
MSc System and Network Engineering
Research Project 1

Framework for profiling critical path
related algorithms

by

Henri Trenquier
11758929

February 21, 2018

6 ECTS
January, 8th − February, 12th

Supervisors: Dr Zhiming Zhao,
Dr Arie Taal

Profiling Critical Path related algorithms Research Project 1

Abstract

Critical path related algorithms are used to solve time critical applica-
tions and optimises costs for data processing with cloud computing while
respecting time constraints. In this paper we will try to create a framework
to profile these critical path related algorithms thanks to shared standards
and common testing environment. The framework would also aim at gather-
ing the community with new standards to ease work sharing, alleviate paper
reviewing and reduce the reproducibility crisis [7].

2

Profiling Critical Path related algorithms Research Project 1

Contents

1 Introduction 4

2 Related Work 5
2.1 Graphs and DAGS . 5
2.2 State of the art . 5

3 Research Question 6

4 Prerequisites 6
4.1 Workflow . 6
4.2 Directed Acyclic Graph . 6
4.3 Deadline . 7
4.4 Critical Path . 7
4.5 Performance model . 8
4.6 Scheduling algorithms . 8

5 Framework 9
5.1 Motivations . 9
5.2 Prototype . 9
5.3 Key Performance Indicators 10

5.3.1 Computation time . 10
5.3.2 Percentage . 10
5.3.3 Success ratio . 11

5.4 Architecture . 11
5.4.1 main . 11
5.4.2 run . 11
5.4.3 plot . 13

5.5 DAG datasets . 13
5.6 Example . 15

6 Experiments 16
6.1 Experiment 1 . 16
6.2 Experiment 2 . 18

7 Discussion 20
7.1 Experiment 1 . 20
7.2 Experiment 2 . 20
7.3 Prototype . 21

8 Conclusion 22

9 Future Work: Final Framework 22

3

Profiling Critical Path related algorithms Research Project 1

1 Introduction

Cloud computing has recently emerged and becomes the most popular choice
to run complex applications that require large scale data processing. Devel-
oping complex distributed cloud applications that need to meet high Qual-
ity of Service (QoS) and Experience (QoE) is a challenge. The Software
Workbench for Interactive, Time Critical and Highly self-adaptive cloud ap-
plications (SWITCH [4]) is a European scientific project aiming at devel-
oping solutions for this global problem. Planning virtual infrastructure for
time critical applications with deadline constraints is an issue tackled by
the SWITCH project. This research is lead in the context of this project.
The general scheduling problem is known as an NP-hard problem [13]. The
complexity arises from the many parameters such as the time and order-
ing constraints, the proposed performance models or the different workflow
topologies.
As a result, many scheduling algorithms are proposed in papers. In particu-
lar, a "Cost Effective Deadline Aware" (CEDA) scheduling strategy[10] has
been proposed. We can cite the IC-PCP algorithm as an example. But these
algorithms, as well as cloud computing in general, do not show deterministic
performance behaviours. The community needs to categorize the workflow
topologies and rate the algorithm’s performance depending on the different
topologies. Moreover, as research papers only show successful results, and
often only present pseudo codes, it is harder to determine the quality of the
algorithm.

4

Profiling Critical Path related algorithms Research Project 1

2 Related Work

Use of workflows to solve large scale data processing is frequent. The Pe-
gasus[3] project has created a workflow management system that executes
these workflow-based applications [2].

Workflows are a means to express the dependencies between the multiple
tasks in complex applications. Most of the time, workflows are described by
acyclic directed graphs.

2.1 Graphs and DAGS

DAGs and also graphs in general are a very powerful data structure. They
can represent various kinds of objects such as molecules but also model
scientific problems. In this case, they represent data processing workflows
and allow us to have a clear idea of the different tasks and their dependencies.
Since graphs have many use-cases, many researches have tried to classify
them. This motivation hails from the complexity of the problems that can be
modelled with this data structure. The behaviour of an algorithm depends on
the topologies, number of nodes, mean in-degree and many other (un)known
metrics that can be defined on a graph. A research has tried to introduce
a new metric to define a hierarchy of classes of DAGs [8]. Other researches
have tried to classify graphs by mining patterns with graph boosting methods
[12] or kernel methods[9]. Classification of DAGs has not been attempted
yet.

2.2 State of the art

The following research paper lists the most popular workflow scheduling
algorithms that have been used in Grid projects [14]. A recent paper[6]
written in 2013 introduces a new algorithm which focuses on minimizing
the cost of a workflow in an Infrastructure as a Service. This algorithm
is called IC-PCP which stands for IaaS Cloud Partial Critical Path. The
300+ citations speak for its popularity. This algorithm seems to show very
promising results. However, the paper formulates some confusing phrases
in the pseudo-code that can be interpreted in different ways. Thereby, the
results are hard to reproduce since the authors did not share their version of
the algorithm’s code.

5

Profiling Critical Path related algorithms Research Project 1

3 Research Question

In order to test and compare Critical path related algorithms and tackle the
reproducibility crisis, we define the research question as follows:

Can we profile Critical path related algorithms by the means of a
framework ?

We can divide this question into two sub-questions:

• How relevant is a framework for profiling critical path related algo-
rithms ?

• What are the challenges for such a framework ?

4 Prerequisites

Before diving into the details of the prototype, we will, in this section, intro-
duce some prerequisites. An example will be introduced in the end of this
section for a good understanding of the problem.

4.1 Workflow

A workflow is a sequence of sub-tasks that describes a big and complex
project or process. Such a process needs to be depicted to be able to share
the work between different people or resources.

4.2 Directed Acyclic Graph

Directed Acyclic Graphs or DAG is the kind of graph used to represent
workflows.

Definition [5]

A directed graph G = (V,E) consists of a nonempty set of nodes V and
a set of directed edges E. Each edge e of E is specified by an ordered pair
of vertices u, v ∈ V . A directed graph is simple if it has no loops (that is,
edges of the form u -> u) and no multiple edges.

A directed acyclic graph is a directed graph that has no cycles ie. if there
is no path from u to u, u ∈ V .

Model
In this model, V represents the set of tasks to be executed. E represents
the dependencies between the different tasks. An edge, (or ordered pair of
vertices (u, v)) represents the order constraint: v can only be executed if u
is finished. A vertex that has no predecessor is an entry node and a vertex
that has no successor is an exit node.

6

Profiling Critical Path related algorithms Research Project 1

If there are more than one entry and/or exit node, we usually introduce
a dummy entry and/or exit node. The virtual node will have his computing
and communication costs equal to zero. For practical reasons, these two
additional nodes are often added to help the algorithm and have no conse-
quence on the final result.

In the next pages, we will assume that the entry and exit nodes always
exist and are unique.

4.3 Deadline

For each generated workflow, the user defines a deadline. We define the
Deadline as the time limit to execute the workflow. In this project, we will
vary the deadline in order to stress more or less the scheduling algorithm
(see Subsection 4.5 Scheduling algorithms.

4.4 Critical Path

The critical path is the longest series of sequential operations in a worflow
representation, if the workflow is represented by a DAG, i.e. the longest path
from entry node to exit node.

Figure 1: Sample DAG

An example of critical path of the sample DAG Figure 1 can be computed
thanks to the tasks’ costs given by performance model (Table 1). The critical
path is {t2, t6, t9}.

The time of the critical path defines the shortest deadline applicable for
this work The shortest deadline that can be validated by an algorithm is
greater or equal than an sum of the critical path nodes computation time.

Further in the paper, we will introduce a parameter to measure the per-
formance of algorithm which relies on this minimum deadline value.

7

Profiling Critical Path related algorithms Research Project 1

4.5 Performance model

The performance model describes the available computation services and
their execution time for each task. Different models can be generated for
the same graph. If we take the sample performance model described by the
Table 1 from the IC-PCP sample [6] again.

t1 t2 t3 t4 t5 t6 t7 t8 t9
S1 2 5 3 4 3 4 5 3 5
S2 5 12 5 6 8 8 8 6 8
S3 8 16 9 10 11 11 11 8 14

Table 1: Performance model

4.6 Scheduling algorithms

Scheduling algorithms are designed to map tasks from the workflow to Vir-
tual Machines (VM). As described in the Directed Acyclic Graph subsection,
the tasks to map are represented by the nodes of the DAG. Also, the VMs’
quality are described by the performance model.

• The performance model describes the time that each individual task
of the workflow will take to compute on the VM available in a cloud.
An example is given in Table 1.

• Each type of VM has a different price.

• At the end of the run, the algorithm outputs a configuration corre-
sponding to the mapping of all tasks VMs. An example is also given
in Table 3.

It is possible to assign all tasks to the most powerful type of VM. However,
this VM will also be the most expensive, making the workflow’s execution
very expensive too. Hence, the principle of the scheduling algorithms is to
reduce the cost of the workflow’s execution by mapping cheaper VMs to the
tasks. In order to have a valid solution, the workflow’s execution time has
to respect time constraints: the deadline.
Finally, a scheduling algorithm takes as input:

• a DAG

• a deadline

• Communication costs (stored as the DAG edges’ weights)

• Computation costs (stored in the performance model)

8

Profiling Critical Path related algorithms Research Project 1

• VMs prices

We will call the output of a scheduling algorithm the final configuration.
Defining a shorter deadline will stress more the algorithm. We will prefer

an algorithm that is able to solve problem with short deadlines.
The scheduling algorithms that we will test and profile use the critical

path to do the mapping. We call these algorithms "Critical path related
algorithms".

5 Framework

5.1 Motivations

The motivation to create a framework for profiling critical path related al-
gorithms is dual.
On the first hand, cloud computing is frequently a viable option for a com-
pany or a research project to run distributed applications. Cloud providers
work with a "pay-as-you-go" business model. Hence, depending on the man-
agement of the resources, the operating expenses can vary a lot. Conse-
quently, a company will be more inclined to invest in a good scheduling
algorithm that will lower the costs of the service.
Researchers have come up with multiple scheduling algorithms. But it is dif-
ficult to compare their performances and to know with what kind of workflow
the algorithm performs better.
The framework aims at proposing common input datasets and analyse the
results. Based on the same Key Performance Indicators we could rank the
tested algorithms. On the other hand, researchers usually have their own
testing environment, algorithms with different input formats etc. This het-
erogeneity of environments makes it harder to share the work and reproduce
the results. The idea of a common framework would foster the researchers
to work on common standards. It could be also a solution for the Repro-
ducibility Crisis raised by Monya Baker in a fairly recent survey[7].

5.2 Prototype

In order to grasp the challenges of building this profiling tool, we have de-
veloped a prototype. The next pages of this paper will describe the issues
tackled during the research to allow the reader to understand the different
challenges.

9

Profiling Critical Path related algorithms Research Project 1

To fit in the time constraints of the research we have defined a reasonable
scope:

• The prototype will compare 3 different implementations of the IC-PCP
algorithm (these implementations have been written by two different
people)

• Every code will be tested on the same datasets (the datasets will be
exposed in section 5.5 DAG datasets)

• Key Performance Indicators:

– Computation time

– Percentage (cf. Formula 1)

– Success ratio (cf. Formula 2)

They will be defined in the next subsection.

5.3 Key Performance Indicators

The ranking of the different implementations will be based on the Key Per-
formance Indicators (KPI). The choice of these KPIs is essantial for profiling
algorithms.

5.3.1 Computation time

To measure the computation time, we used the time function in the library
of the same name. The time is saved before and after the algorithm’s code.
The result is the difference of the two timestamps.

5.3.2 Percentage

As stated by the definition of the Critical path, a workflow has a minimum
deadline. This minimum is equal to the time of the critical path. The
percentage p will be defined as follows:

deadline =
100 ∗ critical_path_time

p
(1)

Indeed, if p = 100, the deadline will be as long as the critical path time.
This is the most stressful situation for the algorithm.
On the other hand, for p = 0, the deadline is infinite. We will discard this
value of p. For a p = 50, the deadline is twice as long as the critical path
time.

So the value of p will vary between 0 and 100, 0 excluded: p ∈ (0; 100].

10

Profiling Critical Path related algorithms Research Project 1

5.3.3 Success ratio

For a specific dataset of N DAGs, we define the success ratio of the algorithm:

SuccessRate =
NumberOfV alidConfigurations

NumberOfDAGsTested
(2)

5.4 Architecture

The prototype is a python script. The script is composed of three main
functions.

1. main.py

2. run.py

3. plot.py

A global overview is given in Figure 2. To simplify, the run.py function
is not represented here. It can be just part of the main.py function.

Figure 2: Prototype Architecture

In this subsection, we will see in further details the three main functions.

5.4.1 main

This function is capable of walking the DAG database, and choosing the
input dataset depending on the type of topologies.

5.4.2 run

Given an algorithm A and a DAG file D, the run function will call the
algorithm’s main function for a range of values of input parameter p. Here,
the percentage will vary from 1 to 100.

11

Profiling Critical Path related algorithms Research Project 1

Two sub-functions can be called:

• run_full_range
For all integer values of p between 1 and 100, the algorithm A is ran
on the DAG D with the deadline computed from p. The success (or
validity of the configuration given by the algorithm), the time to com-
pute the configuration, the DAG’s name and the percentage for the
configuration are saved in a file.

• run_dichotomy
This function only tests the algorithm for specific values of p. It aims
at finding the shortest deadline that the algorithm is able to vali-
date. In order to lower the number of runs for time complexity issues,
run_dichotomy looks for the shortest deadline that the algorithm is
capable of reaching. This is done by trying several deadlines based on
a dichotomy pattern.

This ’run method’ is based on the following assumption:

"If the algorithm A succeeds for a shorter deadline then it
will also succeed for a longer deadline."

In other words, we can find a unique p above which the algorithm will
not be able to find a valid configuration and under which all configu-
ration is valid (we remind the reader that, according to the Formula 1,
the higher the p, the shorter the deadline). However, this assumption,
even though it seems natural, will be proved to be wrong.

Both methods output a file. This file will later be read by the plot func-
tion. In this output file, each line correspond to a run. The following
example shows two lines of an output file.

1.30.5;3;0;[22, 23, 24, 27, 29, 30];0.0295469760895
1.30.5;4;0;[22, 23, 24, 27, 29, 30];0.0297148227692

The data is comma-separated values and written in the following order:

1. DAG name

2. Percentage

3. Success or failure (respectively 0 or -1)

4. Critical Path

5. Computation time

12

Profiling Critical Path related algorithms Research Project 1

5.4.3 plot

The plot function has several interesting methods.

• getMetadata: output file names are specific. They contain the input
DAG dataset and the name of the algorithm that has been tested.
getMetadata retrieves the metadata from this file.

• verifyInputDataset : this function checks if the DAGs that have been
tested are the same. Indeed, to plot and compare the performance
results, it is important to have the same input dataset.

• plot* : There are two plot methods. Each method plots a different
performance graph. Performance graphs will be shown later. It is
possible to create more methods to plot other interesting relations.

5.5 DAG datasets

The DAG datasets have been generated from sample topologies available on
the Pegasus [3] website. We call a type of DAG a "topology" since it is
the only way to classify them for now. The full database is composed of 5
different topologies. These topologies are used in scientific projects and are
available on the pegasus website[3].
The 5 types are:

• Sipht : Figure 3(a)

• Montage : Figure 3(b)

• Inspiral : Figure 3(c)

• Epigenomics : Figure 3(d)

• CyberShake : Figure 3(e)

13

Profiling Critical Path related algorithms Research Project 1

(a) Sipht (b) Montage

(c) Inspiral (d) Epigenomics

(e) Cybershake

Figure 3: Topologies used to generate the datasets

For each topology we have generated multiple instances by changing the
weights of edges and the performance model.

It is possible to generate DAGs randomly, but we prefer to test algorithms
on DAGs used in practice. Moreover, these topologies have already been used
in other critical path related papers [6].

14

Profiling Critical Path related algorithms Research Project 1

Input format
There are three input files for a DAG for this prototype.

• 1.25.1.propfile contains the actual topology of the graph.

• performance contains the performance model.

• price contains the price of each VM described in the performance
model.

• deadline contains a deadline information (only used if a percentage has
not been set).

5.6 Example

This subsection will recapitulate the previous explanations on an example
taken from the IC-PCP paper[6]:

• The graph Figure 1 shows the sample DAG.

• The following code "sample.propfile" describes the DAG Figure 1.

digraph dag {
1 -> 4 [weight=1.0];
2 -> 5 [weight=2.0];
2 -> 6 [weight=2.0];
3 -> 6 [weight=2.0];
4 -> 7 [weight=1.0];
4 -> 8 [weight=1.0];
5 -> 8 [weight=4.0];
6 -> 9 [weight=3.0];
}

We can see that the entry and exit nodes are not in the propfile. These
nodes are automatically added in the algorithm.

• The performance model describes the available computation services
and their execution time for each task. Any performance model can
be applied to this graph. If we take the sample performance model
described by the Table 1 from the IC-PCP sample [6] again.

The following code describes the performance model described by Table
1

2 5 3 4 3 4 5 3 5
5 12 5 6 8 8 8 6 8
8 16 9 10 11 11 11 8 14

15

Profiling Critical Path related algorithms Research Project 1

VM Price
S1 5
S2 2
S3 1

Table 2: Prices of VMs

• VM prices are chosen by the service provider. The prices given by the
Table 2 are described in a file called "price".

The code for this pricing model is given as follows:

5 2 1

• The deadline is simply a file with the deadline value in it (e.g. 291)

• The final configuration is the distribution of the workflow’s tasks on
the VM instances.

It is presented as the Table 3

Start time Stop time Duration Total cost Assigned tasks
S2,1 0 28 28 6 t2, t6, t9
S2,2 14 28 14 4 t5, t8
S3,1 0 9 9 1 t3
S3,2 0 29 29 3 t1, t4, t7

Table 3: Final configuration for the sample DAG

6 Experiments

On all experiments, we compare three implementations of the same algorithm
(v0, v1 and v2).

6.1 Experiment 1

The first experiment uses the method run_dichotomy.
The result of the first experiment is displayed on the graph figure 4. The

dataset used for this was generated from the Montage topology.
As explained in the 5.4.2 run subsection, we run the tested algorithm

(v0,v1 or v2) on a DAG and its performance model taken from the dataset.
The function finds the highest percentage (ie. shortest deadline) that the
algorithm is able to respect.

For each run we have output the highest percentage.
Green bars show the mean of the highest percentage for all DAGs of 25 nodes

16

Profiling Critical Path related algorithms Research Project 1

Figure 4: Experiment 1 : Performance on Montage

in the dataset. Blue bars also show the mean of the highest percentage but
for DAGs of 100 nodes. On the y axis, is the mean of the highest percentage.
Hence, a high bar means that the algorithm can find a configuration in a
very short deadline.

The most interesting results are obtained with the Montage topology.
Compared to all other tested topologies, Montage seems to be the hardest
to solve (at least for algorithm v0).

From the other performance graph, we can see that the number of nodes
has a low impact on the average best deadline.

Figure 5 shows the results for the 4 other topologies. The results are
quite similar to each others:

17

Profiling Critical Path related algorithms Research Project 1

(a) Epigenomics (b) Cybershake

(c) Sipht (d) Inspiral

Figure 5: Exp 1: Results for Epigenomics, Sipht, CyberShake and Inspiral

6.2 Experiment 2

The second experiment will rank the implementations based on the compu-
tation time for a run and success rate.

On the shared x axis, is the percentage: closer to 100 means shorter
deadline, x ∈ (0; 100].
The top graph shows the success rate (in %) , how many run succeeded versus
the percentage. The bottom graph shows the Computation time in second.
The computation has been performed for all integer values of p between 1
and 100 this time.

In the same way as the first experiment, we will show the results for the
Montage dataset : Figure 6.

Before the experiment, we did not expected the success rate to increase
at all. However, Figure 6 clearly shows that all algorithm’s successes drop
around p=75% (ie. when the deadline is 1.33 ∗ critical_path_time) but
raise after.

18

Profiling Critical Path related algorithms Research Project 1

Figure 6: Experiment 2 : Performance on Montage

This mean that the assumption stated in subsection 5.4.2 is not true:

Sometimes, an algorithm can fail for a longer deadline and succeed for a
shorter deadline.

This statement also seem to be true for all 3 implementations on Montage
since we can see a little gap on the top diagram.

On the other hand, we can see that the algorithm v1 shows better per-
formance overall on all KPIs:

• Shortest deadline (Experiment 1)

• Computation Time (Experiment 2)

• Success Rate (Experiment 2)

On Figure 7, we can see that the result are also quite similar to each
others. In the reading order, we can see the results of Epigenomics, Sipht,
CyberShake and Inspiral for Experiment 2.

19

Profiling Critical Path related algorithms Research Project 1

(a) Epigenomics (b) Cybershake

(c) Sipht (d) Inspiral

Figure 7: Exp 2: Results for Epigenomics, Sipht, CyberShake and Inspiral

7 Discussion

7.1 Experiment 1

The first experiment is based on the assumption stated in paragraph 5.4.2.
As demonstrated by the second experiment, this assumption is wrong. Con-
sequently, the results shown in the first experiment are wrong too. We have
purposely kept these results in the paper for 2 reasons.

• The results obtained with this experiment are very similar to the results
of the second experiment. Thus, we can state that they reflect the
reality even though they are based on a false statement.

• We wanted to show that we have been able to gainsay our own state-
ment. Thereby, we have shown that the diversity of experiments is
able to teach us new knowledge on the behaviour of these algorithms.

7.2 Experiment 2

As stated in the previous subsection, this second experiment allowed us to
refute the assumption. As we had stated in the first experiment, the number

20

Profiling Critical Path related algorithms Research Project 1

of nodes did not show a great impact on the successes. However, the second
experiment’s dataset does not distinguish the DAGs with their number of
nodes. It could be interesting to separate results depending on the number
of nodes for the computation time.

7.3 Prototype

The prototype proposed in this project is used as a proof of concept. As it
has been developped in a limited period, it has a lot of limitations. Among
them, the most important one are the following:

• For each implementation of an algorithm to be tested, it is necessary
to adapt its input files formats. The prototype has been developped
around the algorithms v0 and v1. However, the algorithm v2 did
not take in charge the ".propfile" format. A parsing method had to
be added before to enable the algorithm to read from the ".propfile"
format.

• For a run with the run_full_range function, an output file is generated
after 100 ∗ 40 runs (100 values of the percentage and 40 different DAG
instances). This large amount of run needs fast computing resource or
will take a considerable amount of time.

• For this prototype, the solution validity check is coded in the algorithm
implementation. That should be done in the framework.

• The output file is not optimised. We have chosen to write the critical
path of the DAG in the output file but we did not use it for plotting
results. Moreover, it would have been more interesting to output the
cost of the final configuration and the configuration. These are 2 im-
portant pieces of information that are important for integrity of the
results and as KPI.

• The DAG database is short. The number of algorithms to profile is
low and the database only has 200 DAGs, 40 per topology.

• The percentage metric defined in this project can be confusing in the
beginning. It may be interesting to define a more intuitive one.

The framework will make even more sense when we have a lot of values
to compare, and also more experiments.

21

Profiling Critical Path related algorithms Research Project 1

8 Conclusion

The research question was:

Can we profile Critical path related algorithms by the means of a
framework ?

We can now answer this question positively.
Even though we did not have a large amount of algorithms to check nor a
big DAG database, we have actually been able to define a ranking regarding
three different key performance indicators.

Moreover, we have been able to detect an interesting tendency of one of
the five topologies: Montage. The refutation of the assumption is also an
unexpected advantage of the framework.

At the end of the day, the framework has shown interesting results with
few means. The real potential of this framework now relies on the commu-
nity’s implication. This is what we will describe in the next and final section
of this report.

The framework will be available on the following source [1].

9 Future Work: Final Framework

Ideally, we would like the framework to answer all question of this kind:

What algorithm is the best for a topology like Inspiral ?

Indeed, as the scheduling problem is known as NP-hard[13], we don’t
expect to find a universal "best" algorithm for all topologies any time soon.
However, it is possible to greatly enhance and ease the work of the researchers
and developers for this scheduling problem.

During this project, we have been confronted with many obstacles. The
following features are the challenges that we have been able to identify.

• Universal standards
As we had issues adapting each implementation to be usable by the
framework, it is necessary to establish universal standards. These stan-
dards, such as input DAG file format or input parameters such as the
percentage in the algorithm itself.

• Web-application
It is important if we want the community to adhere to this project to
make the framework highly available. A web-application would be the
best solution. Nothing else than a internet browser would be needed.

22

Profiling Critical Path related algorithms Research Project 1

• Community databases
Members of the community should be able to upload their work and
share it. We should be able to find in this database implementations of
algorithms as well as new topologies. An uploaded algorithm should be
available to other users to satisfy the open source value of the SWITCH
project [4].

• Percentage
The percentage metric that has been defined in this project is confus-
ing. Moreover, a value of p e to 1% might not be a challenging case for
an algorithm. In the future, when the algorithms will show very good
results, it will be more interesting to focus on the values above 50%.
Thus, this metric could be enhanced.

• Performance
Performance has already been a little issue in this project. Computing
tests on the whole DAG database takes time. If many users want
results quickly from their new algorithm, it is important to make this
application scalable.
The first step towards a faster back end application would be to make
the run script mutli-threaded. In addition, powerful libraries such as
graph-tool[11] could be used to manipulate graphs.

• New features
Furthermore, new features should be added on the framework. These
features are listed Table 4.

Feature Description
DAG Generator Create and visualize new topologies
DAG Parsing Manage different input topologies format
input checker Check input algorithm parameters
Solution checker Make sure the final solution is valid

Table 4: Framework features

The solution checker is very important for the integrity of the results
on the framework. This feature should be developed so that users do
not check their own algorithms.
This part of the framework should be very secure as well as the output
files integrity. In order to be a trusted platform, this data should not
be tampered with. This would poison the framework and its users.

If this requirement is met, the framework would ease the work of re-
viewers and greatly help with reproducibility by providing an author-
itative source for researchers.

23

Profiling Critical Path related algorithms Research Project 1

References

[1] Critical path related algorithm profiling frame-
work. Link: https://github.com/htrenquier/
cp-related-algorithm-profiling-framework.git.

[2] Ligo project. Link: https://www.ligo.caltech.edu/.

[3] Pegasus. Link: http://pegasus.isi.edu/.

[4] Switch project. Link: http://www.switchproject.eu.

[5] Directed graphs. mcs-ftl, page 189, 2010.

[6] S. Abrishami, M. Naghibzadeh, and D. H. Epema. Deadline-constrained
workflow scheduling algorithms for infrastructure as a service clouds.
Future Generation Computer Systems, 29(1):158 – 169, 2013. Including
Special section: AIRCC-NetCoM 2009 and Special section: Clouds and
Service-Oriented Architectures.

[7] M. Baker. 1,500 scientists lift the lid on reproducibility. Nature News,
Springer Nature, 2016.

[8] M. Chaturvedi. A parametric classification of directed acyclic graphs.
2017.

[9] K. T. H. Kashima and A. Inokuchi. Marginalized kernels between la-
beled graphs. In Proceedings of the 21st International Conference on
Machine Learning, page 321 – 328, 2003.

[10] R. A. Haidri, C. P. Katti, and P. C. Saxena. Cost effective deadline
aware scheduling strategy for workflow applications on virtual machines
in cloud computing. Journal of King Saud University - Computer and
Information Sciences, 2017.

[11] T. P. Peixoto. The graph-tool python library. figshare, 2014.

[12] H. Saigo, S. Nowozin, T. Kadowaki, T. Kudo, and K. Tsuda. gboost:
a mathematical programming approach to graph classification and re-
gression. Machine Learning, 75(1):69–89, Apr 2009.

[13] J. Ullman. Np-complete scheduling problems. Journal of Computer and
System Sciences, 10(3):384 – 393, 1975.

[14] J. Yu, R. Buyya, and K. Ramamohanarao. Workflow Scheduling Algo-
rithms for Grid Computing, pages 173–214. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2008.

24

https://github.com/htrenquier/cp-related-algorithm-profiling-framework.git
https://github.com/htrenquier/cp-related-algorithm-profiling-framework.git
https://www.ligo.caltech.edu/
http://pegasus.isi.edu/
http://www.switchproject.eu

	Introduction
	Related Work
	Graphs and DAGS
	State of the art

	Research Question
	Prerequisites
	Workflow
	Directed Acyclic Graph
	Deadline
	Critical Path
	Performance model
	Scheduling algorithms

	Framework
	Motivations
	Prototype
	Key Performance Indicators
	Computation time
	Percentage
	Success ratio

	Architecture
	main
	run
	plot

	DAG datasets
	Example

	Experiments
	Experiment 1
	Experiment 2

	Discussion
	Experiment 1
	Experiment 2
	Prototype

	Conclusion
	Future Work: Final Framework

