.

In order to be able to develop this novel, hybrid model, the following research
questions are proposed and investigated in the further parts of this paper:

”What information can be used to complement the information generated by
ML algorithm(s), to improve the efficiency and accuracy of a ML based IADS,
and make it useful for both seuqential and self regulating processes?”

”How can this information be best combined with the ML algorithm(s)?”

To provide context for the research questions, the hypothesis and the ex-
periments, the following sections will briefly discuss the structure and common
terminology of a SCADA system, and the mathematical models used in Machine
Learning.

4 The Taxonomy of a SCADA System

In their whitepaper, the System Administration, Networking, and Security In-
stitute (SANS) provide the following diagram of a control system that depicts
the architecture of a control system. They also include recommendations for
IADS positioning with the lowest level for IADS proposed being between Level
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1 and 0.

Figure 1: Standard architectural diagram of SCADA with IDS[20]

The control of the real world process is handled within the Cell/Area Zone.
On Level 0 (Process) lie the actual devices that interact with the environment,
and the sensors that provide information on the environment. On the Level 1
(Basic Control) level, one can find the computers that digest and respond to
the sensory signals, by commanding the devices (actuators and valves). The
computers that reside at this level are normally purpose built Single Board
Computers (SBC, often called Programmable Logic Controller PLC ). These
often use different protocols to communicate with the level above which brings
another layer of complexity to the development of an IADS. Above these two
levels reside the Human Machine Interface (HMI). The HMI is responsible for
providing an ”eye” into the process for operators, and consists of components
that provide audio-visual feedback and the ability to send commands to or
reprogram the PLCs. The level of complexity of information representation
decreases as the levels progress from 0 to 2: this is due to the fact that the one
of the purposes of PLCs is to structure the data using their respective protocols
(for instance modbus or S7Comms), to then enable the HMI to display the data
in a human comprehensible format.
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4.1 The Ideal Level for Anomaly Detection

As it is visible on Figure 1 on Page 6, there isn’t a de facto standard for the level
on which an IADS system can be implemented. Boukema and Lahaye argued
that the best place to implement an IADS would be between levels 0 and 1,
because the direct information received from the devices is almost impossible to
falsify [2]. That would however require all the individual devices to be monitored
separately, and that can be extremely difficult to achieve especially in large
systems which might contain hundreds of devices.

In addition, as all of the examined attacks rely on reprogramming or hi-
jacking the PLC level, it is hereby proposed that it is sufficient to implement
a network based IADS between Level 1 and 2, which this paper is focusing on,
taking advantage of the organised data structure offered by the Level 1 protocols
such as modbus or S7 Communication (S7comm).

4.2 Examples of Processes Controlled by SCADA Systems

SCADA systems have a wide range of use cases. The specific use case determines
the required Level 0 devices and the implemented program logic. The program
logic will depend on the process type controlled by the SCADA system, which
can either be a repeating sequence of steps, like in the example of the Bottle
Filling Sequence Diagram, or a regulated process such as down regulation of
liquid flow by valves. The different process types are depicted on Figure 2. Any
combination of the two process types can exist in the same system: as an ex-
ample, consider the case of the bottle filling sequence, where the flow through
the filling hose can be self regulated. This results in a infinite variety of possi-
ble system architectures, which adds to the complexity of finding a universal,
generic model for an IADS system. Knowing that different process types can
coexist within the system allows to understand, that none of the models pro-
posed by researchers in the Related Work section will offer all encompassing
IADS solutions.
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Figure 2: Different Process Types [26]

4.3 Defining the ”Full Knowledge” of SCADA

Based on the discussion in the previous section and the conducted desk study,
it is possible to define the information that comprehensively describe a SCADA
system.

The team of Fovino et al reached very good anomaly detection rates using
a knowledge based IADS. Their final artefact relied on the knowledge of the
list of devices, their controlling PLC, the modbus addresses used for the device
signals on the PLC, and the critical states of the system (defined by analogue
value ranges, and unwanted state descriptor functions). [10].

Based on the research of Hadeli et al, discussion with subject matter experts
and personal experience, the following list of data points are also considered to
be useful to describe a system:
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• Device types - analogue or digital

• Communication protocols used within the system

• The different process types that exist within the system

• List of process sequences and their length

• Causal and logical relationship between the devices and sequences

• Age of equipment

• Maximum allowed tolerance for anomalies

In order to be able to answer the first research question effectively, a Proof
of Concept (PoC) IADS application is designed and experimented with. During
the experimentation with the PoC this list will be reduced to the most neces-
sary information, that can’t be generated from the information gathered from
capturing packets from the testbed SCADA environment, and is tested using
the PoC.

5 Machine Learning Models and Principles

As part of the PoC, a novel Machine Learning based Intrusion and Anomaly
Detection concept is developed and experimented with. One goal of the PoC de-
velopment is to create an artefact, that allows easy implementation and testing
of different machine learning models and algorithms. There are several different
types of Machine Learning models that are used by researchers, each of which
is more effective in detecting trends within data from different contexts. Due
to this careful investigation is required before a specific ML model is selected to
be implemented for a particular problem. Fortunately, nowadays there are sev-
eral libraries available online alongside implementation examples, that ease the
development of algorithms that take advantage of ML models, some of which is
mentioned within this section, and used later in the PoC.

5.1 Neural Networks

One large group of Machine Learning models are Neural Networks. The term
Neural Networks is inspired by the workings of the human brain and biological
system [25]. The term is used to describe several layers of highly interconnected
mathematical functions (so called ”neurons”), that work together to create a
model of a problem, in order to be able to answer ”what if” questions related
to the modelled problem. As part of this paper’s scope, due to the successes
observed in the research project from Boukema and Lahaye, the effectiveness
of the LSTM Recurrent Neural Network model was considered. Early on the
process of experimentation with the PoC it was discovered that the correlations
are better modelled with other types of machine learning algorithms, so the idea
of using Neural Networks was dismissed.
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5.2 SVM - Support Vector Machine

SVM is a model that can be used to group values into clusters. The mathemat-
ical formulation found on the website that document the python API that was
used for the experimentation states: ”A support vector machine constructs a
hyper-plane or set of hyper-planes in a high or infinite dimensional space, which
can be used for classification, regression or other tasks. [5]”. For the particular
problem modelled, this Machine Learning model seemed to be the most suitable,
based on comparison of charted data output of the PoC. It will be possible to
observe in later sections that the data produced by the PoC resembles the chart
depicted on Figure 3 well.

Figure 3: SVM Hyperplane Example[5]

According to the above referenced documentation, SVM is more effective
with multi-dimensional models, such as the one produced by the herein used
’RBF kernel’. As we are working with 2 dimensional data only, K-means clus-
tering was also considered to be an option for modelling the data. K-Means
clustering can especially be more effective for wider datasets as show on Figure
4.

5.3 K-Means Clustering and Other Clustering Models

The developers of the above mentioned modelling library also created an exam-
ple performance comparison of two clustering methods, SVM and KRR (Kernel
Ridge Regression). As the SVM model was performing better with the random
dataset, KRR was considered, but quickly dismissed.[6]
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In addition, another clustering technique called K-Means clustering was briefly
examined (see example in Figure 4, and should be tested against the results and
performance of SVM, as it might be able to provide better predictions for a not
so narrowly optimised processes (such as the virtual test environment, described
in the later sections).

Figure 4: An Example of the K-Means Clustering Modelling Technique[4]

5.4 DTMM - Discrete Time Markov Model (or FSM -
Finite State Machines)

The main use case of FSMs are wide ranging: they provide a simple model
for describing a sequence of states which take place one after the other, in a
repetitive manner. DTMMs are the same, however they focus on measuring the
probability of transitions from one state to the other [11]. This model allows
the prediction of future states, solely based on the current state of the system.
Besides allowing for sequence modelling, due to measuring the probability of
state transitions, it is often used to model more complex problems too (for
instance in the field of finance). [19] The DTMM modelling technique provides
the basis of the herein proposed model, combined with one of the previously
mentioned modelling techniques.
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6 Method of Research

6.1 The Virtual Test Environment

As the availability of process control systems is critical, they are rarely made
available to researchers and developers to run tests on. As a result, most aca-
demic researchers build test environments to prove their hypothesis, making the
results hard to reproduce. Every time a concept needs to be re-tested, the test
environment also has to be re-built. One aim of this research project is to make
the results more reproducible by creating a deterministic virtual test environ-
ment based on the virtuaplant python library [13]. The library can be used to
create process control simulation environments, based on realistic physics using
computer game physics engines. The final simulation produced by the library
consists of two applications, in between which the communication is done using
a real-life SCADA protocol. In the original software, only modbus TCP is im-
plemented. To prove the portability of the virtual environment, its sequential
were ported to a Siemens S7 PLC (as depicted on Figure 5).

Figure 5: The Siemens S7 PLC and the virtuaplant Simulation
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6.1.1 The architecture of the environment

There are two separate applications are present in the system: One application
serves as the HMI (Level 2 from Figure 1 displayed in Section 4) of a SCADA
system, the other is the PLC (Level 1) and the virtual world (Level 0) merged.
The merged PLC / world level is depicted on Figure 6, and it will be referred
to as virtual world from this point.

In the oil-refinery example, a simple form of liquid flow control is simulated.
In it’s original form the library is capable of simulating 3 digital valves, that can
be commanded to open or close through the HMI and a tank level sensor that
stops the pump when the tank is full. Besides the digital valves an analogue
valve was implemented as part of this project. The analogue valve is attached
to a PID controller, and behaves as depicted on Figure 6: when the flow after
the valve is higher than the setpoint in the PID, the valve closes to regulate the
flow of particles. An additional tank sensor was also added to the Separator,
and the following sequence has been implemented.

Figure 6: The Virtual World Application

The virtuaplant also contains sensors that produce signals to provide infor-
mation on the current state of the environment. These sensors are highlighted
with dashed circles on the above diagram, and there are also flow sensors after
the Main Tank Outlet Valve, the analogue valve and the Separator Vessel Valve.
The signals from these sensors are processed in the virtual world application,

13



by a PLC like algorithm, which then sends the information to Level 2, to the
HMI, using the modbus protocol.

6.1.2 The characteristics of modbus

Modbus operates using memory space mapped to registers. Each signal nor-
mally has it’s own register assigned to it. These registers are accessible for
reading and writing through specific modbus function codes. The function codes
depicted in Table 1 were implemented within the virtual environment:

Function Code Purpose in modbus Purpose in virtuaplant
03 Read Holding Registers Get status of all

devices

06 Write Single Register Command single device

Table 1: Data passed to the IADS in a CSV format

The register addresses used are listed in the description of the Parsing Phase
of the PoC description in Section 7.1. The virtual environment is used to aid
the development of a modbus packet dissector algorithm, that is the basis of
the statechart model building algorithm. The extracted information from the
packets sent within the virtual environment is used to test and refine a new
model, that is built using multiple machine learning techniques and describes
the behaviour of the vitrual system. The architectural decisions related to the
model is described within the next section.

7 The Proposed Model

Through the desk research conducted and described within the Related Work
section (Section 2), it became clear that the current models used by researchers
to create IADS systems are effective, but only within their own constraints.
Since there are modelling solutions available for both self-regulating (analogue)
and sequential processes, a combination of these models could enable the cre-
ation of an all encompassing anomaly detection solution that is capable of mod-
elling a complex system. In order to be able to select the correct models would
require some pre-existing contextual information about the processes fed to the
modelling algorithm. Other researchers have already also hinted on this idea:
besides creating an effective anomaly detection solution, Caselli et al proposes
that ”leveraging semantic of ICS communications and parameters is a powerful
way to enhance security tools knowledge of the environment”. The great results
achieved by the fully knowledge based system proposed by Fovino et al underpin
the validity of this suggestion.
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7.1 Selecting the Information

Through analysing the TCP packets captured and dissected, it can be concluded
that the following information can be learned with certainty by simple methods:

• Whether a signal value is digital or analogue

• The protocol used for the communication (protocols normally use a dedi-
cated port)

• The sequence of events using the DTMM modelling technique proposed
by Caselli et al and Kleinmann and Wool

• Existing process types - if only digital values are present in a system, the
process can only be sequential

From the full knowledge section, the following datapoints are still not known,
and it is proposed within this paper that they are fed to the IADS sytem algo-
rithm, in form of a CSV file. The signal and device list is normally available in
a CSV format (regularly referred to as an I/O list), and hence thought of as a
simpler way of inputting the information to the system, than the one proposed
by Fovino et al.

• Signal / Device names and the addresses used by the protocol

• Maximum error tolerance

• The age of equipment

• Logical groups and correlations within the processes

• Irrelevant information, that should be ignored within the calculations

If the signal / device names are fed to the algorithm, the state space ex-
plosion experience by Kleinmann and Wool can be avoided due to the existing
knowledge of the devices and addresses to be monitored. The above list is an
extended one compared to the list proposed by Fovino et al. If logical groups
and irrelevant information are fed to the algorithm, performance improvements
become possible. It is hypothesised herein that besides focusing on using pro-
posed models of researchers, new correlations between data points can also be
found, and fed to clustering algorithms such as the SVM.

This section partially concludes the answer for the first research question, which
result will be further emphasised through the following parts of the paper.
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7.2 Proposed Correlations

At the beginning of the development of the PoC application and the Virtual
Test Environment, it was hyphotesised that the following data points generated
could create added value, if correlated using statistical clustering algorithms, or
neural networks:

• The time difference measured between state changes

• The time the system spends in a certain state

In the case of the virtuaplant environment, these values determine the state
of analogue values. For example the time spent in a certain state determines
the frequency of how often a state appears within a certain timeframe. A higher
frequency will potentially result in a more volatile analogue value measurement
within the same timeframe in the same logical group, or within other logical
groups (and vice versa). Figure 7 highlights the logical groups present within
the virtuaplant test environment.

Figure 7: Logical Groups within the Simulation Environment
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Within the PoC algorithm, the focus was based on on Logical Group 2. The
frequency of the digital values changing within the group are defined by the flow
rate of the control valve in the middle of Figure 7 (open 57% at the time this
photo was taken). After the desk study it was thought that the time that it
takes for changes to occur (Time Delta - depicted as Td on Figure 8) should be
related to the actual flow rate. During the testing of the PoC it was discovered
that the Time Delta values don’t change at all. As a result of this discovery
it was concluded that the time spent in a particular state (depicted as Tl on
Figure 8) should be measured instead.

7.3 Summary of the Model

Figure 8: The proposed combination of Machine Learning Algorithms and In-
formation
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8 The Architecture of the Proof of Concept IADS

The PoC is designed with a modular mindset based on open source libraries,
in order to ensure possibility for expansion. The following modules were imple-
mented within the current version:

• I/O Parser

• Data Objects: ModbusObject, System State

• Modbus Packet Dissector: based on pyshark / wireshark python libraries

• Statechart Builder with Logical Groups

• Statechart Time Analytics

The modules are run in 4 sequential phases: the default learning phase,
the digital statechart building phase, the model training phase and the model
enforcement phases. This provides an area of a clear improvement area: as
multiple core machines are getting cheaper and cheaper, implementing multiple
threads instead of the current sequential structure should be possible. The
following sections will explain the step of sequences in detail and will provide
some pseudocode for representation, however all the working code is accessible
on the Github repository of the project [21].

8.1 The Parsing Phase

When the IADS starts up, it searches for the I/O list. During the development
of the application it has been observed that the learning logic can get signifi-
cantly more complicated if all the items proposed in the previous section are
learned dynamically. As a result, in the current version of the software the data
described in Table 2 (displayed in the Appendix) was passed to parser within
the CSV file, to ensure focus can be placed on model concept development. The
elements of this table are parsed into modbus objects.

Definition 8.1. Modbus Object

A Modbus Object is a python data object. It is a tuple with 5 elements in
the format (Tag Name, Address, State, Digital, Logical Group) with Tag Name
being of type string, Address, State, Logical Group being of type Integer, and
Digital being of type Boolean.

8.2 Learning the Default, Starting State

In the virtual environment the HMI requests the full state of the PLC and
virtual world every second using Modbus function code 3. The starting state
is defined to be the state when the system is in a settled state. If this state is
recorded first, it can be avoided that the IADS raises a false positive, when the
system is shut down for maintenance. The default values for each device are
recorded per logical group, and converted into a string.
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8.2.1 A note on Scalability

The resulting string is then hashed using the SHA256 algorithm using the python
hashlib library, for so it can be easily compared with newly captured states. This
supports scalability of the proposed solution, as the size of the output of the
hash algorithm will be the same, regardless the amount of objects are in the
system. Expressed in terms of the Big-O notation, the resulting comparison
algorithm is O(1), as it is possible to store the states in a hash table.

Definition 8.2. System Statechart

The System Statechart is a python data type of dictionary, with n keys (where
n equals to the number of logical groups given at the Parsing Phase) in the
format of { 0:{}, 1:{} ... n:{}}. Each key block itself is pointing to a dictionary,
which contains the hashed states as dictionary keys. Each of these keys point to
another dictionary, where the hash of the possible state successors and the in-
teresting parameters of a state and state transitions are stored. Figure 9 on the
next page and Listing 1 below describe the structure of the System Statechart.

Figure 9: The Resulting Statechart Model of the Valid States of the System for
a Single Logical Block
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1 {0 : { ’ fa7b6d0b65 . . . 8 4 c72 f f215 ’ : { ’ s u c c e s s o r s ’ : [ ’ fa7b6d0b65 . . . 8 4
c72 f f215 ’ ] , ’ prob ’ : [ 0 ] , ’ t ime de l ta ’ : [ 0 ] , ’ t ime i n s t a t e ’ :
[ 0 ] } } ,

2 1 : { ’ b29d59cb44 . . . f1e03e3302 ’ : { ’ s u c c e s s o r s ’ : [ ’ b29d59cb44 . . .
f1e03e3302 ’ ] , ’ prob ’ : [ 0 ] , ’ t ime de l ta ’ : [ 0 ] , ’ t ime i n s t a t e ’ :
[ 0 ] } } ,

3 2 : { ’7 a31010015 . . . ce f914ecb2 ’ : { ’ s u c c e s s o r s ’ : [ ’ 7 a31010015 . . .
ce f914ecb2 ’ ] , ’ prob ’ : [ 0 ] , ’ t ime de l ta ’ : [ 0 ] , ’ t ime i n s t a t e ’ :
[ 0 ]}}}

Listing 1: Example of a System Statechart with the Default States Recorded

The statechart building algorithm takes note of possible successors, the num-
ber of occurrences of a particular successor. This way it is easy to calculate Time
Delta (the time it takes to advance from current state to new state), the time
spent in previous state, and the probability of the state occuring for the period of
training. The states are separately recorded for each of the digital values within
each logical group. When a state is recorded, it becomes its own first successor
immediately, with all the interesting values of the state transition initialised to
0.

In order to make sure that the default state is recorded, the IADS compares
the hash of consecutive state captures for a certain period of time given by the
user. If more than one hash is found per logical group, the system changed
state, and the algorithm terminates and ask the user to bring the system back
to stable, default state. The Algorithm 1 depicts the default statechart building
prorcess.

8.3 Ignoring the Irrelevant Information

It is proposed herein that in order to ignore irrelevant information, they should
be organised into a specific logical group (for instance group 0 in our case).
This group can then be easily excluded from the calculations, improving overall
running speed of the algorithm.

8.4 Learning the Possible Digital States and Analogue
Ranges

When the timer expires for recording the default state, phase advancement
occurs and the IADS allows for state changes to happen. In this phase, it is
assumed that the system starts normal, anomaly free operations. If the same
state occurs as previously, the occurrence counter is increased for the current
state. When a different state from the previously recorded occurs, it is added
to the list of states, and to the list of successors of the already recorded states,
with occurrence counter initialised to 1. The current time is recorded, so ”in
state time” in a certain state and ”time delta” between state changes can be
measured. This process runs for a given amount of time. The length should be
more than the maximum length of a full process cycle of a logical group from
all logical groups. When the learning is finished, the probability values can
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i = 0

defaultLearningPhase = 100 #LENGTH OF PHASE (s)

startTime = now()

for Each captured packet do

if now() - startTime >defaultLearningPhase then
advanceState()

if FuncCode == 3 then
i++

for Each Register in FuncCode 3 Modbus Block do
if Register is in AllModbusAddresses and

ModbusObject.logicalBlock != 0 and ModbusObject.digital

then
currentState = registerState()

currentState = SHA256(currentState)

if i == 1 then
addStateToDefaultStateChart(currentState)

else if currentState not in defaultStatechart then
exitWithError(state changed)

exitWithError(unknown device)

end

end

Algorithm 1: Recording the Default State

be calculated for the Discrete Time Markov Chain, and stored within the data
structure. This is a similar approach to what was recommended by the research
of Caselli et al and Kleinmann and Wool, and results high detection efficiency
against replay attacks, or introducing unknown states within the system. Due to
the fact that the device list and possible addresses are recorded, the state space
explosion can be avoided at this stage of the process. The resulting statechart
is stored for each logical block existing within the system, in the datasrtucture
described previously. Irrelevant values should also be ignored in this phase.

Besides building the healthy digital statechart of the system, within this
phase, the healthy analogue state ranges for the devices are also recorded and
analogue values within the same logical group can be correlated with each other,
and time using one form of a clustering method such as what was recommended
by Boukema and Lahaye. According to their research, this method can effec-
tively predict behaviours of analogue values.

The optimal results described later in the paper were achieved through a
300 second training period. Some experiments were conducted with 150 second
and 600 second intervals, but they yielded worse results and hence are excluded
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from the paper. This time of course is specific to the virtual environment, and
should be adjusted for different environments.

8.5 Correlating Statechart Parameters with Analogue States

Next, the prediction of the correlations happening, using the selected algorithm.
Depending on the length of the learning phase, and the resulting data generated,
this phase might take longer. Through the development the testing phase have
never been observed to take longer than 0.9 seconds. This number however
will increase proportional to the amount of correlations examined. The learning
phase should be chosen based on the length of logical sequences as overfitting
can occur, as the virtual environment is deterministic. If the model is overfitted,
that results in too strict predictions, which can result in wrong predictions [7].

Figure 10 depicts the prediction of Time in State for Logical Block 2 in
relation to analogue valve behaviour, generated by the PoC algorithm using
SVM clustering. The line is the prediction, which is generated by the support
vector described using the datapoints within the next diagram.

Figure 10: Prediction of Healthy Behaviour of Statechart based on Valve Be-
haviour

The chart matches the expectations: it can be clearly seen that if the valve
is open wider, the time spent in a certain state decreases (this state is when the
digital valves of Group 2 are closed).

For this reason it is concluded that this is an effective model to combine the
contextual information with information produced by Machine Learning, set-
tling the second research question, and emphasising the validity of the answer
to the first research question (detailed in Section 7.1 Selecting the Information).
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Listing 2 details the technique used to receive this result. Using the Grid-
SearchCV function allows to select the best parameters of Gamma and C, and
promises optimum prediction [6].

1 svr = GridSearchCV (SVR( ke rne l =’ rbf ’ , gamma=0.1) , cv=3, param grid
={”C” : [ 1 e0 , 1e1 , 1e2 , 1 e3 ] , ”gamma” : np . l og space (−2 , 2 , 5) })

Listing 2: Parameters of the SVM Modeller

8.5.1 A note on testing other models

Due to receiving promising results with the SVM modelling technique and the
short time allowed for the project, the use of the more complicated Nerual Net-
work models was dismissed, but the use of K-Means Clustering technique should
be implemented and results should be compared to the test results achieved from
the SVM technique.

8.6 The Enforcement Phase

After the predictions and models are built an enforcement phase follows, when
the actual state and previously registered system state can be compared to the
modelled values also considering the allowed maximum error tolerance. The
enforcement state was not implemented, however it can be seen from here that
using a similar pseudocode as used in the learning phase, the current and pre-
vious system states can be extracted from the packets. When predictions of the
models do not meet the virtual system model, the ”anomaly counter” can be
increased and alarms can be raised. The same thing can happen when the state
observed is not in the statechart, or particular transition is happening more
often than the measured probability. Due to the correlations drawn up between
analogue states and parameters of the state chart, it is possible to detect at-
tacks that take over the PLC level and obfuscate unhealthy analogue values
with healthy ones.

In short, the following detection algorithms can be implemented based on the
above described system model:

• Unknown States

• Unknonwn Transitions

• Anomalious Frequency of Transitions

• Anomalious Analogue Value Behaviour

• Anomalious Behaviour in one logical group, based on values measured in
another logical group
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Figure 11: Normal States / Possible Anomalous States

Figure 11 shows an example of anomalious behaviour plotted against normal
behaviour. The data points of the normal behaviour produced the prediction
depicted on Figure 10. It is visible that due to the existing model of the healthy
working range depicted on Figure 10, the anomalious values would be high-
lighted. The particular attack surface simulated therein is similar to the one
used in the Stuxnet attack: the PLC, responsible for the control of the analogue
valve is hijacked to output values in the normal range, but the lower than normal
flow rate is visible through the plotted correlation between the valve opening
and the time spent in state. Due to the lower flow rate, the time spent in state
increases. Even though anomalious behaviour can’t be observed at the analogue
signals received from the valve, the anomaly can detected through observing the
anomalious behaviour in the sequence parameters.

9 Results

Through the experiments conducted with the virtuaplant environment, it has
been observed that the correlation between the Time spent in state property of
the digital state chart and the valve opening time can be classified effectively
using the SVM modelling method. This has several benefits, such as better
ability to pinpoint the part of the system the attack targets, and potentially
decreasing rate of false positives.

Due to the fact that some contextual information is used within the system,
a reduction in false positive rates can be expected. This is due to the elimi-
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nation of the state space explosion, by limiting state storage to logical groups,
and ignoring irrelevant data. In addition, logical groups allow for distributed
processing of signals (for instance one computer per logical group), and better
ability to respond to detected anomalies (by allowing for group specific anomaly
response).

The research questions are specifically answered in Sections 7.1 and 8.5.

9.1 Limitations of the Results

The results are specific to the virtual environment, and further testing should
be conducted in different environments. Due to the short timeframe allowed
for this project, the analogue valve that was implemented in the virtuaplant
simulation as part of this project is not very well optimised. This results in a
”wide” process value, which is visible on the previously shown graphs.

The achieved results are also only an improvement on the proposed model in
that they are capable of relating an anomaly to a potential cause: by finding
anomalious behaviour through correlations, it becomes possible to tell where
the anomaly roots from.

10 Conclusion

Within this paper, besides combining 3 anomaly detection models, we offer a
new perspective into thinking about anomaly detection within SCADA systems.
The research resulted in a model that is novel within the area of IADS systems.
The proposed model is leveraging multiple forms of Machine Learning and it
enables correlating parameters of digital statecharts and analogue values that
determine the behaviour of the states within the system. This result have been
achieved by answering the questions:

”What information can be used to complement the information generated by
ML algorithm(s), to improve the efficiency and accuracy of a ML based IADS,
and make it useful for both seuqential and self regulating processes?”

”How can this information be best combined with the ML algorithm(s)?”

The research was a combination of desk study, discussion with subject mat-
ter experts and the creation of a Proof of Concept algorithm. Besides the useful
correlations found, the observed results are easily reproducible using the simu-
lation environment and the freely available code of the PoC. This allows for the
search for further correlations within this environment. As the simulation envi-
ronment is written in python, it is also fairly easy to modify it to simulate other,
larger scale / different environments too, allowing for finding other correlations.
The digital signals of the virtual environment were ported to a Siemens S7 PLC,
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and that allows for testing and developing solutions for a hybrid environment.
As the PoC is modular, it easily allows for implementation of new protocols,
and the plugging in of new Machine Learning models.

11 Future Work

11.1 Test in Non-Localhost Environments

The tests need to be repeated in a non-localhost environment, with a separate
device for the two python applications. The Proof of Concept IADS can be then
further optimised to work well within realistic network structures.

11.2 Improvements to the Virtual Environment

It would be desirable for the virtuaplant environment to be optimised: the
environment physics could be improved, the PID controller could be made to
keep the process within a narrower range and further modbus function codes
would be desired. The environment should be extended, with further sequences,
and different process simulations. Separation of the PLC layer from the virtual
world would also be desired, to make the environment more realistic.

11.3 Find Further Correlations, Test with Attack Models
and Compare Efficiency

Even thought the time to advance from state to state (Time Delta) hasn’t been
used to draw up any correlations, it is believed that it could be usefully corre-
lated with the age of equipment. The reason being is that the time it takes to
advance from one digital state to another is only dependant on the equipment:
for instance the time it would it take for a valve to open or close would mostly
be defined by the workings of the equipment. This theory should be tested on
real equipment.

Within the virtuaplant environment, further correlations should be searched
and tested. A couple of proposed correlations are:

• Flow rate compared to In State Time (within Group 2)

• In State time of Group 1 compare to Flow rate / valve open

Using the same environment attacks could be simulated, and false positive
rates measured. Comparison to individual models and different model building
algorithms could be conducted.

11.4 Optimisation of Code

The code of the IADS proof of concept should be improved. Better organising
of code should be prioritised, but further code analysis based on the Big-O
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notation principles, threading of the phases and data recording and distribution
of signal processing should also be considered.

11.5 Examine Possible Responses to Anomalies

Currently, based on the models, anomaly detection is possible. It would re-
quire additional research to see whether it is possible to prevent critical states
from happening, or bringing back the system to an ideal state, if anomalies are
detected.

11.6 Development of Additional Features

As the Siemens S7 environment is easy to setup, the Siemens S7 packet dissector
could be implemented.
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Appendix

Tag Name Protocol Address I/O Type Logical
Group

PUMP
COM

modbus 1 DI 1

OUTLET
VALVE

modbus 3 DI 1

SEP VALVE modbus 4 DI 2
FLOW
SENS

modbus 13 AI 0

WASTE
VALVE

modbus 8 DI 2

CALC
FLOW

modbus 10 AI 2

TANK1
LEVEL

modbus 2 DO 1

TANK2
LEVEL

modbus 5 DO 2

OIL SPILL modbus 6 AO 0
OIL PROC modbus 7 AO 0
OIL UPPER modbus 9 AO 0
FLOW
AFTER

modbus 11 AO 0

CONTROL
POS

modbus 12 AO 2

Table 2: Data passed to the IADS in a CSV format
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