Framework for profiling Critical Path related Algorithms RP#66

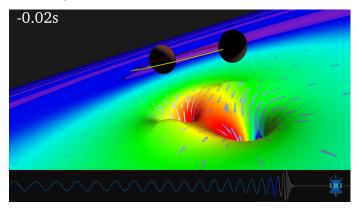
Henri Trenquier

Supervisors:

Dr. Zhiming Zhao & Dr. Arie Taal MSc Systems and Network Engineering

University of Amsterdam

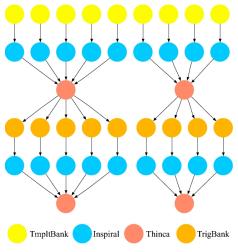
February 6, 2018



Context

LIGO Gravitational wave detection analysis

- Data to be processed
 - Deadline
 - Order
- Time critical problem



Context

LIGO Gravitational wave detection analysis

Defines a task graph

Context

Critical Path related Algorithms

- "Deadline-constrained workflow scheduling algorithms for Infrastructure as a Service Clouds" (2013)
 Saeid Abrishami and Mahmoud Naghibzadeh and Dick H.J. Epema Cited 311 times.
- Critical path related algorithms i.e. IC-PCP

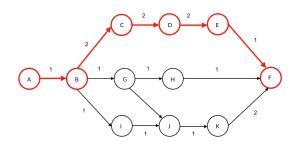


Figure: Critical Path on a Directed Acyclic Graph

Multi-parameter problem:

Time constraints

- Time constraints
- Performance model

- Time constraints
- Performance model
- Cost constraints

- Time constraints
- Performance model
- Cost constraints
- Unlimited task graphs

Research Question

Can we profile critical path related algorithms by the means of a framework ?

- How relevant is a framework for profiling critical path related algorithms?
- What are the challenges for such a framework?

Motivation

Why a framework?

- Compare algorithms performances
- Compare implementations of the same algorithm
- Manipulate and plot output data

What is the best implementation for the "Inspiral" (LIGO) task graph ?

Prototype Architecture

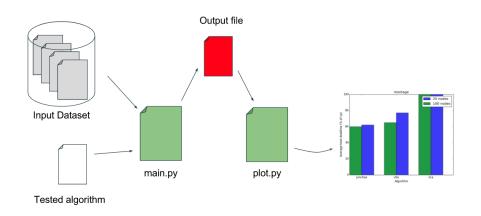


Figure: Prototype Architecture

Prototype Inner Working

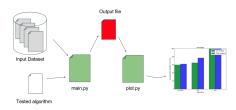


Figure: Prototype Architecture

- Step 1: main.py
 - Browse input task-graph dataset
 - Run algorithm on dataset with specific parameters
 - Write the results in an output file
- 2 Step 2: plot.py
 - Browse output file lines
 - Structure the data
 - Plot the structured data

File Formats

- Input task graph format
 - Topology

```
1 digraph dag {
2 0 → 3 [weight=0.0];
3 0 → 48 [weight=0.0];
4 1 → 101 [weight=5.0];
5 2 → 101 [weight=5.0];
6 3 → 4 [weight=6.0];
7 3 → 6 [weight=9.0];
```

Performance Model

```
1 0, 12, 9, 8, 7, 5, 11, 12, 19, 12, 15, 15, 13, 8, 11, 12, 17, 10, 16, 7, 7, 16, 15, 18, 17, 14

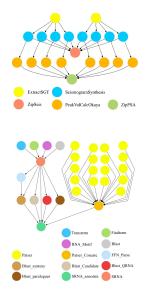
0, 24, 18, 16, 14, 10, 22, 24, 38, 24, 30, 30, 26, 16, 22, 24, 34, 20, 32, 14, 14, 32, 30, 36, 34, 28

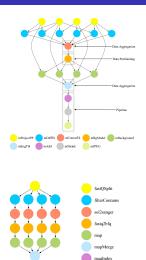
0, 36, 27, 24, 21, 15, 33, 36, 57, 36, 45, 45, 39, 24, 33, 36, 51, 30, 48, 21, 21, 48, 45, 54, 51, 424
```

VM prices

```
1 5,2,1
```

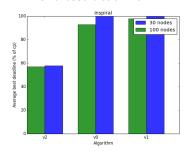
Output file format


```
1 1.30.5;1;0;[22, 23, 24, 27, 29, 30];0.0302591323853
2 1.30.5;2;0;[22, 23, 24, 27, 29, 30];0.029815196991
3 1.30.5;3;0;[22, 23, 24, 27, 29, 30];0.0295469760895
4 1.30.5;4;0;[22, 23, 24, 27, 29, 30];0.0297148227692
5 1.30.5;5;0;[22, 23, 24, 27, 29, 30];0.0296459197998
6 1.30.5;7;0;[22, 23, 24, 27, 29, 30];0.0296459197998
7 1.30.5;7;0;[22, 23, 24, 27, 29, 30];0.029842853546
7 1.30.5;7;0;[22, 23, 24, 27, 29, 30];0.0298299789429
```



Input Data sets

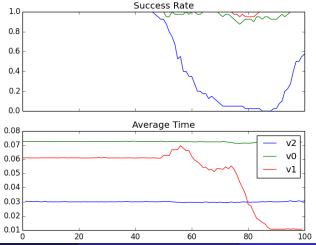
Other topologies: Cybershake, Montage, Sipht, Epigenomics



pileup

Experiment #1

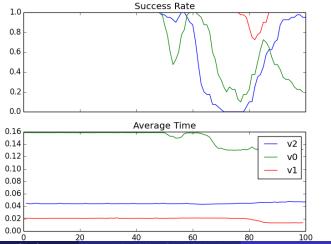
- Assumption: "If the algorithm succeeds for a shorter deadline, then it will succeed for a longer one"
- Input datasets: Montage & Inspiral
- KPI: shortest deadline



Experiment #2

• Input datasets: Inspiral

• KPI: Time and Success rate



Experiment #2

• Input datasets: Montage

• Experiment #1 assumption : False

Discussion |

- Performance Model : not changeable
- Algorithms' codes have to be adapted
- Solution check is done by the algorithm (not the framework)
- Framework needs a lot of resources
- Output format : Cost ?

Conclusion

Can we profile critical path related algorithms by the means of a framework ?

- Meaningful results
- Assumption proved wrong
- Empirical solution

More motivations

But also...

- Store algorithms and results
- Authoritative source

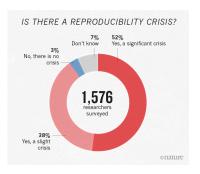


Figure: https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970

Future Work

- Universal standards (challenge)
- Web-application
- Community databases
- New features:

Feature	Note
DAG Generator	Create and visualize new topologies
DAG Parsing	Manage different input topologies format
input checker	Check input algorithm parameters
Solution checker	Make sure the final solution is valid

Table: Framework features

